<u>POPISNÁ STATISTIKA</u>

1) Otevřte si datový soubor leukocyty.sta. Podíváme se na základní popisné statistiky výšky celého souboru a následně na popisné statistiky dle pohlaví.

I) Celý analyzovaný soubor

 File
 Edit
 View
 Insert
 Format
 Statistics
 Data
 Mining
 Graphs
 Tools
 Data

 Calibri
 11
 Basic
 Statistics/Tables
 Multiple Regression
 Multiple Regression
 Image: Statistics/Tables
 Image: Statistics/Tables

Krok B) Zde zvolíme Popisné statistiky -> OK

Krok C) Vybereme proměnné, které chceme zpracovat - tedy výšku. To uděláme na záložce *Proměnné*, zde pak zvolím*e výška* ->*OK*

Descriptive Statistics: data	Select the variables for the analysis	8 ×
Quick Advanced Robust Normality	1 - pohlaví 2 - výška 3 - váha 4 - Tep před 2 - výška 5 - Tep po 6 - Leukocyty	OK Cancel [Bundles] Use the "Show appropriate variables only"
		pre-screen

Krok D) Na záložce Detaily vybereme požadované statistiky ->Výpočet

Krok A) Na záložce Statistiky vybereme základní statistiky

🖾 Descriptive Statist	ics: data		? X
Variables:	výška Robust Morrodin Doch *	Scal Niele Catagoritate Continue I	
Quick Advanced		scallappiols calleg. piols options	
Summary: Stat	tisti <u>c</u> s 🗮 G <u>1</u> 🧱 G <u>2</u>	Compute statistics:	Options
Location, valid N Valid N % valid obsvn. Mean Sum Median Geom. mean Harm. mean	Variation, <u>m</u> oments ✓ Standard Deviation CI for Sample SD Interval: 95,00	Percentiles, ranges ✓ Minimum & maximum Lower & upper quartiles ✓ Percentile boundaries First: 10,00 ♀ ≈ Second: 90,00 ♀ ≈ Range Quartile range	By Group Stitter CRASES S Wghtd momnts DF = W-1 N-1
	Std. err., Skewness Kurtosis Std. err., Kurtosis	Select <u>a</u> ll stats <u>R</u> eset	M <u>D</u> deletion Casewise Pairwise

Krok E) Získaná tabulka výsledků

_	Descripti	ve Statistic	s (data)					
-	Valid N	Mean	Median	Minimum	Maximum	Percentile	Percentile	Std.Dev.
Variable						10,00000	90,00000	
výška	88	179,8029	179,4150	154,2242	203,7565	164,7843	194,4767	11,13632

II) Rozdělení dle pohlaví

Krok F) Stejné jako pro předešlou ukázku, pouze musíme zavést pohlaví, jako tzv. skupinovou proměnnou. To můžeme udělat např. mezi krokem C a D tím, že na záložce *Skupiny* vybereme jako *skupinovou proměnnou (Anal. skupin)* pohlaví.

Krok G) Pokračujeme stejně jako v předešlé analýze a získáme výsledky dle pohlaví, kde v levé části výsledků máme výsledky pro všechny subjekty dohromady, pro muže a pro ženy...

výška

	pohlaví=r Descripti	nuž ve Statistic	s (data)					
	Valid N	Mean	Median	Minimum	Maximum	Percentile	Percentile	Std.Dev.
Variable						10,00000	90,00000	
výška	58	180,6554	179,4150	158,1641	203,7565	166,2815	197,3313	11,10516
	pohlaví=ž	žena						
I	Descripti	ve Statistic	cs (data)					
	Valid N	Mean	Median	Minimum	Maximum	Percentile	Percentile	Std.Dev.
Variable						10 00000	90 00000	

199,1892

163,7534

192,7050 11,19791

30 178,1548 178,2375 154,2242

2) Práce se souborem - Kolik % mužů bylo menších než 175 cm?

vytvoření nové proměnné, překódování, frekvenční tabulky

I) Tvroba nové proměnné

Krok A) vytvoříme si novou proměnnou - Na záložce vložit dáme Přidat proměnnou

Krok B) Na otevřeném dialogové okně zvolíme kam se nám má nová proměnná přidat (chceme ji nakonec takže dáme za *V6*) a pojmenujeme si ji např. *výška kategorie ->* OK

Add Variables		? ×
How many: 1	Use 0 in "After" field to insert before first variable. Double-click on it or press F2 to select variable from list.	OK Cancel
Name: výška kategorie	Type: Double 💌	
MD code: -999999998	Length: 8	If values of the

II) překódování

Krok C) Chceme ze spojité proměnné věk udělat kategoriální proměnnou, kdy potřebujeme pouze dvě kategorie a to *menší jak 175* a *větší jak 175*. To

uděláme pomocí tzv. překódování na záložce Data.

