Lecture – Autumn 2016 INTRODUCTION to PSYCHOPHARMACOLOGY Antipsycotics Alexandra Šulcová, M.D., Ph.D., FCMA, FECNP, FCINP Professor of Pharmacology CEITEC (Central European Institute of Technology) MU WHO nomenclature of NEUROPSYCHOTROPICS www.ecnp.eu/nomenclature NEW Neuroscience Based Nomenclature of Psychotropics ECNP (European College of Neuropsychopharmacology) and CINP (International College of Neuropsychopharmacology) Generic drug name Class – acording to pharmacological mechanism of action Indication Eeffectiveness and side effects Neurobiological data (preclinical and clinical) - interactions with neurotransmitters - physiology - brain pathways www.ecnp.eu/nomenclature NEW NOMENCLATURE OF NEUROPSYCHOTROPICS in axis 1 – 5: PROPOSED TEMPLATE FOR A MULTI-AXIAL PSYCHOPHARMACOLOGICAL NOMENCLATURE Axis 1 Class (primary pharmacological target) Relevant mechanism Axis 2 Family (primary neurotransmitter(s) and relevant mechanism) Axis 3 Neurobiological activities (Animal, Human) Neurotransmitter effects Brain circuits Physiological Axis 4 Efficacy and major side effects Axis 5 Indication(s) PROPOSED TEMPLATE FOR A MULTI-AXIAL PSYCHOPHARMACOLOGICAL NOMENCLATURE Axis 1 . . . Axis 2 . . . Axis 3 Neurobiological activities (Animal, Human) Neurotransmitter effects Brain circuits Physiological Axis 4 . . . Axis 5 . . . www.ecnp.eu/nomenclature NEW NOMENCLATURE OF NEUROPSYCHOTROPICS in axis 1 – 5: TYPES of SYNAPSES axodendritic axoaxonic dendrodendritic dendrosomatic axosomatic secondary neuron primary axon terminaldescending modulating axon terminal SYNAPSE electrical (“gap junction”) chemical receptors neurotransmitter bidirectional passage of ions and small molecules through channels CHEMICAL SYNAPSES directed synapse nondirected synapse 20 - 30 nm till 400 nm ` postsynaptic potential excitatory or inhibitory “RETROGRADE NEUROTRANSMISSON“ e.g.: Synaptic functions of the endocannabinoid system biodegradation CHEMICAL SYNAPSE - ionotropic - metabotropic (subtypes) adenylylcyclase ATP cAMP proteinkinase R R phosphorylation of membrane proteins Na+ K+ membrane depo- or hyperpolarization adenylylcyclase ATP cAMP proteinkinase inhibition of neurotransmitter synthesis inorganic phosphates ion conductance GABA Cl Cl - membrane hyperpolarization if CL- channels are opened inhibiting influence of GABA Kjell Fuxe et al., Physiology, 2008, 23: 322-332 Kearn CS et al. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: a mechanism for receptor cross-talk? Mol. Pharmacol. 2005;67(5):1697-704 . Eye světlo Activity of heterodimers of MT a 5HT2C receptors can influence SCN glandula pienalis (melatonin - receptors: MT1, MT2, MT3) MT1 (Mel1A) MT2 (Mel1B) 5HT2C melatonin Suprachiasmatic Nuclei (SCN) = circadian clock Agomelatin (VALDOXAN, Servier) agonist antagonist agonist Guardiola-Lemaitre B at al. Br J Pharmacol. 2014; 171(15): 3604–3619 axon transmitter I transmitter Itransmitter II A B C C D A - postsynaptic receptor B - autoreceptor (presynaptic) C - homoreceptor D - heteroreceptor postsynaptic neuron Potential targets for transmitter release from nerve terminal “up-regulation” of receptors “down-regulaction” of receptors chronic effect of antagonists chronic effect of agonists stimulation frequency CO-TRANSMISSION                                                              co-transmitters stored in the same vesicles; convey different messages to different receptors at the same time  co-transmitters stored in the differential vesicles; released preferentially in response to different frequency nerve impulses Co-transmission Exogenic influences affecting just one transmitter cannot