9. SEMINÁŘ • •INDUKTIVNÍ STATISTIKA • •2. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ • • •Statistická hypotéza = výrok o statistickém souboru, např.: –že sledovaná veličina má normální rozdělení, –že dva náhodné výběry pocházejí z jednoho základního souboru, –že dvě veličiny jsou na sobě nezávislé apod. •Platnost statistických hypotéz ověřujeme na základě údajů zjištěných ve výběrovém souboru - jde o induktivní soud. •K ověření (testování) hypotézy se používá tzv. testů významnosti, které rozhodují mezi: –nulovou (testovanou) hypotézou H0 –hypotézou alternativní (opačnou) HA • TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ NULOVÁ HYPOTÉZA ALTERNATIVNÍ HYPOTÉZA Příklad 1: SROVNÁVÁNÍ PRŮMĚRŮ •Jsou rozdíly v průměrné hladině cholesterolu v různých věkových skupinách tak velké, že je pro její hodnocení vhodné používat různé normy? • •Muži 20-30 let: n1 = 50 m1 = 4,57 s1 = 0,70 SE1 = 0,10 •Muži 40-50 let: n2= 60 m2 = 5,42 s2 = 0,85 SE2 = 0,11 • • •Věcná (klinická) významnost • •Statistická významnost • • Příklad 1: SROVNÁVÁNÍ PRŮMĚRŮ • •Muži 20-30 let: n1 = 50 m1 = 4,57 s1 = 0,70 SE1 = 0,10 •Muži 40-50 let: n2= 60 m2 = 5,42 s2 = 0,85 SE2 = 0,11 • •Statistickou významnost lze odhadnout pomocí intervalů spolehlivosti: • 1.Pokud se intervaly spolehlivosti, které vytvoříme kolem bodových odhadů m1 a m2 překrývají, pak rozdíl mezi nimi není statisticky významný. Naopak, pokud se nepřekrývají, je rozdíl statisticky významný. • m1 = 4,57 95% CI (4,37; 4,77) m2 = 5,42 95% CI (5,18; 5,66) • 2.Pro řešení úlohy bychom mohli použít i intervalový odhad rozdílu průměrů – pokud CI neobsahuje nulu, je rozdíl statisticky významný. – 95% CI (0,56; 1,14) • • • • • Příklad 1: SROVNÁVÁNÍ PRŮMĚRŮ •Jsou rozdíly v průměrné hladině cholesterolu v různých věkových skupinách tak velké, že je pro její hodnocení vhodné používat různé normy? • •Muži 20-30 let: n1 = 50 m1 = 4,57 s1 = 0,70 SE1 = 0,10 •Muži 40-50 let: n2= 60 m2 = 5,42 s2 = 0,85 SE2 = 0,11 • •Statistickou významnost lze objektivně určit testováním statistické hypotézy o rozdílu průměrů m1 – m2. • TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1.Stanovíme nulovou a alternativní hypotézu 2.Zvolíme hladinu významnosti 3.Vybereme vhodný test 4.Ověříme, zda jsou splněny podmínky pro použití testu 5.Vypočítáme testovací charakteristiku 6.Srovnáme ji s odpovídajícími kritickými hodnotami 7.Zamítneme nebo nezamítneme nulovou hypotézu 8.Výsledky interpretujeme • TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1.Stanovíme nulovou a alternativní hypotézu 2.Zvolíme hladinu významnosti 3.Vybereme vhodný test 4.Ověříme, zda jsou splněny podmínky pro použití testu 5.Vypočítáme testovací charakteristiku 6.Srovnáme ji s odpovídajícími kritickými hodnotami 7.Zamítneme nebo nezamítneme nulovou hypotézu 8.Výsledky interpretujeme • Příklad 1: SROVNÁVÁNÍ PRŮMĚRŮ Příklad 1: SROVNÁVÁNÍ PRŮMĚRŮ μ m1 m2 4,57 5,42 Příklad 1: SROVNÁVÁNÍ PRŮMĚRŮ •Alternativní hypotéza (opačná) -předpokládá opak, tj. že jde o dva výběry ze dvou různých základních souborů s rozdílnými průměry (rozdíl mezi průměry je statisticky významný) • HA: μ1 ≠ μ2 • μ1 - μ2 ≠ 0 • • Příklad 1: SROVNÁVÁNÍ PRŮMĚRŮ •Alternativní