# Antimicrobial therapy MUDr. Lenka Černohorská, Ph.D.

Antibiotics are substances against bacteria

#### Other groups:

Antivirotics – against viruses

Antituberculotics - against mycobacteria

Antiparasitics – against parasites



# Antibiotics are devided due to mechanism of efficacy into 4 groups:

- Inhibition of cell wall synthesis (betalactames, glycopeptides)
- 2. Cell membrane destroy (polypeptides)
- 3. Inhibition of NA syntesis (quinolons, imidazols)
- Inhibition of proteosyntesis (tetracyclines, chloramphenicol, macrolides, lincosamides, aminoglycosides)
- Attack against bacterial metabolism (sulfonamids)

### Betalactames

- Baktericidal, only for growing bacteria
- Often causes allergy

- Penicillins (PNC, oxacillin, ampicillin, piperacillin)
- Cefalosporines (1.- 4. generation)
- Monobactams (aztreonam)
- Carbapenems (imipenem, meropenem)

# Glycopeptides

- Reserved for G+ bacteria
- Vancomycin and less toxic, but more expensive teicoplanin

# Polypeptides



- Ototoxic and nefrotoxic
- Polymyxin B only local as part of ear drops -Otosporin
- Polymyxin E colistin rare used
- Primary resistence: all G+ bacteria, proteus, providencia, morganella, serratia etc.

# Aminoglycosides

- Bactericidal, ototoxicity and nefrotoxicity
- Synergy with betalactames decrease of toxicity
- Preparates: Streptomycin only against tuberculosis, gentamicin, netilmicin, amikacin, neomycin with bacitracin = framykoin (neomycin is too toxic, only for local using)

### Tetracyklines

- Broad spectrum
  - Don't use until 10 years (teeth development)
  - Less used

# Chloramphenikol

- Broad spectrum
- Good penetration to liquor, Hematotoxicity

### **Macrolides**

- I. generation: erythromycin, rare used
- II. generation: roxithromycin
- III. generation: clarithromycin, azithromycin good intracellular penetration and longlasting effect, for G+ bacteria

#### Lincosamides

- Lincomycin and clindamycin
- Reserved for surgery, good effect to G+ bacteria and anaerobes in addition to Clostridium difficile – risc of pseudomembranous enterocolitis

# Quinolones



- Bactericidal
- Don't use until 15 years (growth cartilages)
- I. generation (oxolin acid), II. generation (norfloxacin) only for urinary infection
- ◆III. generation: ofloxacin, ciprofloxacin also for systemic infection often used



# Analogs of folate acid

- Sulfametoxazol in combination with trimetoprim form ko-trimoxazol known as BISEPTOL
- Bacteriostatic, worse penetrate into tissuesNitrofurantoin (and nifuratel)
- Effectivity on sugar metabolism.
  Bacteriostatic, broad spectrum
- For urinary tract infection. Weighty undesirable effect: GIT disorder etc.

Other antibiotics

Linezolid (zyvoxid) – against resistant staphylococci

# **Nitroimidazols**

- For anaerobes, for protozoas (*T. vaginalis etc.*)
- Metronidazol, Ornidazol

### Antituberculotics

- HRZS,HRZE starting therapy (INH, rifampicin, pyrazinamid, streptomycin, etambutol) + other
- HRZ,HRE sequenced therapy

### **Antivirotics**

- Against herpes acyclovir...
- CMV gancyklovir, foscarnet
- Influenza amantadin, rimantadin, tamiflu
- Antiretrovirus therapy inhibitors of reverse transcriptase (nucleosid+nonucleosid), inhibitors of protease – in combination

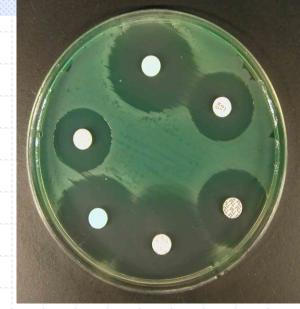
Preparates: zidovudin, didanosin ...

