Lipids and Steroids

© Department of Biochemistry (J.D.), 2010

Types of lipids

Simple

- triacylglycerols
- waxes
- ceramides
- non-polar
- insoluble in water
- soluble in lipophilic solvents

Complex

glycerophospholipids

see

Med.Chem. II

App. 4

- sphingophospholipids
- glycosphingolipids
- polar and non-polar

have the character of tenside concentrate on phase interface

Lipophilic solvents are very toxic

- trichloroethene Cl₂C=CHCl (hepatotoxic) tetrachloroethene Cl₂C=CCl₂ (hepatotoxic)
 - chloroform CHCl₃ (hepatotoxic)
- \bigcup tetrachloromethane CCl₄ ($\stackrel{\$}{\stackrel{\$}{\stackrel{}}}$ extremely hepatotoxic!!)

benzene C_6H_6 (scarcinogen!!) toluene C_6H_5 -CH₃ (lung damages, addictive inhalant) nitrobenzene C_6H_5 -NO₂ ($\stackrel{\$}{\underset{}}$ methemoglobinemia) carbon disulfide CS_2 ($\stackrel{\$}{\stackrel{\$}{_{\sim}}}$ neurotoxic)

Fatty acids (FA)

Number of carbons and double bonds		Common name	Systematic name
Saturated fatty ac	<u>ids</u>		
4:0		Butyric	butanoic
6:0		Caproic	hexanoic
8:0		Caprylic	octanoic
10:0		Capric	decanoic
12:0		Lauric	dodecanoic
14:0		Myristic	tetradecanoic
16:0		Palmitic	hexadecanoic
18:0		Stearic	octadecanoic
20:0		Arachidic	eicosanoic
22:0		Behenic	docosanoic
24:0		Lignoceric	tetracosanoic
Unsaturated fatty	acids		
16:1(9)		Palmitoleic	<i>cis</i> -hexadec- 9-enoic
18:1(9)	(<i>n</i> –9)	Oleic	<i>cis</i> -octadec-9-enoic
18:2(9,12)	(<i>n</i> –6)	Linoleic	<i>cis,cis</i> -octadeca-9,12-dienoic
18:3(6,9,12)	(<i>n</i> –6)	γ-Linolenic	<i>cis,cis</i> -octadeca-6,9,12-trienoic
18:3(9,12,15)	(<i>n</i> –3)	α-Linolenic	all- <i>cis</i> -octadeca-9,12,15-trienoic
20:4(5,8,11,14)	(<i>n</i> –6)	Arachidonic	all- <i>cis</i> -eicosa-5,8,11,14-tetraenoic
20:4(5,8,11,14,17)	(<i>n</i> –3)	(Timnodonic)	all- <i>cis</i> -eiscosa-5,8,11,14,17-pentaenoic

The three features of "fatty"

- 1. Non-polar
- = hydrophobic
- = insoluble in water
- = lipophilic
- = soluble in organic solvents (CHCl₃, CCl₄, benzene)

- 2. Lighter than water
- = density $< 1 \text{ g/cm}^3$
- = floats on water surface
- = makes upper liquid phase

3. Contains long C-H chains and/or cycles

Three types of fatty acids

SAFA <u>sa</u>turated <u>fatty acids</u>

MUFA monounsaturated fatty acids

PUFA polyunsaturated fatty acids

- aliphatic, monocarboxylic acid
- even number of C atoms, biosynthesis from acetyl-CoA (2C)
- saturated or unsaturated (configuration *cis*)
- free FA are **non-polar** compouds, insoluble in water
- very weak acids $(pK_A \sim 10)$

Three groups of SAFA

С	Acid	Occurence	Commentary
4	butyric	butter	easily digestible, absorbed directly to blood
6	caproic	butter	metabolic fuel for enterocytes and liver
8	caprylic	butter	Lat. <i>butyrum, i, n</i> . butter
10	capric	butter	Lat. <i>capra, ae, f</i> . goat
12 14	lauric myristic	coconut fat coconut fat	atherogenic , increase blood cholesterol
16	palmitic	animal fats	cocondit fat is used to make fee cream etc.
18	stearic	animal fats cocoa butter	does not elevate blood cholesterol