hypotéza (opačná) -předpokládá opak, tj. že jde o dva výběry ze dvou různých základních souborů s rozdílnými průměry (rozdíl mezi průměry je statisticky významný) • HA: μ1 ≠ μ2 • μ1 - μ2 ≠ 0 • • μ1 μ2 m1 m2 4,57 5,42 Příklad 1: SROVNÁVÁNÍ PRŮMĚRŮ •Jsou rozdíly v průměrné hladině cholesterolu v různých věkových skupinách tak velké, že je pro její hodnocení vhodné používat různé normy? • •Muži 20-30 let: n1 = 50 m1 = 4,57 s1 = 0,70 SE1 = 0,10 •Muži 40-50 let: n2= 60 m2 = 5,42 s2 = 0,85 SE2 = 0,11 • 1. 1.Stanovení nulové a alternativní hypotézy • • H0: μ1 = μ2 = μ; μ1 - μ2 = 0 • HA: μ1 ≠ μ2; μ1 - μ2 ≠ 0 • 1. • TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1.Stanovíme nulovou a alternativní hypotézu 2.Zvolíme hladinu významnosti 3.Vybereme vhodný test 4.Ověříme, zda jsou splněny podmínky pro použití testu 5.Vypočítáme testovací charakteristiku 6.Srovnáme ji s odpovídajícími kritickými hodnotami 7.Zamítneme nebo nezamítneme nulovou hypotézu 8.Výsledky interpretujeme • HLADINA VÝZNAMNOSTI •Je-li pravděpodobnost nějakého jevu velmi malá, chováme se (většinou) tak, jako by nemohla vůbec nastat. •Je-li malá pravděpodobnost, že H0 platí, chováme se tak, jako by neplatila a zamítáme ji. •Tato malá pravděpodobnost se nazývá hladina významnosti, obvykle α = 0,05 nebo 0,01. Vyjadřuje riziko nesprávného zamítnutí H0, tzv. chyba 1. druhu •β ozn. chybu 2. druhu, souvisí se silou statistického testu. Nastává, když H0 nezamítáme, přestože ve skutečnosti neplatí. •Síla testu = 1- β: schopnost zamítnout H0, když neplatí. • • Příklad 1: SROVNÁVÁNÍ PRŮMĚRŮ •Jsou rozdíly v průměrné hladině cholesterolu v různých věkových skupinách tak velké, že je pro její hodnocení vhodné používat různé normy? • •Muži 20-30 let: n1 = 50 m1 = 4,57 s1 = 0,70 SE1 = 0,10 •Muži 40-50 let: n2= 60 m2 = 5,42 s2 = 0,85 SE2 = 0,11 • • •2. Hladinu významnosti si zvolíme např. α = 0,05. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1.Stanovíme nulovou a alternativní hypotézu 2.Zvolíme hladinu významnosti 3.Vybereme vhodný test 4.Ověříme, zda jsou splněny podmínky pro použití testu 5.Vypočítáme testovací charakteristiku 6.Srovnáme ji s odpovídajícími kritickými hodnotami 7.Zamítneme nebo nezamítneme nulovou hypotézu 8.Výsledky interpretujeme • TESTY VÝZNAMNOSTI • •Platnost statistických hypotéz prověřujeme pomocí tzv. testů významnosti: • –Testy pro hodnoty parametrů (měříme vzdálenost pozorované statistiky od hypotézou stanovené hodnoty parametru) –Srovnávání rozdílů parametrů (např. test významnosti pro rozdíly středních hodnot či pravděpodobností) –Zjišťování typu rozložení četností (test dobré shody, test normality) –Hodnocení závislostí (testy závislosti) • TESTY VÝZNAMNOSTI •Parametrické testy •Vycházejí ze srovnávání parametrů μ, σ, π (zastoupených při srovnávání výběrovými charakteristikami m, p, s). •Musíme znát typ rozložení testované veličiny, hypotézy se týkají parametrů tohoto rozložení. •Srovnáváme charakteristiky dvou nezávislých výběrů. • TESTY VÝZNAMNOSTI •Neparametrické testy (distribution-free) •Velkou skupinu tvoří např. testy založené na pořadí •Výhody: jsou početně jednodušší a nepředpokládají znalost typu rozložení a lze je použít