simulate the physiological synaptic effects Other neurotransmitters, co-transmitters, neurohormones endogenic opioids ( enkefaline, endorphine, dynorphine )  euforia  anhedonia angiotensine gastrine neurokinines neuropeptide Y neurotensin substance P bradykinine somatostatin . . . . . . . . . . . . . . . . . . cholecystokinine ( CCK )  satiety, panic disorder  hunger NEUROHORMONES e.g.: oxytocine vasopressin, gonadotropin, corticotropin . . . neurotransmitters released by nerve cells into blood circulation NEUROMODULATORS (e.g. opioids, anandamide, NO ... ) biologically active in small amounts, released on synapses, however, also by e.g. glial cells, have impact on receptor activity either directly or through interaction with neurotransmitter www.ecnp.eu/nomenclature NEW NOMENCLATURE OF NEUROPSYCHOTROPICS PROPOSED TEMPLATE FOR A MULTI-AXIAL PSYCHOPHARMACOLOGICAL NOMENCLATURE Axis 1 . . . Axis 2 Family (primary neurotransmitter(s) and relevant mechanism) Axis 3 . . . Axis 4 . . . Axis 5 . . . MAO synthesis A - reuptake blockade ( antidepressants) B - inhibition ( antidepressants - IMAO ) C - transmitter depletion D - precursorsE - fals neurotransmitter precursor G - agonists H - antagonists CH - agonists/antagonists Sites of drug action at the synapse DIRECT - G, H, CH F – interference with vesicle discharge INDIRECT - A, B, C, D, E, F R R`R E E A AB B A B = agonist = antagonist ANTAGONISMUS competitive and specific noncompetitive ANTAGONISM noncompetitive nonspecific allosteric change of receptor partial agonist agonist antagonist partial inverse agonist inverse agonist LIGANDS of RECEPTORS Stephen M. Stahl TYPES of RECEPTOR LIGANDS agonist partial agonists (competitive dualist) antagonist ▬ competitive ▬ noncompetitive ▪ specific ▪ nonspecific inverse agonist partial inverse agonist AGONISTIC LIGANDS EFFECTS agonist . . . . . . . . . . . . . . . . . . maximal receptor activation partial agonist . . . . . . . . . . none full activation inverse agonist . . . . . . . . . . . inactivation of receptors constitutively active ANTAGONISTS EFFECTS competitive. . . . . . . . . . . . reversibile receptor blockade noncompetitive . . . . . . . . . . irreversibile receptor blockade (specific) noncompetitive . . . . . . . . . . reversibile or irreversibile (nonspecific, binding to different binding site allosteric) closely to receptor active site CB1 cannabinoid receptors …. rimonabant µ opioid receptors …. naloxon 5HT receptors …chlorpromazine, risperidone, mirtazapine Psychotropics with inverse agonistic receptor mechanism of action, e.g.: Effects of benzodiazepine receptor ligands agonist partial antagonist partial inverse agonist inverse agonist agonist anxiolytic anxiolytic žádný klinický promnestický promnest sedative/ anxiogenní anxio hypnotic myorelaxant prokonvulsivní antikonvulsive amnestic dependence Catecholaminergic pathways Noradrenergic from: Locus coeruleus Catecholamines dopamine ( basal ganglia, limbic system . . . ) noradrenaline ( hypothalamus, cortex, cerebellum ) adrenaline synthesis tyrosine  tyrosine hydroxylase  DOPA  decarboxylase  dopamine  hydroxylasea  noradrenaline  N-methyltransferase  adrenaline storage - in vesicles ( with ATP - 4 : 1 ) - free in cytoplasmic fluid breakdowb - re-uptake !! - diffusion - intracellularly - MAOA (A a Na ) + MAOB ( DA ) extracellularly - MAOB + COMT receptors DA r. - partly sensitive to A a Na, too D1 , 5 - coupled to adenylylcyclase  ↑ cAMP – excitation D2, 3, 4 - coupled to phosphodiesterase (cAMP degradation) - cAMP - inhibition Catecholamines continuation adrenergic r. (in the CNS in neurons; on vessels ) -  1 - stimulation