Samostatné cvičení – ověřování normality dat 1. Načtěte si do programu STATISTICA data pacienti.sta. Přidejte za proměnnou váha novou proměnnou BMI (body mass index – index tělesné hmotnosti), kterou vypočítáte z proměnné výška a váha. Poznámka: V případě, že jste ze společného cvičení neodstranili odlehlou hodnotu, proveďte to nyní. 2. Vypište zvlášť pro muže a ženy (proměnná pohlaví) základní popisné statistiky následujících proměnných: váha, výška, BMI (počet hodnot, průměr, medián, směrodatnou odchylku, minimum a maximum). Výsledek znázorněte v jedné tabulce (nápověda: změňte nastavení formy výstupů v sekci By Group). 3. Vykreslete kategorizované histogramy proměnných výška, váha a BMI pro muže a ženy zvlášť. Zkuste si proložit histogramy postupně normálním rozdělením a dalšími rozděleními ze záložky Advanced → Fit types. Jaké rozdělení podle vás nejlépe odráží pozorovaná data? Své hodnocení zapište do připravené tabulky. 4. Pro proměnné výška, váha a BMI (opět pro muže a ženy zvlášť) vykreslete Q-Q graf, N-P graf a P-P graf. Které proměnné dle těchto diagnostických grafů podle vás mají normální rozložení? Zapište svůj odhad do připravené tabulky. 5. Otestujte normalitu dat proměnných výška, váha a BMI pro muže a ženy zvlášť pomocí Shapirova-Wilkova testu. Zapište výsledek (p-hodnotu) do připravené tabulky. Srovnejte své odhady z diagnostických grafů s výsledky testů. Pokud se vaše odhady liší s výsledkem testu, čím by to mohlo být způsobeno? 6. V případě, že se dle diagnostických grafů nebo S-W testu data řídí normálním rozdělením, jaký je v uvedených případech odhad parametrů tohoto rozdělení (střední hodnoty a rozptylu)? Hodnoty zaznamenejte do tabulky. Tabulka: Vizuální a testové ověření normality. Proměnná Histogram Normalita dle Q-Q / N-P / P-P grafu (ano/ne) p-hodnota Shapirova-Wilkova testu Odhad střední hodnoty Odhad rozptylu Výška Muži Ženy Váha Muži Ženy BMI Muži Ženy