Biochemical role of SAFA

- **source of energy**, for most tissues (not for brain)
- excessive intakes leads to obesity, atherosclerosis (especially FA C12, C14, C16), increase total and LDL-cholesterol in blood
- it is recommended to reduce the intake of SAFA
- occurence: lard, butter, fatty meat, hardened fats, coconut fat
- **exception:** cocoa butter contains mainly C18, stearic acid does not harm, in addition cocoa is very rich in antioxidants

Fatty acids possess the highest energy from nutrients

Average ox. num. C = 0.0

 $\begin{array}{c|c} -III & 0 & III \\ H_3C - CH - COOH \\ I \\ NH_2 \end{array}$

Average ox. num. C = 0.0

Lipids38 kJ/gSaccharides17 kJ/gProteins17 kJ/g

MUFA prevail in olive and rape seed oils

- 16:1(9) palmitoleic
- 18:1(9) oleic

Biochemical role of MUFA

- mainly oleic acid, **source of energy**
- beneficial influence on blood lipids, decreases LDL-cholesterol, lipoproteins rich in MUFA are more resistent to lipoperoxidation
- phenolic compounds in extra virgin olive oil increase antioxidant capacity of LDL
- Mediterranean diet low occurence of cardiovascular and cancer diseases
- sufficient intake of MUFA is recommended
- occurence: triacylglycerols of olive and rape seed oil

PUFA

- 18:2 (9,12) linoleic n-6 essential
- 18:3 (9,12,15) α-linolenic **n-3** essential
- 20:4 (5,8,11,14) arachidonic **n-6**
- 20:5 (5,8,11,14,17) eicosapentaenoic (EPA) n-3
- 22:6 (4,7,10,13,16,19) docosahexaenoic (DHA) n-3

Nomenclature of PUFA

Example: *all-cis*-octadeca-9,12,15-trienoic acid (systematic name)

Linolenic acid (neutral compound), Linolenate (anion)

total number of carbon atoms

Linguistic analysis: octadeca - tri - en - oic acid

Name component	Explanation	
octadeca	18 (from Greek) = the number of C atoms	
tri	3 = the number of double bonds	
en	infix, indicates a double bond	
oic acid	suffix, indicates a compound type (carboxylic acid)	

Essential fatty acids:

linoleic acid (LA), α-linolenic acid (ALA)

- cannot be created in the body, we do not have enzymes for corresponding desaturations
- desaturation in human body proceeds only from C1 to C9
- n-3 and n-6 desaturations occur only in plants
- essential FA must be supplied by food
- recommended intake of total PUFA: around 20 g
- optimal ratio LA : ALA = 1:1, not higher than 5:1

Biochemical roles of PUFA

- structural components of membrane phospholipids
- the precursors of eicosanoids
- primarily not source of energy
- beneficial influence on blood cholesterol
- **CAUTION:** excessive intake of PUFA is harmful, they are sensitive to lipoperoxidation
- excess of LA-derived eicosanoids exhibit unfavourable health effects (increased blood coagulation etc.)
- PUFA occurrence: sunflower oil and soybean oil (ω-6),
 fish oil, nuts, linseed oil (ω-3)

Physiological effects of n-6 and n-3 PUFA are not the same.

They are given by the opposite effects of corresponding eicosanoids

n-6	n-3	
Decrease blood cholesterol	Decrease blood TAG	
Increase blood coagulation (platelet aggregation)	Decrease blood coagulation (platelet aggregation)	
Inflammatory effect	Anti-inflammatory effect	
	Necessary for the development of brain in children	

Essential FA are the substrates for desaturations and elongations

PUFA with double bonds beyond C9 (n-6 and n-3) are synthesized by plants. If dietary intake is sufficient, **linoleate** and **\alpha-linolenate** are precursors of other PUFA such as **arachidonate** (n-6) and **eicosapentaenoate** (n-3), from which eicosanoids are formed.