pro závislé výběry a pro malé výběry (n<20) •Nevýhody: mají menší sílu, tzn. mají menší schopnost zamítnout nulovou hypotézu, když ta skutečně neplatí. • Příklad 1: SROVNÁVÁNÍ PRŮMĚRŮ •Jsou rozdíly v průměrné hladině cholesterolu v různých věkových skupinách tak velké, že je pro její hodnocení vhodné používat různé normy? • •Muži 20-30 let: n1 = 50 m1 = 4,57 s1 = 0,70 SE1 = 0,10 •Muži 40-50 let: n2= 60 m2 = 5,42 s2 = 0,85 SE2 = 0,11 • • •3. Pro srovnání průměrů zvolíme u-test • •Při dostatečně velkých souborech mají rozdíly výběrových průměrů normální rozdělení. •u-test (z-test): −parametrický test −normální rozložení −Vypočítaná testovací charakteristika u (někdy ozn. z) se srovnává s kritickými hodnotami normálního rozložení. •U malých souborů se pro srovnání průměrů používá t-test. • TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1.Stanovíme nulovou a alternativní hypotézu 2.Zvolíme hladinu významnosti 3.Vybereme vhodný test 4.Ověříme, zda jsou splněny podmínky pro použití testu 5.Vypočítáme testovací charakteristiku 6.Srovnáme ji s odpovídajícími kritickými hodnotami 7.Zamítneme nebo nezamítneme nulovou hypotézu 8.Výsledky interpretujeme • PODMÍNKY PRO POUŽITÍ TESTU •Podmínky pro použití u-testu pro srovnávání průměrů: • 1.n1 > 30, n2 > 30 –pro menší soubory Studentův t-test (vypočítáme testovací charakteristiku t a srovnáme ji s kritickými hodnotami Studentova rozdělení – viz skripta str. 41). 2.nezávislé výběry (hodnoty ve srovnávaných souborech se vzájemně neovlivňují) –testy pro párované hodnoty 3.stejné rozptyly –neliší se významně (F-test) • Příklad 1: SROVNÁVÁNÍ PRŮMĚRŮ •Jsou rozdíly v průměrné hladině cholesterolu v různých věkových skupinách tak velké, že je pro její hodnocení vhodné používat různé normy? • •Muži 20-30 let: n1 = 50 m1 = 4,57 s1 = 0,70 SE1 = 0,10 •Muži 40-50 let: n2= 60 m2 = 5,42 s2 = 0,85 SE2 = 0,11 • •4. Ověření podmínek pro použití u-testu: • 1.50 > 30; 60 > 30 2.soubory jsou nezávislé 3.předpokládáme stejné rozptyly TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1.Stanovíme nulovou a alternativní hypotézu 2.Zvolíme hladinu významnosti 3.Vybereme vhodný test 4.Ověříme, zda jsou splněny podmínky pro použití testu 5.Vypočítáme testovací charakteristiku 6.Srovnáme ji s odpovídajícími kritickými hodnotami 7.Zamítneme nebo nezamítneme nulovou hypotézu 8.Výsledky interpretujeme • TESTOVACÍ CHARAKTERISTIKA •Testy významnosti rozhodují mezi H0 a HA, a to nejčastěji pomocí výpočtu tzv. testovací charakteristiky • •Vymezuje obor hodnot pro zamítnutí a obor hodnot pro nezamítnutí H0. • •Pro stanovení takových oborů hodnot je nezbytné, aby měla některé ze známých teoretických rozdělení – umožní to stanovení tzv. kritických hodnot. • •Kritické hodnoty vymezují interval spolehlivosti, jenž je mírou vzdálenosti od 0. Leží-li hodnota testovací charakteristiky mimo tento interval, zamítáme H0. • • VZDÁLENOST OD NULY •Pokud je rozdíl srovnávaných průměrů „rozumně blízko nule“, pak můžeme říct, že rozdíl vznikl náhodou a nezamítáme nulovou hypotézu. • •Je-li rozdíl „hodně vzdálen od nuly“, dáváme přednost alternativní hypotéze, tj. zamítáme nulovou hypotézu. VZDÁLENOST OD NULY •Chyba rozdílu průměrů •Rozdíly průměrů mají normální rozdělení s parametry μ a σ; σ odhadujeme pomocí SE • • SEm1-m2 = chyba rozdílu průměrů (m1 – m2), přičemž pro nezávislé výběry platí: SE2m1-m2= SE2m1+ SE2m2 • 0 + 1,96 SEm1-m2 - 1,96 SEm1-m2 - 2,58 SEm1-m2 + 2,58 SEm1-m2 95% 99% VZDÁLENOST OD NULY •Řeší se pomocí intervalu spolehlivosti pro rozdíl průměrů. • •Pokud H0 platí (μ1 = μ2 = μ), pak s pravděpodobností 0,95 by se měl rozdíl m1 – m2 nacházet v 95% intervalu spolehlivosti. 