of phosphatidylinositol metabolism 2 -  cAMP  K+ channel  Ca 2+ channel - β1, 2, 3 -  cAMP regulated by G-protein  DA + cholecystokinin ( CCK )  DA + neurotensin  DA + galanin  DA + dynorphin  DA + Met-enkephalin  DA + Leu-enkephalin  DA + GH-RH ( hormon uvolňující růstový hormon ) Known co-transmissions with DOPAMINE www.ecnp.eu/nomenclature NOVÁ NOMENKLATURA NEUROPSYCHOTROPIK PROPOSED TEMPLATE FOR A MULTI-AXIAL PSYCHOPHARMACOLOGICAL NOMENCLATURE Axis 1 . . . Axis 2 . . . Axis 3 . . . Axis 4 . . . Axis 5 Indication PSYCHOSIS • a person's capacity, affective response to recognize reality, communicate, and relate to others is impaired  schizophrenia,  mania,  depression,  Alzheimer's dementia  cognitive disorders hallucinations (auditory, visual, olfactory, gustatory, tactile) delusions (misinterpretations of perceptions or experiences) Stephen M. Stahl, 2000 negative symptoms anxiety / / depresssion aggressive symptoms cognitive symptoms posittive symptoms Stephen M. Stahl, 2000 negative symptoms anxiety / / depresssion aggressive symptoms cognitive symptoms posittive symptomsPOSITIVE SYMPTOMS delusions hallucinations disorganised speech disorganized behaviour catatonic behaviour improved cognitive functions low EPS acceptable price low occurence of long-term changes in total health state impact on both positive and negative sympt. Ideal antipsychotic drug effects mood stabilization improved quality of live Ideal antipsychotic no weight changes www.ecnp.eu/nomenclature NOVÁ NOMENKLATURA NEUROPSYCHOTROPIK PROPOSED TEMPLATE FOR A MULTI-AXIAL PSYCHOPHARMACOLOGICAL NOMENCLATURE Axis 1 . . . Axis 2 . . . Axis 3 Neurobiological activities Animal Human Neurotransmitter effects Brain circuits Physiological Axis 4 . . . Axis 5 . . .            D2 antagonist Blocking of postsynaptic dopamine receptors D2 SUPPRESSION OF POSITIVE SYMPTOMS in psychosis "Dopaminergic hypothesis of schizophrenia" Dopamine receptor subtypes DA r. – partly sensitive to Adrenaline and Noradrenaline, too Family D1: D 1, 5 - coupled to adenylylcyclase  ↑ cAMP – excitatory influence Family D2: D 2, 3, 4 - coupled to phosphodiesterase (cAMP degradation)   cAMP - inhibitory influence Dopaminergic neurotransmision Dopamine receptors Possible modulation of dopaminergic transmistter functions NIGROSTRIATAL (subt. nigra – basal ganglia) control of movements MESOLIMBIC (midbrain VTA – ncl. accumbens) positive symptoms, euphoria MESOCORTICAL (midbrain – limbic cortex) negative symptoms, cognitive side effects TUBEROINFUNDIBULAR (hypothalamus – anterior pituitary gland) control of prolactine secretion 4 DAergic brain pathways POSITIVE SYMPTOMS delusions hallucinations disorganised speech disorganized behaviour catatonic behaviour MAIN SYMPTOMS OF SCHIZOPHRENIA POSITIVE SYMPTOMS delusions hallucinations disorganised speech disorganized behaviour catatonic behaviour NEGATIVE SYMPTOMS affective flattening (restriction of emotional expression) alogia avolition (general lack of desire, motivation, difficulty, or inability to initiate and persist in goal-directed behaviour ) anhedonia (lack of pleasure) attention impairment MAIN SYMPTOMS OF SCHIZOPHRENIA mesocortical pathway ? ? Couses of hypoactivity of mesocortical DAergic pathway ?? ________________________       5-HT2A receptor 5-HT Secondary deficit of dopamine         D2 antagonist Blockade of D2 receptors  dopamine Primary defficit of dopamine Bazální ganglia Nigrostriatal extrapyramidal effects Mesolimbická Mesokortikální Tuberoinfundibulární nigrostriatal pathway → DA inhibits Ach activity blockade of DA function → Ach hyperactive DA Ach antipsych. anti-Ach