Lesson 5

Osmometry

Read the text in your group and try to fill the gaps.

Osmometry is a technique for m_____g the concentration of particles in a s_____n, i.e., osmolar concentration. When a s_____e is dissolved in a pure s_____t, the following properties of the solvent are changed: The f_____g p___t is depressed; the b_____g p___t is raised; the v_____r p_____e is increased; the f_____g p___t of pure w____r is precisely 0 °C at atmospheric pressure. The f_____g p___t of pure w____r is precisely 0 °C at atmospheric pressure.

 $\begin{array}{c} \underline{g} \ \underline{$

For e____e, if 1 mol of sodium chloride were to completely dissociate into two i___c species (Na⁺ and Cl⁻) in 1 kg of water, the freezing point would __ depressed by $3.92 \,^{\circ}$ C.

The freezing point o_____r is the most commonly used m____d for measurement of osmolality in the chemistry laboratory. When using this d____e, a patient s____e is s_____d below its freezing point; the sample in the measurement cell is still fluid. In the measurement chamber, immersed in the sample, is a t_____e e sensing thermistor and a s_____g w__e. When the wire agitates the supercooled sample begins to $f_{___}e$. The process of freezing releases h__t and the supercooled solution warms to its freezing temperature.

Supercooling

The tendency of a substance to remain in the l____d state when cooled b___w its freezing point.

Crystallisation temperature

Aqueous s_{-} s can be induced to freeze (i.e. crystallise) most reliably when supercooled. Supercooled c_{-} formation is induced by agitating the solution (freeze pulse).