0 + 1,96 SEm1-m2 - 1,96 SEm1-m2 -2,58 SEm1-m2 + 2,58 SEm1-m2 95% 99% ROZHODNUTÍ •Testovací charakteristika „u“ • •Pokud leží rozdíl mimo interval spolehlivosti, pak zamítáme nulovou hypotézu. • • • • •Pokud leží rozdíl v intervalu spolehlivosti, pak nulovou hypotézu nezamítáme. • • ®Nezamítnutí nulové hypotézy neznamená její přijetí!!! u Příklad 1: SROVNÁVÁNÍ PRŮMĚRŮ •Jsou rozdíly v průměrné hladině cholesterolu v různých věkových skupinách tak velké, že je pro její hodnocení vhodné používat různé normy? • •Muži 20-30 let: n1 = 50 m1 = 4,57 s1 = 0,70 SE1 = 0,10 •Muži 40-50 let: n2= 60 m2 = 5,42 s2 = 0,85 SE2 = 0,11 • •5. Výpočet testovací charakteristiky u: •m1 – m2 = 4,57 – 5,42 = -0,88 •SEm1-m22= 0,102+ 0,112 = 0,0221 •SEm1-m2= 0,15 •u = 0,88: 0,15= 5,66 • • TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1.Stanovíme nulovou a alternativní hypotézu 2.Zvolíme hladinu významnosti 3.Vybereme vhodný test 4.Ověříme, zda jsou splněny podmínky pro použití testu 5.Vypočítáme testovací charakteristiku 6.Srovnáme ji s odpovídajícími kritickými hodnotami 7.Zamítneme nebo nezamítneme nulovou hypotézu 8.Výsledky interpretujeme • Příklad 1: SROVNÁVÁNÍ PRŮMĚRŮ TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1.Stanovíme nulovou a alternativní hypotézu 2.Zvolíme hladinu významnosti 3.Vybereme vhodný test 4.Ověříme, zda jsou splněny podmínky pro použití testu 5.Vypočítáme testovací charakteristiku 6.Srovnáme ji s odpovídajícími kritickými hodnotami 7.Zamítneme nebo nezamítneme nulovou hypotézu 8.Výsledky interpretujeme • ZAMÍTNUTÍ A NEZAMÍTNUTÍ H0 •Nezamítnutí H0– rozdíly nepřesahují velikost rozdílů způsobených náhodou, ale mohla nastat tzv. chyba druhého typu. • •Zamítnutí H0– pravděpodobnost, že rozdíl mezi průměry je způsoben pouze náhodou je tak malá, že tuto možnost zamítáme – a přijímáme alternativní hypotézu (ale s rizikem chyby prvního typu). • ZAMÍTNUTÍ A NEZAMÍNUTÍ H0 Skutečnost Naše rozhodnutí H0 neplatí H0 platí Zamítáme H0 Správné rozhodnutí Chyba I. typu Nezamítáme H0 Chyba II. typu Správné rozhodnutí ZAMÍTNUTÍ A NEZAMÍNUTÍ H0 •P-value •udává pravděpodobnost, že hodnocený rozdíl je způsoben náhodou •pokud je menší než zvolená hladina významnosti, nulovou hypotézu zamítáme, pokud je větší nulovou hypotézu nezamítáme •Např.: α = 5% (pravděpodobnost platnosti H0) – p-value = 0,00073, zamítáme H0 – p-value = 0,07300, nezamítáme H0 • • Příklad 1: SROVNÁVÁNÍ PRŮMĚRŮ TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1.Stanovíme nulovou a alternativní hypotézu 2.Zvolíme hladinu významnosti 3.Vybereme vhodný test 4.Ověříme, zda jsou splněny podmínky pro použití testu 5.Vypočítáme testovací charakteristiku 6.Srovnáme ji s odpovídajícími kritickými