V novém okně zvolíme do jaké proměnné chceme překódovávat - tedy naši nově vytvořenou proměnnou

ecode Values of Variable 5: Te	ep po	? ×	A Select variable to be recoded	
Category 1 Include If:	New Value 1 © value: podvyziva O MD code	OK Cancel	1 - pohlaví 2 - výška 3 - váha 4 - Tep před	OK Cancel
Category 2	New Value 2 value: nadvaha MD code	Liear all Cogen Save As	5 - Tep po 6 - Leukocyty 7 - výška kategorie	[Bundles]
Category 3	New Value 3	Variable Variable	7 - výška kategorie	

A jako poslední musíme nastavit podmínky pro překódování a názvy nových kategorií... -> *OK*

Recode Values of Variable 7: výš	ka kategorie	? ×
Category <u>1</u> Include If: V2<175	New Value 1 value: menší než 175 MD code	OK Cancel
Category <u>2</u> Include If: V2>=175	New Value 2 value: větší než 175 MD code	<u>C</u> lear all (◯) Open (■) <u>S</u> ave As

III) frekvenční tabulky

Krok D) procento zastoupení dané kategorie v našem souboru zjistíme pomocí frekvenčních tabulek. Ty jsou opět na *Statistiky -> Základní statistiky ->*

Jako proměnnou vybereme *výška kategorie ,* jako *skupinovou proměnnou* dáme *pohlaví* (viz. krok F v příkladu 1) -> Výpočet

🕼 Frequency Tables: data	? ×
Výška kategorie	Summary
Quick Advanced Options Descr. Normality	Cancel
Summary: <u>F</u> requency tables	Doptions -
Histograms	By Group

Z výsledků pro muže je patrné, že mužů menších než 175 cm bylo v souboru 32,8 %.

pohlaví=muž Frequency table: výška kategorie (data) Cumulative Percent Cumulative Count Category Count Percent větší než 175 39 39 67,24138 67,2414 58 32,75862 menší než 175 19 100,0000 0,00000 Missing 0 58 100,0000 3) Popisné grafy (histogram, boxplot, koláčový graf,xy-graf)
I) Histogram - Popis spojité proměnné (Váha),

Proměnné - váha - OK - OK

II) Boxplot - Popis spojitých kategorií dle kategoriálních (např. výška dle pohlaví) - Grafy -> 2D grafy -> Krabicové grafy

Jako proměnnou dáme jako *závisle proměnnou* naší spojitou proměnnou - tedy *výšku* a jako *skupinovou proměnnou* dáme *pohlaví* (kategoriální proměnnou)

1 - pohlaví	1 - pohlaví	рк
2 - výška	2 - výška	2
3 - Vana 4 - Ten před	3 - Vana 4 - Tep před	Cancel
5 - Tep po	5 - Tep po	
5 - Leukocyty	6 - Leukocyty	[Bundles]
7 - výška kategorie	7 - výška kategorie	
Select All Spread Zoom	Select All Spread Zoom	
Dependent variable:	<u>G</u> rouping variable:	
2	1	

V záložce *pokročilý* si můžeme nastavit jak by měl graf vypadat (zda budeme zobrazovat medián nebo průměr, co budou znázorňovat "fousky" - min/max. 5-95% percentil aj.), dáme *OK*

III) Koláčový graf - popis kategoriálně proměnné (pohlaví)

Grafy -> 2D grafy -> koláčový/výsečový graf -> jako proměnnou kategoriální proměnná (pohlaví) -> OK -> OK

 IV) XY - graf - dvě spojité proti sobě - sledujeme, zda se nějak ovlivňují korelace, (např. výška, váha)

Grafy -> 2D grafy -> <u>bodový graf</u>-> jako proměnné první výšku, druhou váhu -> OK -> OK

