Topic P04: Diagnostics of enterobacteria and bacterial agents of gastrointestinal infections

Table for major results of Task 1 to Task 5 (to be filled step by step):

	n major					ea step by			
Strain		K	L	M	N	P	Q	R	S
Gram stain – Task 1									
Culture	Size on								
(blod	BA								
agar and	Colour								
Endo	on BA								
agar)	Other								
Task 2	on BA								
	Size on								
	Endo								
	Colour								
	on Endo								
	Other								
	on Endo								
Hajna me	dium								
Task 3a									
Oxidase to	est								
Task 3b									
PARTIA									
CONCLU									
More	XLD								
media	agar								
Task 4a	MAL								
	agar								
	CIN								
	agar								
	ENTEROtest 16								
(Task 4b)									
Antigen a									
(Tasks 5a	and 5b)								
FINAL									
CONCLU	JSION								

Task 1: Microscopy of suspicious strains

There are letter-labelled strains on the table. Gram-stain them and write your results to the table. Strain that is NOT G- rod should not be used in tasks 3 to 5 (but in Task 2 it should be described, for comparison)

Task 2: Cultivation on blood agar and Endo agar

Using standard procedure, describe colonies of all strains on blood agar and Endo agar. If the strain on the medium does not grow, write a zero to the corresponding cell of the table. Bacteria, that do not grow on any of the media and morphologically look like curved gram-negative rods, might be *Campylobacter* – see later. A Grod, that does not grow on any of the media, but is not curved, will be studied in P05. For comparison describe also the strain, that appeared morphologically as a gram-positive coccus.

Task 3: Group diagnostics of the most imporant gram-negative rods growing on Endo agar (differentiation of enterobacteriae, *Vibrionaceae* and G-non-fermenters)

a) Reading of an examination on oblique agar according to Hajna

Agar according to Hajna is a combined diagnostic medium. Nevertheless, in this task we will mostly search for biochemically non-active, neither glucose nor lactose splitting and sulphan non forming rods – the gram-negative non-fermenting bacteria ("non-fermenters"). All strains, growing on Endo, were inoculated on Hajna medium. Have a look to the result. Where the medium remained fully red, it is a biochemically non-active strain – very likely, a gram-negative non-fermenter. This strain will not be used in Task 4 and Task 5.

b) Oxidase test

Name	Medical Oral Mikrobiology Date	. 10. 2011	Page 1

The teacher will do as a demonstration oxidase test for all Gram-negative, on Endo agar growing bacteria. Oxidase-positive are members of family *Vibrionaceae* and some gram-negative non-fermenters; the *Enteobacteriaceae* are (with exception of *Plesiomonas*) oxidase negative.

Make partial conclusion after tasks 1 to 3. What bacteria are enterobacteria? Tasks 4 and 5 will be only performed with strains proven to be enterobacteria.

Task 4: Genus and species determination of enterobacteria

a) Culture of enterobacteria on more media

You have already seen, how the colonies look like on BA and Endo agar. Add shortly your description of appearance of the colonies on CIN, XLD and MAL.

b) Biochemical properties of enterobacteria

Evaluate given results of ENTEROtest 16, beeng incubated a day berfore. Check, wether the results with other, already done tests; e.g. strains with sulphan formation lead to black colour of Hajna medium, *Yersinia* has tiny pink colonies, *Salmonella* pale transparent colonies with black centre on XLD and MAL medium...

For the strain found to be *Salmonella*, write just *Salmonella* sp. (or *Salmonella enterica*) as a result. For this strain, count the percent of probability as a total of all % of probability of all three individual Salmonellas found in the book to be corresponding to your code; T index should be taken from the first *Salmonella*. taxon in the Code-book. All names of bacteria shlould be copied to the table preceding Task 1.