consolidation of Ach hyperactivity       5-HT2A receptory 5-HT Sekundární deficit dopaminu         D2 antagonist Blockade of D2 recept. in nigrostriatal pathway  dopamin Primární deficit dopaminu D2 receptor up-regulation EPS Tardive dyskinesia Stephen M. Stahl, 2000 Bazální ganglia Nigrostriatální Mesolimbická Mesokortikální Tuberoinfundibular endocrinological efects            D2 antagonist Tuberoinfundibular dopaminergic pathway HyperprolactinemiaBlockade of D2 receptors Dopamine-Serotonin system stabiliser 1930 ’40 ’50 ’60 ’70 ’80 ’90 ’00 ’05 TCA chlorpromazine tioridazine trifluoperazine flufenazine perfenazine haloperidol Typical antipsychotics Atypical antipsychotics clozapine risperidone olanzapine quetiapine ziprasidon Development of antipsychotics a r i p i p r a z o l e ANTIPSYCHOTICS (neuroleptics) Typical (I. generation) Basic (sedative): (lower efficacy - doses in hundreds of mg) chlorpromazine, levomepromazine, chlorprothixen, thioridazine, clopenthixol Incisive: (higher efficacy - doses in mg or tens of mg) prochloperazine, phluphenazine, perphenazine, pimozide, haloperidol, flupenthixole DEPOT (1x /1 – 3 weeks) – penfluridole, fluphenazine TYPICAL A N T I P S Y CH O T I C S H1 α1 D2 M1 D2 blockade = antipsychotic effects M1 blockade = dry mouth, diplopia, constipation α1 blockade =  BP, dizziness H1 blockade = drowsiness, weight gain Stephen M. Stahl, 2000 ANTIPSYCHOTICS (neuroleptics) Typical (I. generation) Basic (sedative): (lower efficacy - doses in hundreds of mg) chlorpromazine, levomepromazine, chlorprothixen, thioridazine, clopenthixol Incisive: (higher efficacy - doses in mg or tens of mg) prochloperazine, phluphenazine, perphenazine, pimozide, haloperidol, flupenthixole DEPOT (1x /1 – 3 weeks) – penfluridole, fluphenazine Adverse effects: EPS, tardive dyskinesia, prolactinemia, malignant neuroleptic syndrom Neuroleptic Malignant Syndrom idiosyncratic response (20-30% mortality; in 1-2% treated patients) 5-10 day persistence after the withdrawal of p.o. treatment, (3-30 days after injections) HYPERTERMIA; EPS (rigidity, dysartria, dysforia, tremor), VEGETATIVE SY. (tachycardia,  BP, tachypnoe, urinary incontinence); DISORDERS OF BEHAVIOUR & CONSCIOUSNESS (delirium, somnolence, comma, epileptic paroxysms); leukocytosis, homeostatic disturbance, hemocoagulation …. ANTIPSYCHOTICS (neuroleptics) ... cont. Atypical (II. generation) (without EPS, tardive dyskinesia, prolactinemia, malignant neuroleptic syndrom) • MARTA (Multi-Acting Receptor Targeted Agents) clozapine, olanzapine, quetiapine • SDA (Serotonin-Dopamine Antagonist) risperidone, ziprasidone, sertindole • D2/D3 antagonists sulpiride, amisulpride • DSSS (Dopamine-Serotonin System Stabilizers) aripiprazole TYPICAL A N T I P S Y CH O T I C S ATYPICAL (MARTA) H1 α1 D2 M1 M1 H1 α1 D2 D1 D3 D4 More selective for mesolimbic pathways less EPS therapeutic efects side effects D1,2,3,4 α1, α2, M1 , H1 5-HT2A D2 blockade = antipsychotic effects M1 blockade = dry mouth, diplopia, constipation α1 blockade =  BP, dizziness H1 blockade = drowsiness, weight gain Stephen M. Stahl, 2000 α2 ANTIPSYCHOTICS (neuroleptics) ... cont. Atypical (II. generation) (without EPS, tardive dyskinesia, prolactinemia, malignant neuroleptic syndrom) • MARTA (Multi-Acting Receptor Targeted Agents) clozapine, olanzapine, quetiapine • SDA (Serotonin-Dopamine Antagonist) risperidone, ziprasidone, sertindole • D2/D3 antagonists sulpiride, amisulpride • DSSS (Dopamine-Serotonin System Stabilizers) aripiprazole 5-HT2A D2 SDA SDA (Serotonin-Dopamin Antagonist) risperidone, olanzapine, sertindol, seroquel better effect on negative