n-6

```
n-3
```

```
Linoleate 18:2 (9,12)

6-desaturation

\gamma-Linolenate 18:3 (6,9,12)

elongation

Eicosatrienoate 20:3 (8,11,14)

5-desaturation

Arachidonate 20:4 (5,8,11,14)

18:3 (9,12,15)

0ctadecatetraenoate 18:4 (6,9,12,15)

elongation

Eicosatetraenoate 20:4 (8,11,14,17)

5-desaturation

Eicosapentaenoate 20:5 (5,8,11,14,17)
```

Simple lipids are triesters of glycerol

saturated triacylglycerol (TAG)

Dispersion interactions between saturated TAG (linear molecules) are very extensive

Higher melting point – solid fats

Dispersion interactions between unsaturated TAG (spherical molecules) are limited

Lower m.p. – liquid fats (oils)

Chemical conversion of lipids

- hydrogenation (*in vitro*)
- re-esterification (*in vitro*)

fat hardening

- hydrolysis (in vitro, in vivo)
- **lipoperoxidation** (*in vitro*, *in vivo*)
- rancidification (in vitro)

Hydrolysis of triacylglycerols

• acidic \rightarrow glycerol + 3 FA

• alkaline \rightarrow glycerol + 3 salts of FA

• **enzymatic:** lipase action (see later)

Acidic hydrolysis provides free FA

25

Alkaline hydrolysis provides soap

linguistic paradox

Soap (sodium salt of fatty acid) is anionic surfactant

Composition of soap

Aqua, Sodium Tallowate, Sodium Lardate, Sodium Cocoate, Perfume, Glycerine, Almond Extract, Sodium Chloride, Titanium Dioxide, EDTA, CI 15510

tallow = fat obtained from beef cattle and sheep
lard = pig fat
coconut fat = fat obtained from the flesh of coconut fruit

Lipoperoxidation in vivo

- Reaction of PUFA with free radicals (•OH, •OR, •OOR)
- Chain reaction, non-specific
- Products: higher aldehydes, alkanes

malondialdehyde (MDA) O=CH-CH₂-CH=O

• MDA attacks proteins and other biomolecules

Lipids in food: Various aspects

Pure (100%) plant oils, lard, hardened kitchen fats	Emulsified with water butter, margarins
Obvious (explicit)	Hidden (latent)
see above	meat products, cheese, ice cream, cookies etc.
Atherogenic	Anti-atherogenic
SAFA, especially C12, C14, C16	MUFA, PUFA
most animal fats, coconut fat	olive oil, rape seed oil, nuts, sea fish
Suitable for frying	Unsuitable for frying
resistent to oxidation (SAFA, MUFA)	containing:
cholesterol-free	higher portion of PUFA / cholesterol / water

Average content of FA in selected kitchen fats (%)

Fat	SAFA	MUFA	ω-3 PUFA	ω-6 PUFA
Rape seed oil	10	60	10	20
Sunflower oil	10	25	1	64
Soybean oil	16	24	7	53
Olive oil	15	75	1	9
Coconut fat	90	7	0	3
Lard	43	48	1	8
Butter*	67	28	0	2
Poultry fat	42	37	1	20
Fish oil	28	52	15	5
Cocoa butter	60	38	0	2

* The difference to 100 % is made by 3 % of *trans*-FA.

Nutritional recommendations about fats

- 2/3 plant oils, 1/3 animal fat
- avoid fats with SAFA (mostly contain cholesterol)
- prefer olive oil, rape seed oil, and sea fish
- be careful with sunflower oil and soybean oil
- prefer margarins to butter
- avoid *trans*-FA
- avoid dead-burn fats and fried meals

Fat content in meat varies in the big range

Type of meat	Fat content (%)
Long-life salamis	40-60
Sausages, wursts, hot dogs etc.	20-50
Pork	40
Goose, duck	20-40
Pork lean	20
Sea fish (herring, mackerel, salmon)	10-20
Sardines	7-9
Rabbit	7
Chicken, turkey	5-6
Beef lean	3
Carp (fish)	3
Venison	1
Codfish	0,6
Chicken brest	0,5
Zander (fish)	0,4
Pangasius (fish)	0,4
Turkey breast	0,3

trans-Fatty acids contribute to coronary heart disease

Natural occurence

- tallow (3-7 %)
- butter (3 %)

Synthetic origin

- kitchen fats hardened by hydrogenation
- food products containg hardened fats (cookies etc.)

