Institute for Microbiology, Medical Faculty of Masaryk University and St. Anna Faculty Hospital in Brno

Miroslav Votava

Agents of neuroinfections

The 5th lecture for 3rd-year students of dentistry 7th December, 2010

Bacterial agents of diarrhea and dysentery – revision l

Escherichia coli

Most *E. coli* strains are component (approx. 1 %) of normal intestinal flora

- important
- essential
- beneficial
- non-pathogenic in the intestine

Only some *E. coli* strains are pathogenic even in the intestine

Bacterial agents of diarrhea and dysentery – revision II

Escherichia coli strains causing diarrheal disease:

- ETEC (enterotoxic *E. coli*): traveller s diarrhea
- EPEC (enteropathogenic *E. coli*): O55, O111; small infants
- EIEC (enteroinvasive *E. coli*): similar to shigellae
- EHEC (enterohaemorrhagic *E. coli*): O157:H7;
 hemorrhagic colitis & hemolytic-uremic syndrome

Bacterial agents of diarrhea and dysentery – revision III

Salmonella

Taxonomical remarks:

There are >4.000 salmonella serotypes

Their official names of them are very inconvenient

Instead we can use more useful names:

- 1. Salmonella Enteritidis
- 2. Salmonella Typhi

Bacterial agents of diarrhea and dysentery – revision IV

Two types of salmonella infections:

- 1) Systemic infections (enteric fever): S. Typhi, S. Paratyphi A C
- 2) Gastroenteritis (salmonellosis): remaining >4.000 serotypes
- Pathogenesis of both starts with the invasion of intestinal epithelia
- In 1) invasion continues and infection becomes generalized → little or no diarrhea, but pronounced fever & other general symptoms
- In 2) infection is localized to ileocaecal region → diarrhea, nausea & vomiting, abdominal pain, temperature may be elevated

Bacterial agents of diarrhea and dysentery – revision V

Diagnosis & treatment of salmonella infections:

- 1) Enteric fever (reservoir: human beings only):
 Detection of salmonellae in blood, urine and stool (on special media), later detection of antibodies (Widal reaction), in suspected carriers examination of duodenal fluid Treatment: antibiotics (chloramphenicol, fluorochinolones, ampicillin, cotrimoxazol)
- 2) Gastroenteritis (reservoir: poultry & animals): Examination of stool only Treatment: symptomatic only, no antibiotics

Bacterial agents of diarrhea and dysentery – revision VI

Campylobacter jejuni

As common as salmonella (or even more); invades jejunal epithelium; reservoir: poultry

Cultured on a special medium, in an atmosphere of reduced oxygen, at 42 C

Shigella sonnei, S.flexneri, S.boydii, S.dysenteriae
Very low infectious dose → epidemic outbreaks
Transmitted only among human beings
Invasion of cells of colon and rectum
The disease is called bacterial dysentery

Bacterial agents of diarrhea and dysentery – revision VII

Yersinia enterocolitica

gastroenteritis, in children also mesenterial lymphadenitis (mimicking acute appendicitis)

vector: contaminated food

the microbe multiplies in refrigerator even at 4 C

Vibrio cholerae

Cholera toxin activates adenylate cyclase → hypersecretion of water & electrolytes → death by dehydration and electrolyte abnormalities

V. cholerae flourishes in water & causes epidemics Vibrio parahaemolyticus: from raw fish & shell-fish

Diarrhea during antibiotic therapy – revision

Common after tetracyclines; from excessively multiplied Staphylococcus aureus, Pseudomonas aeruginosa or Candida albicans (the example of diarrhea of mycotic origin)

After lincomycin or clindamycin (but even after other ATB) → dangerous pseudomembranous colitis caused by *Clostridium difficile*

Patients contaminate the hospital environment with resistant spores
Colitis can be treated by metronidazol