# **Antimycotics**

- Fluconazol, itraconazol, ketoconazol etc. local (vaginal, skin infection)
  - ◆ Amphotericin B i.v. (in sepsis)

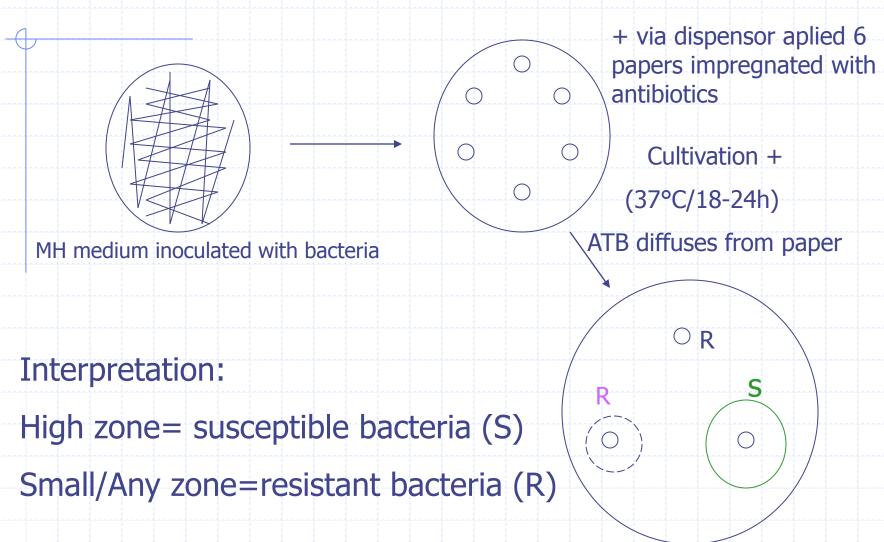
#### **Antiparasitics**

 Against protozoa, helmintes, ectoparasites (moore in parasite capitol)


#### Other preparates

- Antimalaric: primachin, chlorochin, meflochin...
- Leprosity: dapson

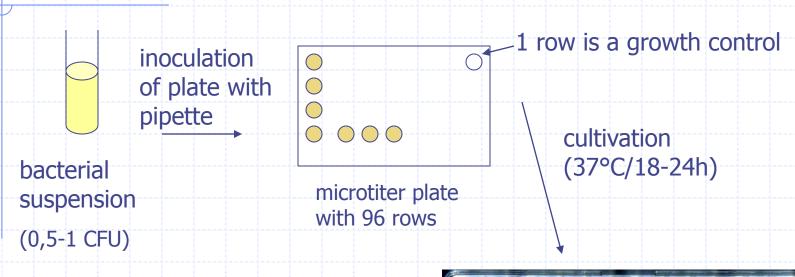
# Susceptibility testing in vitro


- Do not correspondent in all cases with effect of therapy
- Quantitative tests (MIC, E-tests) in relevant patients
- Qualitative tests (disc diffusion method) enough for common cases (susceptible resistant)