Other lipid-like substances

- lipophilic vitamins
 (retinol, tocopherol, calciol, phylloquinone)
- terpenes, antioxidants etc.
- cholesterol, phytosterols

Severe lipid-free diets lead to the deficit of lipophilic vitamins, antioxidants, and essential FA.

Lipophilic vitamins and antioxidants

Compound	Structure type	Main food sources
Retinol	isoprene	butter, egg yolk, liver, vegetables
Carotenoids	isoprene	colored vegetables and fruits
Phylloquinone	naphtoquinone	green vegetables, made in intestine
Tocopherol	chroman	nuts, seeds, cold pressed plant oils
Calciol	cholesterol	fish oil, butter, made in skin (UV)

Biochemical conversions of lipids
Enzymatic hydrolysis in small intestine

Natural tensides in fat digestion

Tenside	Туре	Origin
Bile acids	anionic	from cholesterol in liver
2-Acylglycerol	non-ionic	TAG hydrolysis in gut
FA anions	anionic	TAG hydrolysis in gut
Phospholipids	amphoteric	food

They all together make a mixed micelle which enters enterocyte

Lipases in human body

Lipase	Substrate	Organ location
Pancreatic lipase	exogenous TAG	small intestine
Hormon-sensitive lipase (HSL)	endogenous TAG	adipose tissue
Lipoprotein lipase (LPL)	TAG of chylomicrons and VLDL	capillaries of peripheral tissues (muscles etc.)
Hepatic lipase (HL)	TAG of HDL	liver sinusoids

Catabolic pathway of lipids

Ketone bodies

Anabolic pathway- biosynthesis of lipids

Schematic diagrams of complex lipids

Glycerophospholipids

Sphingophospholipids

Glycolipids

Complex lipids are tensides

glycerophospholipid

sphingophospholipid

Phosphatidic acid is the main structure of glycerophospholipids

1,2-diacylglycerol-3-phosphoric acid

Distinguish

Phosphatidate = anion of phosphatidic acid

 Phosphatidyl = acyl of phosphatidic acid (after removing –OH group)

Glycerophospholipids

Polar components – Metabolic origin

Phosphatidylcholine is amphoteric tenside

A pictogram of phospholipid shows <u>one polar head and two</u> non-polar tails

Phospholipids make a bilayer of cell membranes

Cell mebrane is predominantly non-polar system.

Non-polar substances penetrate easily $(O_2, CO_2, \text{ some toxins and drugs})$.

Polar (glucose) and ionic species (Na⁺, Ca²⁺) require specific transporters.

Dipalmitoylphosphatidylcholine is the main component of pulmonary surfactant

- decreases surface tension of alveoli
- prevents the collapse of lungs during expiration
- facilitates the opening of alveoli during inspiration
- lack of surfactant \Rightarrow respiratory distress (atelectasis)

Phosphatidylinositol

It makes up to 20 % of phospholipids in cell membranes.

PIP₂ is a precursor of the second messenger

phosphatidylinositol-4,5-bisphosphate (PIP₂)

Second messengers: inositol trisphosphate (IP_3) and diacylglycerol (DAG) are released after hydrolysis of PIP_2

Sphingolipids – Schematic diagrams

Ceramide N-Acylsphingosine

Sphingophospholipids

Glycolipids

Ceramides are amides

Sphingomyelines

FA – lignoceric 24:0 and nervonic 24:1(15)

Glycosphingolipids

Neutral

cerebrosides

(monoglycosylceramides)

- oligoglycosylceramides
- contain galactose (Gal) and/or glucose (Glc)
- attached by O-glycosidic bond

Acidic

- sulfoglycosphingolipids (esters of sulfuric acid)
- gangliosides

(contain sialic acid)

Cerebroside (monoglycosylceramide)

galactosylceramide

Glycolipids can be sulfated

C3 hydroxyl of galactose is esterified by sulfuric acid

Gangliosides (sialoglycosphingolipids)

Sialic acid is attached in terminal position to oligosaccharide

Steroids

phenanthrene (fused aromatic benzene rings)

perhydrophenanthrene (fused cyclohexane rings) cyclopentanoperhydrophenanthrene (sterane)

The rings in steroids are denoted by the letters A, B, C, and D:

Carbon atoms in steroids are numbered:

65

The two fused cyclohexane rings in chair conformations

A *trans* fusion yields a nearly planar structure, whereas a *cis* fusion gives a buckled structure.