Cou		-book. All names of bacteria shlould be copied to the table precedi									ask i	•					
	Tube	First									nd ro						
	ONPG	1H	1G	1F	1E	1D	1C	1B	1A	2H	2G	2F	2E	2D	2C	2B	2A
Strain:																	
	1	2	4	1	2	4	1	2	4	1	2	4	1	2	4	1	2
	Code:						Iden	tificat	tion				% of prob.			T index	
	ONPG	1H	1G	1F	1E	1D	1C	1B	1A	2H	2G	2F	2E	2D	2C	2B	2A
Strain:																	
	1	2	4	1	2	4	1	2	4	1	2	4	1	2	4	1	2
	Code:						Identification			% of prob.			T index				
	ONPG	1H	1G	1F	1E	1D	1C	1B	1A	2H	2G	2F	2E	2D	2C	2B	2A
Strain:																	
	1	2	4	1	2	4	1	2	4	1	2	4	1	2	4	1	2
	Code:						Iden	tificat	tion				% o	f prob	•	T index	
	ONPG	1H	1G	1F	1E	1D	1C	1B	1A	2H	2G	2F	2E	2D	2C	2B	2A
Strain:																	
	1	2	4	1	2	4	1	2	4	1	2	4	1	2	4	1	2
	Code:						Iden	tificat	tion				% of prob. T index				

Task 5: Antigen analysis to intra-species diagnostics of enterobacteriae

We will perform the antigen analysis in strains of bacteria, where it is performed routinelly. Antigen analysis is performed in enterobacteria mainly for one of two reasons:

- (a) to differenciate antigen types with elevated virulence especially in E. coli to differenciate EPEC, STEC etc.
- (b) of epidemiological reasons, sometimes in combination with (a) reasons Salmonella, Shigella, Yersinia etc.

a) Excluding of EPEC

Name	Medical Oral Mikrobiology Date	. 10. 2011	Page 2
------	--------------------------------	------------	--------

In strain identified as *Escherichia coli*, perform antigen analysis using slide agglutination with two polyvalent sera (one nonavalent, one trivalent). If both results will be negative, the strain does not belong into EPEC group.

b) Assessing the serovar in Salmonella

Only for General Medicine students

Task 6: Susceptibility tests of enterobacteria to antibiotics

On your table, you will find diffusion disc tests for strains found to be *Enterobacteriaceae*. Write abbreviations of antibiotics according to the card and measure susceptibility zones for all tested strains. Borderline zones are written on the cards; using them, interprete the strains as susceptible (S) registant (R) and dubious (D).

	written on the cards, using them, interprete the strains as susceptible (3) rezistant (R) and dublous (D).							
Strain →								
Antibiotic	Zone Ø	Interpr.		Zone Ø	Interpr.	Zone \varnothing	Interpr.	Zone \varnothing
(full name)	(mm)			(mm)		(mm)		(mm)
				•				·

Task 7: Diagnostics of Campylobacter

Observe the cultivation appearance that did not grow neither on BA nor on Endo agar and which, according to the morphology, is supposed to be a *Campylobacter* (because of being curved), on a special medium. Remember four main conditions for cultivation of *Campylobacter*:

- (a) special medium with charcoal and addition of antibiotics and antimycotics to prevent growth of other microbes,
- (b) microaerofilic conditions,
- (c) temperature elevated to 42 $^{\circ}$ C, what correspons to body temperature of birds natural hosts, and
- (d) prolongation of the cultivation to 48 hours.

Describe the colonies write down the result of oxidase test (teacher will perform it as a demonstration). For *Campylobacter* a retarded positivity is typical, e. g. the strip becomes blue, but not immediately, but after a while.

Description of colonies	Result of oxidase test	More notes

Task 8: Urease test in diagnostics of *Helicobacter*

In diagnostics of helicobacters we use the urease test, performed directly with a bioptic specimen of gastric
mucosa (not with a strain - an exception!). The specimen is mixed with medium containing urea and indicator.
Positive result is red, negative yellow.

Positive result is red, negative yellow.	
Among two specimens (X and Y) find the positive one.	
Result: Positive urease test was found in specimen, negative in specimen	

Name	Med	dical	Oral N	//ikrobiology	Date .	10. 2011	Page 3
					, <u></u> .		6

Task 9: Diagnostics of the family Vibrionaceae

Vibrionaceae is a bacterial family similar to Enterobacteriaceae, but oxidase-positive. We use special media to
culture Vibrionaceae. Mutual differentiation is possible through biochemical tests like for enterobacteria. even
Enterotest 16 could be used, but a special codebook would be required. Antigen analysis could be used, too.
Draw here, how a <i>Vibrio</i> looks like microscopically, and add some more properties according to the slideshow.

Microscopy:	Most important solid medium for Vibrio:	
	Most important liquid medium for Vibrio:	
	The two most important serovars of <i>V. cholerae</i> :	
	The two most important biovars of <i>V. cholerae</i> O1:	