symptoms, less of EPS (especially at lower dosage) DA 5-HT SDA 5-HT → inhibition of DA realease 5-HT r. blockade →  release of DA = suppression of impact of D2 blockade Stephen M. Stahl, 2000 ANTIPSYCHOTIC RECEPTOR BINDING            blockade of D2, 3 postsynaptic receptors D2/D3 antagonists SUPPRESSION OF POSITIVE SYMPTOMS in psychosis Selective blockade of D3/D2 autoreceptors in the limbic region Activation in the cortex Suppression of negative (cognitive) symptoms DA autoreceptors blockade Suppression of anhedonia FRONTAL CORTEX NUCL. ACCUMBENS D3 D3 D2 D1 DA D2 LIMBIC REGION D2 D3 VTA D2/D3 antagonists CEITEC Masaryk University Brno, Czech Republic Sulcova A.E. Aripiprazole  partial agonist of D2 receptors blocks D2 receptors in regions with high DAergic activity stimulates D2 receptors in regions with low DAergic activity aripiprazol "normalizes" dopaminergic activity Ozdemir et al., 2002 heteroreceptor 5-HT2A receptor 5-HT1A receptor D2 presynaptic postsynaptic DA 5-HT aripiprazole dopamine (DA) serotonin (5-HT) receptor 5-HT1A r. 5-HT1A - partial agonist at D2 autoreceptors and 5-HT1A somatodendritic receptors - antagonist at 5-HT2A heteroreceptors of dopaminergic neurons (Burris at al., 2002; Jordan et al., 2002) DSSS (Dopamine-Serotonin System Stabilizers) ARIPIPRAZOLE suggested mechanisms of action: heteroreceptor 5-HT2A receptor 5-HT1A receptor D2 presynaptic postsynaptic DA 5-HT aripiprazole dopamine (DA) serotonin (5-HT) receptor 5-HT1A r. 5-HT1A - partial agonist at D2 autoreceptors and 5-HT1A somatodendritic receptors - antagonist at 5-HT2A heteroreceptors of dopaminergic neurons (Burris at al., 2002; Jordan et al., 2002) - partial agonist at D2 autoreceptors  inbibition of DA release - partial agonist at 5-HT1A somatodendritic receptors  augmentation of serotonin transmission (antianxiety, antidepressant effects)  inbibition of DA release DSSS (Dopamine-Serotonin System Stabilizers) ARIPIPRAZOLE suggested mechanisms of action: heteroreceptor 5-HT2A receptor 5-HT1A receptor D2 presynaptic postsynaptic DA 5-HT aripiprazole dopamine (DA) serotonin (5-HT) receptor 5-HT1A r. 5-HT1A - partial agonist at D2 autoreceptors and 5-HT1A somatodendritic receptors - antagonist at 5-HT2A heteroreceptors of dopaminergic neurons (Burris at al., 2002; Jordan et al., 2002) - antagonist at 5-HT2A heteroreceptors of dopaminergic neurons  desinhibition of DA neurons (nigrostriatum, mesocortical region)  suppression of negative symptoms of schizophrenia DSSS (Dopamine-Serotonin System Stabilizers) ARIPIPRAZOLE suggested mechanisms of action: Kantrowitz J.T., Citrome L. From MedscapeCME Psychiatry & Mental Health Antipsychotics A-Z, 2010, www.medscape.org/viewarticle/718207 ARIPIPRAZOLE - main indications: ] 1. Schizophrenia in adults and adolescents (age 13-17) 2. Acute manic or mixed episodes of bipolar disorder I. (as monotherapy or with valproate in adults or adolescents of age 10-17) 3. Adjunctive therapy in major depression 4. Irritability associated with autistic disorder in pediatric patients (age 6-17) 5. Acute agitation associated with schizophrenia or bipolar disorder (intramuscularly) INDICATIONS FOR ANTIPSYCHOTICS • psychoses • nausea, vomitus • sleeping disorders • anxiety • Huntington disease • Tourett's syndrome • anesthesiology / neuroleptanalgesia Antipsychotic Drugs: Side effects SEDATION Greater with CLOZAPINE, OLANZAPINE, QUETIAPINE HEADACHE SUBJECTIVE BURDEN  Loss of energy/drive Greater with classic  Dysphoria Greater with classic  Problems with memory and concentration SLEEP DISTURBANCE  Night sleep pattern  Difficulty waking/daytime sleepiness  Insomnia Greater