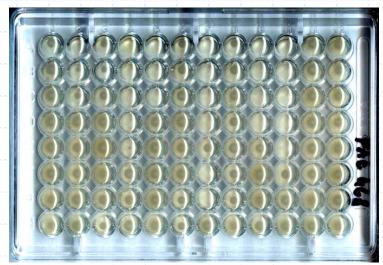
# Disc diffusion test



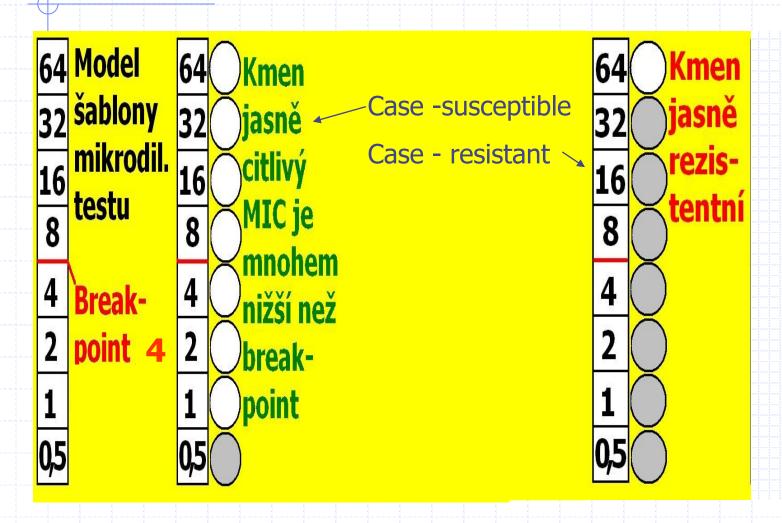
- MH agar is inoculated with suspension of bacteria
- Antibiotic discs (paper impregnated with antibiotics)
  are applied at MH atb diffuse from disc through agar
- Concentracion of atb decrease with distance from disc
- If microb grow to disc/if there is little zone is resistant (not susceptible)
- Big zone (higher than defined size) means susceptibility.


# Disc diffusion test




# Microdilution test (MIC)

- MIC is the lowest concentracion, which inhibites growth (first clear row)
- On paper stencil is asigned breakpoint. If MIC is lower than breakpoint, bacteria is susceptible. If MIC is higher, bacteria will be resistent
- 1 plastic plate is used for 1 bacteria, for 12 antibiotics, in 8 various (decreasing) concentracion (12th only in 7, because corner row upper right is growth control)


# MIC - Material and methods



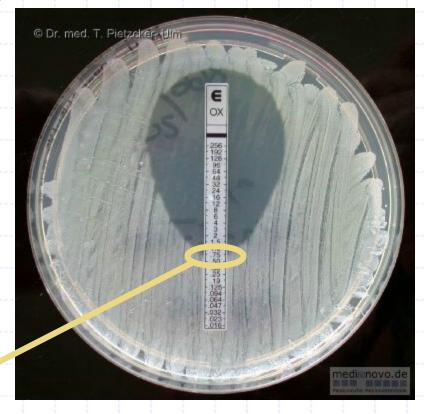
reading



# Interpretation



| PEN   | AMS | схт | CLI  | СМР | MTR | PEN   | AMS | СХТ | CLI  | СМР | MTR |
|-------|-----|-----|------|-----|-----|-------|-----|-----|------|-----|-----|
| 4     | 64  | 128 | 32   | 64  | 64  | 4     | 64  | 128 | 32   | 64  | KR  |
| 2     | 32  | 64  | 16   | 32  | 32  | 2     | 32  | 64  | 16   | 32  | 32  |
| 11    | 16  | 32  | 8    | 16  | 16  | 1     | 16  | 32  | 8    | 16  | 16  |
| 0.5   | 8   | 16  | 4    | 8   | 8   | 0.5   | 8   | 16  | 4    | 8   | 8   |
| 0.25  | 4   | 8   | 2    | 4   | 4   | 0.25  | 4   | 8   | 2    | 4   | 4   |
| 0.125 | 2   | 4   | 1    | 2   | 2   | 0.125 | 2   | 4   | 1    | 2   | 2   |
| 0.063 | 1   | 2   | 0.5  | 1   | 1   | 0.063 | 1   | 2   | 0.5  | 1   | 1   |
| 0.031 | 0.5 | 1   | 0.25 | 0.5 | 0.5 | 0.031 | 0.5 | 1   | 0.25 | 0.5 | 0.5 |


#### Interpretation of MIC - antibiogram – goes to clinician!

PEN (penicillin)....4.....resistant

AMS (unasyn).....2....susceptible

# E-tests (quantitative)

- Similar to disc diffusion test, but strip is used
- An increasing concentracion of atb is used. Zone is egg like.
- There is a scale on strip – simply reading