hodnotami 7.Zamítneme nebo nezamítneme nulovou hypotézu 8.Výsledky interpretujeme • Příklad: SROVNÁVÁNÍ PRŮMĚRŮ •Jsou rozdíly v průměrné hladině cholesterolu v různých věkových skupinách tak velké, že je pro její hodnocení vhodné používat různé normy? • •Muži 20-30 let: n1 = 50 m1 = 4,57 s1 = 0,70 SE1 = 0,10 •Muži 40-50 let: n2= 60 m2 = 5,42 s2 = 0,85 SE2 = 0,11 • •8. Interpretace výsledků: •Na 5% hladině významnosti jsme prokázali, že existuje statisticky významný rozdíl v průměrných hodnotách cholesterolu u dvou srovnávaných věkových skupin. • •Tzn., že při zjištěné variabilitě znaku může být tak velký rozdíl jen zřídka způsoben pouze náhodou. Můžeme tak předpokládat vedle náhody i vliv jiných faktorů (např. věku). • • • SHRNUTÍ PŘÍKLADU 1.H0: μ1 = μ2 = μ; μ1 - μ2 = 0 • HA: μ1 ≠ μ2; μ1 - μ2 ≠ 0 2.α = 0,05 3.u-test 4.n1 > 30; n2 > 30; nezávislé soubory; stejné rozptyly 5.u = 5,66 6.5,66 > 1,96 7.Zamítáme nulovou hypotézu a přijímáme hypotézu • alternativní. 8.Rozdíl mezi průměrnými hodnotami cholesterolu je • statisticky významný, tj. není způsoben náhodou a pro různé věkové kategorie má smysl použít odlišné normy • • • Příklad k samostatnému řešení - SROVNÁNÍ PRŮMĚRŮ •Srovnejte výšku tříletých brněnských chlapců a děvčat na podkladě výběrového šetření náhodně vybraných dětí. • •CH: n1 = 80 m1 = 97,4 s1 = 3,8 •D: n2 = 80 m2 = 96, 3 s2 = 3,7 • • • Příklad : SROVNÁNÍ PRAVDĚPODOBNOSTÍ dvou náhodných jevů •Byl sledován výskyt alergií u studentů LF. •Muži: n1 = 105 k1 = 21 p1 = 0,20 (20%) •Ženy: n2 = 195 k2 = 19 p2 = 0,097 (9,7%) • •Otázka: Je rozdíl ve výskytu alergie u mužů a u žen způsoben náhodou, anebo lze odvodit, že alergie postihují muže častěji? Příklad : SROVNÁNÍ PRAVDĚPODOBNOSTÍ Příklad : řešení 1.H0: p1 = p2 = p; p1 - p2 = 0 HA: p1 ≠ p2; p1 - p2 ≠ 0 2.a) α = 0,05 b) α = 0,01 3.u-test 4.velikost souboru: n1 > 30; n2 > 30 platnost nerovnosti: 16,8 > 9; 17,1 > 9 nezávislé soubory 5.u = (0,2- 0,097) / 0,044 = 2,34 6.a) 2,34 > 1,96 b) 2,34 < 2,58 7.a) Na 5% hladině významnosti nulovou hypotézu zamítáme • a přijímáme hypotézu alternativní. • b) Na 1% hladině významnosti nulovou hypotézu nezamítáme. 8.a) Ve výskytu alergií u mužů a žen je tak velký rozdíl, že jen zřídka by mohl být výsledkem působení pouhé náhody (riziko chyby 1.druhu). b) Na základě analyzovaných dat se nepodařilo prokázat, že by nalezený rozdíl ve výskytu alergií u mužů a žen byl tak velký, aby nemohl být způsoben náhodou (riziko chyby 2. druhu). 1. – Příklad k samostatnému řešení (srovnání pravděpodobností) •Zadání: • •V souboru 200 náhodně vybraných studentů LF byla zjištěna zraková vada u 80 studentů (p1 = 80/200 = 0,40, ev. 40%) • •U 250 nestudujících stejného věku byla zraková vada zjištěna u 85 vyšetřovaných (p2 = 0,34, ev. 34%) • • • • - •Řešení: H0 ≡ π1 = π2 • HA ≡ π1 ≠ π2 •Podmínky použití u-testu -Nezávislé výběry -Konvergence binomického rozdělení k normálnímu (n.p.(1-p) > 9) • 200 . 0,4 . (1-0,4) = 48 > 9, 250 . 0,34 . (1-0,34) = 56,1 > 9 • • • •Závěr: Nulovou hypotézu nezamítáme, nepodařilo se prokázat, že by nestudující mládež měla významně méně zrakových vad než studenti LF. • Snímek 043.jpg Děkuji za pozornost C:\WINWORD\CLIPART\CROWD.WMF