From the eight stereoisomers of sterane, two are named **gonanes**: The fusion of the steroid rings B ands C as well as C and D is *trans*, the fusion of the rings A and B is either *trans* (so called 5α -) or *cis* (5 β -configuration).

In nearly all natural steroids the atoms attached to C-10, C-8, C-13 lie **above** the plane containing the four rings – they **are** β -oriented.

The atoms (substituents) that are **below** the plane **are** α **-oriented**.

The *cis* fusion of the rings A and B (characteristic for the bile acids, with the buckled structure) occurs rarely.

β-**Gonane**

Steroidal hydrocarbons

Name	No. of C	Substituent	17 <mark>β -</mark> Substituent
Gonane	17	-	_
Estrane	18	13-methyl	_
Androstane	19	10,13-dimethyl	_
Pregnane	21	10,13-dimethyl	ethyl
Cholane	24	10,13-dimethyl	pentan-2-yl
Cholestane	27	10,13-dimethyl	6-methylheptan-2-yl

17β-Ethyl-5α-androstane **5α-Pregnane**

Eight-carbon branched side chain at C-17

Cholesterol is the precursor for other steroids

Cholesterol free and esterified

- 27 carbon atoms
- 1 hydroxyl (C3)
 - 1 double bond (C5)

the only polar group

In blood, cholesterol occurs in lipoproteins

Class	Density (g/ml)	Proteins (%)	Cholesterol (%)	TAG (%)
СМ	0.90	2	5	84
VLDL	0.95	9	15	54
LDL	1.05	21	50	11
HDL	1.20	50	22	4

CM – chylomicrons

- VLDL very low density lipoprotein
- LDL low density lipoprotein
- HDL high density lipoprotein

Coprostanol is hydrogenated cholesterol

The product of bacterial reduction of cholesterol in intestine.

The balance of cholesterol in human body

Input into body	g/day	Output from body	g/day
food	0.5 g	coprostanol (stool)	0.8 g
biosynthesis in body	1.0 g	bile acids (stool)	0.5 g
		sebum/desquamated cells	0.2 g
Total:	1.5 g	Total:	1.5 g

cholesterol in food

only animal fats (including fish):

lard, butter, bacon, egg yolk, mayonnaise, fat meat, fat cheese

Cell membranes contain phospholipids, glycoproteins, and cholesterol

C₂₇ **Calciol** (cholecalciferol, vitamin D₃) is synthesized from 7-dehydrocholesterol by photolysis that leads to opening the ring B:

The effects of calciol

- Calciol is made in skin (UV light)
- Calciol is metabolized to calcitriol active hormone
- Regulates calcium and phosphate homeostasis
- Stimulates intestinal absorption of calcium
- Deficit of calciol rickets in children, osteomalacia in adults

Bile acids are anionic surfactants

all polar groups are oriented on one side of molecule

Steroid hormones

Glucocorticoids

Mineralocorticoids

Androgens

Estrogens

Gestagen

C₂₁ **Progesteron** is a **gestagen**: it prepares the lining of the uterus for implantation of an ovum and is also essential for the maintenance of pregnancy.

Corticoids are hormones produced in the adrenal cortex.

Glucocorticoids (such as **cortisol**) promote gluconeogenesis and the formation of glycogen, enhance the degradation of proteins and fat, and inhibit the inflammatory response. They enable animals to respond to stress.

Mineralocorticoids (primarily **aldosterone**) act on the kidney to increase the reabsorption of Na⁺ and the excretion of K⁺, which leads to an increase in blood volume and blood pressure.

Androgens are responsible for the development of male secondary sex characteristics.

Testosterone

17β-Hydroxyandrost-4-ene-3-one

Estrogens are required for the development of female secondary sex characteristics and, along with progesterone, also participate in the ovarian cycle.

Estradiol

Estra-1,3,5(10)-triene-3,17β-diol