with ARIPIPRAZOLE Sedation may be Related to Affinity of Medications for the Histamine H1 Receptor *Presented at 102 × 1/Ki (nM) **Data with cloned human receptors Bymaster FP et al. Neuropsychopharmacology 1996;14:87–96; 0 2 4 6 8 10 12 14 16 18 Clozapine Olanzapine Quetiapine Risperidone Ziprasidone Aripiprazole Haloperidol Affinity* Increasingsedation CARDIOVASCULAR  Palpitations/tachycardia ? Greater with QUETIAPINE  Postural hypotension Greater with CLOZAPINE, LEVOMEPROMAZINE  ECG abnormalities  QT prolongation Greater with SERTINDOLE, ZIPRASIDONE GASTROINTESTINAL  Nausea/vomiting, constipation, diarrhoea ENDOCRINE  Weight gain Greater with CLOZAPINE and OLANZAPINE  Diabetes Greater with CLOZAPINE and OLANZAPINE  Decreased T3 Greater with QUETIAPINE HEPATIC DYSFUNCTION  Increased transaminases ? Greater with OLANZAPINE  Cholestatic jaundice Antipsychotic Drugs: Side effects NNH = number needed to harm Abilify® (aripiprazole) US PI, October 2006. Geodon® (ziprazidone) US PI, August 2004. Risperdal® (risperidone) US PI, November 2006. Seroquel® (quetiapine fumarate) US PI, July 2007. Zyprexa® (olanzapine) US PI, March 2002. Clinically Significant Weight Gain (7%)Incidence(%) 0 5 10 15 20 25 30 35 New antipsychotics vs placebo NNH 1720 11 6 4 HYPERSALIVATION Greater with CLOZAPINE ANTICHOLINERGIC EFFECTS  Dry mouth / Blurred vision / Urinary hesitancy NOCTURNAL ENURESIS Greater with RISPERIDONE SEXUAL SIDE-EFFECTS Greater with RISPERIDONE, AMISULPRIDE  Loss of libido  Females: Anorgasmia/Change in menstruation  Males: Erectile dysfunction/Ejaculatory disturbance ? Reduced ejaculatory volume with SERTINDOLE PROLACTIN ELEVATION Dose-related with RISPERIDONE, AMISULPRIDE Antipsychotic Drugs: Side effects CNS  Emergence of disorientation/clouding of consciousness  Seizures Greater with CLOZAPINE,? Classic antipsychotics  Neuroleptic malignant syndrome Classic OPHTHALMOLOGICAL  Glaucoma  Corneo-lenticular opacities/pigmentary lesions CUTANEOUS REACTIONS  Photosensitive skin rash  Pigmentation HAEMATOLOGICAL  Blood dyscrasias Greater with CLOZAPINE Antipsychotic Drugs: Side effects ANTIPSYCHOTIC-INDUCED MOVEMENT DISORDER Early onset Parkinsonism (Classic potent D2) Acute akathisia (Classic, aripiprazole) Acute dystonia (Classic potent D2, risperidone dose dependant) Late onset Chronic akathisia ? Tardive dystonia ? Tardive dyskinesia (Classic) Negative symptoms in schizofrenia Hypoactivity in frontal. cortex Hyperactivity of limbic sytem Pozitive symptoms Iin schizophrenia Hypoactivity of mesolimbic pathways Anhedonia, depression www.drugabuse.gov prefrontal cortex Dopaminergic “reward pathway“ - activation (food, sex, drug of abuse …)  EUPHORIA In case of hypoactvity  ANHEDONIA, DEPRESSION Serotonin ( 5-HT ) synthesis tryptophan  hydroxylase  5-hydroxytryptophan  decarboxylase  5-hydroxytryptamine ( 5-HT ) storage - in vesicles ( with ATP ) in presynaptic terminals - in a mobile extravesicular cytoplasmic pool breakdown - re-uptake ! ! - MAOA ( cytoplasmic ) receptors 5-HT1 A, B, C, D -  cAMP 5-HT2A, B, C - stimulation of phosphoinositol metabolism 5-HT4 -  cAMP 5-HT5A, B = metabotropic receptors 5-HT6, 7 5-HT3 - stimulation of ion channels ( = ionotropic receptor) Serotonergic pathways Serotonin ( 5-HT ) synthesis tryptophan  hydroxylase  5-hydroxytryptophan  decarboxylase  5-hydroxytryptamine ( 5-HT ) storage - in vesicules (with ATP ) - in cytoplasma breakdown - re-uptake ! - MAOA ( in cytoplasma ) receptors 5-HT1 A, B, D, E, F 5-HT2A, B, C 5-HT4 5-HT5A, B = metabotropic receptors 5-HT6, 7 5-HT3 - stimulation of cation channels ( = ionotropic receptor) Serotonin = neurotransmitter: 1954, John Welsh (UK) Serotonergics ↓ 5-HT → deregulations of other neurotransmitters Regulation of stress response and behaviour (anxiety, depression, psychosis) 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B , 5-HT2C , 5-HT3 5-HT receptor subtypes autoreceptors heteroreceptors neuron of different neurotransmitter serotonergic neuron http://inovace-mbb.upol.cz/files/vyukovy-portal/bunecna_biologie_2/kbb-bb2_07.pdf ANTIDEPRESSIVE DRUGS http://inovace-mbb.upol.cz/files/vyukovy-portal/bunecna_biologie_2/kbb-bb2_07.pdf ANTIDEPRESSIVE DRUGS - stimulation of 5-HT reuptake - increase of extracellular DA concentration in nucleus accumbens http://inovace-mbb.upol.cz/files/vyukovy-portal/bunecna_biologie_2/kbb-bb2_07.pdf ANTIDEPRESSIVE DRUGS • older generation – tricyclic antidepressants - Imipramin, Amitryptilin … GABA ( gama-aminobutyric acid ) synthesis glutamic acid    decarboxylase  GABA storage in neurones, in glial cells beakdown - re-uptake - GABA-transaminase (in neurones, in glial cells] receptors GABAA , GABAC - part of Cl- channel structure, (postsynaptic) GABAB -  cAMP  K+ kanálu  Ca 2+ kanálu, (presynaptic) GABA  ( sleep ) GABA  ( anxiety ) GABAergic synapse gama-aminobutyric acid (GABA) R glutamine glutamine glutamate GABA GABA receptor complex Excitatory amino acids - glutamate, aspartate receptors ionotropic: - NMDA r ( NR1-3) - ( N-methyl-D-aspartate, glutamate) - AMPA r. (GluR1-4 ) – ( alfa-amino-3-hydroxy-5- methyl-4isoxazolepropionic acid ) - kainate-ergic r. (GluR5-7, KA1, K2) metabotropic, G-protein coupled: mGluR1-8 inhibition of glutamate release from presynaptic terminal or Increase of phosphatidylinositol turnover memory functions, learning processes Activation of NMDA receptors can induce changes in the activity of a larger number of AMPA receptors (LEARNING mechanismus ?) Glutamatergic receptors + neuromuscular junctions Ach-ergic pathways Acetylcholine synthesis choline  cholinacetyltransferase ( acetyl ko-enzym A )  Ach  acetylcholinesterase  choline + acetate storage in synaptic vesicles breakdown ( very fast ) specific cholinesterase – in neurones and neuroeffector junction pseudocholinesterase( butyrylcholinesterase ) – throughout the body, including body fluids re-uptake choline 1921 – Otto Loewi (Germany) – 1936 Nobel price Acetylcholine continuation Ach  IQ ( learning, memory, attention, emotions, nociception, sleep . . . ) Ach  demention, delirium receptors M1-5 ( muscarinic ) - stimulation has slower and more sustained action, G-protein coupled N ( nicotinic ) - stimulation has rapid and short action, part of receptor mediated Cl- channels , often occurring as heteroreceptors (increase of neurotransmitter release) Cholinergic synapse - acetylcholin (Ach) Ac CoA + cholin Ach R N rec. Ach DA activity “up-regulation” of N receptors vareniklin partial agonist of nicotinic receptors Inhibition of nicotine binding to receptors and increase of DA release dopaminergic drug anticholinergic drug DA Ach normální parkinsonismus treatment treatment ANTIPARKINSONIC AGENTS beta-amyloid gene mutation (fragment of neuron membrane protein precursor) extracellular plaques neurofibrillary tangles of abnormally phosphorylated tau-protein + deficit of Ach-ergic activity + excitotoxicity Alzheimer's disease . . . Other neurotransmitters, co-transmitters, neurohormones endogenic opioids ( enkefaline, endorphine, dynorphine )  euforia  anhedonia angiotensine gastrine neurokinines neuropeptide Y neurotensin substance P bradykinine somatostatin . . . . . . . . . . . . . . . . . . cholecystokinine ( CCK )  satiety, panic disorder  hunger . . . . . .