Viral agents of diarrhea – revision

Generally: small, acid- and bile-resistant nonenveloped viruses

Rotaviruses (Reoviridae family)
serious diarrhea of young children, epidemics in winter

Noroviruses and sapoviruses (formerly agents Norwalk and Sapporo, *Caliciviridae* family) epidemics in children and adults, too

Astroviruses (star-shaped virions)

Adenoviruses type 40 and 41 Small, round gastroenteritis viruses

Parasitic agents of diarrhea – revision

In previously healthy individuals:

Entamoeba histolytica: amoebic dysentery

Giardia lamblia: giardiasis

Cryptosporidium parvum: cryptosporidiosis

Cyclospora cayetanensis

In AIDS also:

Isospora belli (coccidium)

Enterocytozoon bieneusi (microsporidium)

Strongyloides stercoralis hyperinfection (helminth)

Other intestinal parasites (helminths, no diarrhoea) – revision

Small intestine:

Ascaris lumbricoides (human roundworm)

Ancylostoma duodenale (Old World hookworm)

Necator americanus (New World hookworm)

Strongyloides stercoralis (threadworm)

Fasciolopsis buski (giant intestinal fluke)

Taenia saginata (beef tapeworm)

Taenia solium (pork tapeworm)

Hymenolepis nana (dwarf tapeworm)

Diphyllobothrium latum (fish tapeworm)

Large intestine:

Enterobius vermicularis (pinworm)

Trichuris trichiura (whipworm)

Food poisoning – revision

1. Intoxication due to <u>a toxin preformed in the food</u>

Staphylococcus aureus: heat-stable enterotoxin

Clostridium perfringens: heat-labile enterotoxin

Bacillus cereus: heat-stable enterotoxin and vomiting toxin (mostly in rice)

Clostridium botulinum: heat-labile neurotoxin

2. Intoxication due to <u>invasive microorganisms</u>

Salmonella gastroenteritis

ETEC and EHEC

Listeria monocytogenes

. . .

Importance of central nervous system infections

- CNS infections relatively rare, but can have a very serious course
- Incidence bacterial meningitis: 2/100.000/year viral meningitis: 10/100.000/year
- Lethality bacterial meningitis, non-treated: >70 %

treated: ~10 %

Pathogenesis of CNS infections

Penetration of the agent into CNS

From a peripheral focus:

by means of blood (meningococci) per continutitatem (pneumococci or haemophili from the middle ear) along nerves (HSV, rabies virus)

Directly:

after an injury (pneumococci, staphylococci, nocardiae, aspergilli)

Etiology of CNS infections

It depends on the type and the duration of the disease, therefore it is different in

- 1. acute bacterial meningitis
- 2. acute viral meningitis
- 3. chronic meningitis
- 4. encephalitis
- 5. acute brain abscess
- 6. chronic brain abscess

Etiology of <u>acute meningitis</u> – I

Always distinguish purulent meningitis (nearly always of bacterial origin) from aseptic one (usually of viral origin)

Anamnesis

Clinical disease

Laboratory – above all the examination of CSF cytology (appearance and number of cells) biochemistry (proteins and glucose) microbiology (microscopy, antigens, culture)

Etiology of acute meningitis – II

Cytology and biochemistry of CSF

marker	norm	<u>purulent</u> meningitis	<u>aseptic</u> meningitis
cells	0-6/µl	↑ ↑ (>1000)	↑ (100-500)
proteins	20-50 mg/100 ml	↑ ↑ (>100)	↑ (50-100)
glucose	40-80 mg/100 ml	↓ (<30)	~ (30-40)

Etiology of acute meningitis – III

age	GBS			
0-1 m.	50			
1-4 y.				
5-29				
30-59				
≥60				

Etiology of <u>acute</u> meningitis – IV

age	GBS	Haem. infl. b		
0-1 m.	50			
1-4 y.		70		
5-29				
30-59				
≥60				

Etiology of acute meningitis – V

age	GBS	Haem. infl. b	Neiss. men.		
0-1 m.	50				
1-4 y.		70			
5-29			45		
30-59					
≥60					

