VLLM0522c – Medical Microbiology II, practical sessions Protocol to topic P09

Topic P09: Diagnostics of spirochetal infections

To study: *Borrelia, Leptospira, Treponema* (from textbooks, www etc **From spring term:** Microscopy, PCR, methods of antibody and antige

Lyme borreliosis

Common table for Task 1. 2 and 3.

Patient Letter					W. blotting (12)		PCR	Conclusion:	
	description (1–3 words	IgM		IgG		IgM	IgG	(T3) (+/-)	final interpretation, recommendation
	characterizing the situation	Abs.	(+/-)	Abs.	(+/-)	(+/-)	(+/-)	('')	for future therapy
J									
K									
L									
M									
N									

Task 1: Detection of antibodies to Borrelia garinii using ELISA

Read the results of patients with suspect Lyme borreliosis. Both IgG and IgM antibodies are assessed. In A1 field (corresponding to A1 well in the microtitration plate) you can see CAL level (CAL for "calibrator" – borderline level; all absorbance levels above CAL are positive, all absorbance levels beneath CAL are negative). There are controls in B1 and C1. Patients J to N are in fields with coloured squares.

Write the CAL level in the table below, check, whether negative control is really negative and positive control really positive. Then read and interpret ELISA results for patients J to N (write them in the main table above).

CAL level (well A1):	K+ absorbance level (well B1):	☐ K+ is OK ☐ K+ is not OK	-
IgM	K– absorbance level (well C1):	☐ K− is OK ☐ K− is not OK	tick what is correct
CAL level (well A1):	K+ absorbance level (well B1):	☐ K+ is OK ☐ K+ is not OK	
IgG	K– absorbance level (well C1):	☐ K− is OK ☐ K− is not OK	tick what is correct

Task 2: Detection of antibodies to Borrelia garinii using Western blotting

In patients diagnosed in the task 1, the detection of antibodies in serum or CSF samples was performed by Western blotting. Read the results according to the instructions. Use the presented pattern for evaluation of the reaction. The diagnostic scheme is always the same – ELISA is used for screening, whereas Western blotting is performed as a confirmation of ELISA results. Read the Western blot results of patients J to N and write the results in the main table.

Task 3: Diagnostics of Lyme borreliosis using polymerase chain reaction (PCR)

According to the presented photos of a PCR product on the agarose gel, draw and record which of the tested samples are positive. Note, that with regard to the anamnesis, PCR reaction was performed only in two out of our five patients. After that, perform the final interpretation of all three tasks and write down a conclusion.

Syphilis

Task 4: Direct detection of syphilis

Direct detection of syphilis is only possible if suitable samples are sent to the laboratory. In some stages of the disease, however, sampling for this purpose is not possible.

1

a) Rabbit infectivity testing – RIT

	 	 •	- K-13
			B
			1
			1
			1
			J
_		 _	

Name ______ General Medicine Date ____. 11. 2016 Page 1/3

VLLM0522c - Medical Microbiology II, practical sessions.

Protocol to topic P09

b) Dark field microscopy

Look at the microphotography of treponemas taken from a dark field microscope, draw the principle of dark field microscopy, and also record your observation.

c) Direct immunofluorescence

Look at the microphotography of treponemas taken from a fluorescent microscope and record your observation.

4b) principle	4b) result	4c)

The causative agent of syphilis, Treponema pallidum, is NOT a cultivable microorganism. The diagnostics depends on the stage of disease.

Indirect diagnostics of syphilis

Joint table for Task 5 and 6.

	Joint table for Task 5 and 6.											
<u> </u>	J		7	Task 5				ask 6				
etter	Patient		Sc	reening	Confirmation						Conclusion:	
er				М	F	ELIS	A			W	В	final interpretation,
			RRR	HA	[A-		gI		gI	Įд	gI	recommended therapy
				МНА-ТР	FTA-ABS		lgM		IgG	IgM (+/-)	IgG (-	
					O 2		1			+	(+/-)	
	Shor					Absor- bance		Absor- bance	$\widehat{+}$	·		
	clinic					Absor- bance	(+/-)	Absor- bance	<u></u>			
	chara	eterisation				''		,				
A												
В												
C												
Γ)											
E												

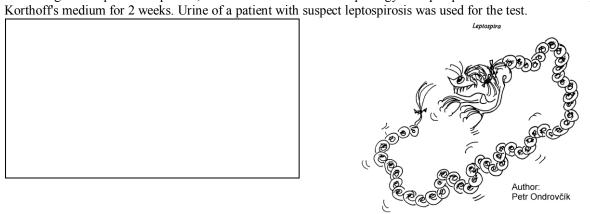
Task 5: Screening of syphilis – RRR and MHA-TP

Pregnant women and blood donors undergo screening performed using rapid reagin reaction (RRR) and *Treponema pallidum* microhaemagglutination (MHA-TP). Read the results of the screening in the presented group of persons and assess which of them need further tests for confirmation. Record your results directly into the table.

Positive result: RRR – flocculation in the well; MHA-TP – agglutinate formation (see Practical J070).

Task 6: Confirmation of syphilis – FTA-ABS, ELISA and Western blotting

Evaluate the results of FTA-ABS, ELISA and Western blotting (WB) in patients with suspect syphilis (see the previous task). In the ELISA reaction, count the cut-off and compare K-, K+ and patient values with it. A1 field (A1 well) represents the blank.


Cut off level	K– absorbance level	☐ K− is OK	_
(C1 + D1)/2	(B1 value):	☐ K– is not OK	
IaM	K+ absorbance level	☐ K+ is OK	tick what is
IgM	(E1 value):	☐ K+ is not OK	correct
Cut off level	K– absorbance level	☐ K– is OK	_
(C1 + D1) / 2	(B1 value):	☐ K− is not OK	•
IgC	K+ absorbance level	☐ K+ is OK	tick what is
IgG	(E1 value):	☐ K+ is not OK	correct

N.T.	C 1 M 1' '	D 4	. 11. 2016	Page 2/3
Name	General Medicine	Date	11 /1116	Page //3
Name	Cichciai Miculcinc	Date		1 420 2/3

 $\label{eq:VLLM0522c-Medical Microbiology II, practical sessions.} Protocol to topic P09$

Leptospirosis

Task 7: Direct detection						
According to the presented p	picture, describe	and draw the	morphology of	f leptospiras	cultivated in	the liquid

Name _____ General Medicine Date ___. 11. 2016 Page 3/3