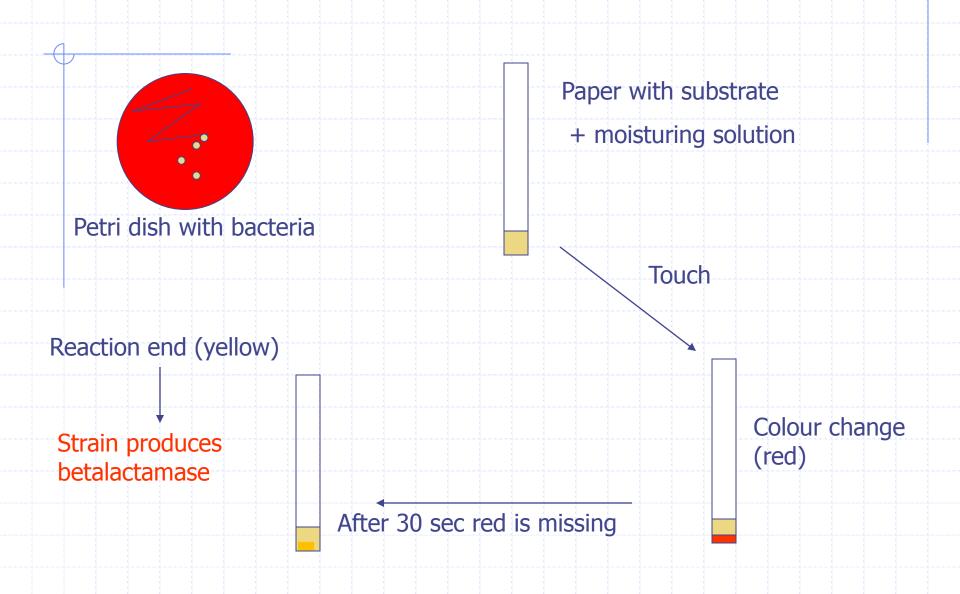
MIC value is 0,75 mg/l (where borderline of zone cross the scale)

#### Resistance of microbes to antibiotics

- Primary resistance: all strains of bacteria are resistent.
  - Secondary resistance: arises unsensitive mutants, by selective antibiotics pressure became dominant

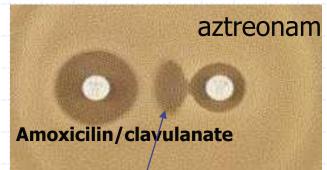
\*

MBC (minimum bactericidal concentracion) is the lowest concentration, which kills bacteria


Primary bactericid: atb, where MIC and MBC are almost equal

Primary bacteriostatic: atb, where MBC is X-fold higher than MIC - unreal baktericidal effect in human body

# Resistance factors detection


- Special detection methods for resistance factors (for ex. betalactamase). It can be diagnostic strips (chemical detection of specific ensym) or other tests (ESBL)
- 1. Betalactamase testing
- In neisseria, M. catarrhalis, H. influenzae
- destroys betalactams
- For therapy we use ATB with inhibitors of betalactamase like clavulanate, sulbactam...

#### Detection of betalactamase



### 2. ESBL (extended spectrum betalactamase)

*E. coli, K. pneumoniae* etc. produces ESBL, which destroys cheap betalactams. For therapy we use expensive carbapenems, aminoglycosides (toxicity), problem of ICU, big hospitals



ESBL - screening

Inhibition of growth between discs – owing to a synergism of 2-3 antibiotics such as aztreonam, AMC, ceftriaxon

### **ESBL** detection

4 discs: Cefotaxim (1) and ceftazidim (2), cefotaxim with clavulanate (3) and ceftazidim with clavulanate (4)

 Difference between cefalosporines (1,2) and cefalosporines with clavulanate (3,4) is higher

than 5mm



Compare

1 with 3 and 2 with 4