Etiology of acute meningitis – VI

age	GBS	Haem. infl. b	Neiss. men.	other	
0-1 m.	50				
1-4 y.		70			
5-29			45		
30-59				40	
≥60					

Etiology of <u>acute</u> meningitis – VII

age	GBS	Haem. infl. b	Neiss. men.	other	Str. pneu.	
0-1 m.	50					
1-4 y.		70				
5-29			45			
30-59				40		
≥60					50	

Etiology of <u>acute</u> meningitis – VIII

age	GBS	Haem. infl. b	Neiss. men.	other	Str. pneu.	List. mono.
0-1 m.	50			33		10
1-4 y.		70	15		10	
5-29			45	25	20	
30-59			10	40	33	
≥60				25	50	15

Etiology of <u>acute</u> meningitis – IX

Importance of <u>purulent</u> meningitis according to <u>etiology</u>

(lethality and sequelae)

impor- tance	GBS	Haem. infl. b	Neiss. men.	other	Str. pneu.	List. mono.
letha- lity					†	†
seque- lae		+++		+	+	+

Etiology of <u>acute</u> meningitis – X

The most common agents of **aseptic** meningitis:

VIRUSES

mumps virus (but CNS infection is clinically silent)
enteroviruses: echoviruses (30 serotypes)
coxsackieviruses (23 + 6 serotypes)
tick-borne encephalitis virus (TBEV)
rarely HSV and VZV and other neuroviruses

rarely some <u>bacteria</u> *leptospirae, borreliae, Mycobacterium tuberculosis*

Overview of Central-European neuroviruses

TBEV (tick-borne enc. v.) other arboviruses

enteroviruses: polio LCMV

coxsackie /morbilli v./

/polyomaviruses JC & BK/

echo /EBV/

mumps v.

HSV, VZV, CMV /HIV/

rabies v. /prions/

Arboviruses in Central Europe – I

Genus or family: arbovirus	Disease	Antibodies only
Flavivirus: TBEV	+	
WNV (West Nile v.)	+	
Orbivirus: Tribeč	+	
Bunyaviridae: Ťahyňa	+	
Batai (Čalovo)	?	
Uukuniemi	?	
Alfavirus: Sindbis		+
Coltivirus: Eyach		+

Arboviruses in Central Europe – II

Arboviruses isolated in Czech Republic, probably nonpathogenic for humans:

Bunyaviridae: Lednice Sedlec

Other European pathogenic arboviruses, which may be imported:

dengue v. (flavivirus, Greece)

CCHFV (nairovirus, Ukraine, Bulgaria)

Toscana v. (phlebovirus, Italy)

Bhanja v. (bunyavirus, Slovakia)

chikungunya v. (alphavirus, Italy)

Etiology of chronic meningitis

• Bacteria:

Mycobacterium tuberculosis (meningitis basilaris)

Moulds and yeasts:

aspergilli

Cryptococcus neoformans

Etiology of encephalitis

Encephalitis – only acute, of <u>viral</u> origin:

- tick-borne encephalitis v.
- HSV
- enteroviruses
- mumps v.

Etiology of acute brain abscess

Acute brain abscesses are only of <u>bacterial</u> origin:

- mixed anaerobic and aerobic flora
- staphylococci (both S. aureus and coagulase negative staphylococci)
- group A and D streptococci

Etiology of chronic brain abscess

bacteria:

Mycobacterium tuberculosis

Nocardia asteroides

mycotic organisms:

Cryptococcus neoformans (yeast)

parasites:

Cysticercus cellulosae (tissue form of pork tapeworm Taenia solium)

Homework 5

Please specify everything that connects this picture with the medicine

Answer and questions

The solution of the homework and possible questions please mail (on 6.30 a.m. at the latest) to the address

mvotava@med.muni.cz

Thank you for your attention