14

Motor system III

Hierarchic organization of motor system

Basal ganglia

- Corpus striatum
 - Nucleus caudatus
 - Putamen
- Globus pallidus (Pallidum)
 - Externum
 - Internum
- Nucleus subthalamicus
- Substantia nigra
 - Pars compacta
 - Pars reticulata
- Thalamic motor nuclei

Basal ganglia

- Corpus striatum
 - Nucleus caudatus
 - Putamen
- Globus pallidus (Pallidum)
 - Externum
 - Internum
- Nucleus subthalamicus
- Substantia nigra
 - Pars compacta
 - Pars reticulata
- Thalamic motor nuclei

Basal ganglia - inputs

Corpus striatum

- Connections from all cortical areas with two exceptions – primary visual and primary auditory cortex
- The most of connections from
 - Frontal and parietal association areas
 - Motor areas

Basal ganglia - inputs

Corpus striatum

- Connections from all cortical areas with two exceptions – primary visual and primary auditory cortex
- The most of connections from
 - Frontal and parietal association areas
 - Motor areas

Motor gating – initiation of wanted and inhibition of unwanted movements

Basal ganglia

- Motor control realized by two circuits
 - Direct pathway
 - Motor cortex activation

- Indirect pathway
 - Motor cortex inhibition

 Thalamic motor nuclei activate motor cortex

- Thalamic motor nuclei activate motor cortex
- Tonic inhibitions of thalamic motor nuclei by GPi

- Thalamic motor nuclei activate motor cortex
- Tonic inhibitions of thalamic motor nuclei by GPi
- Activated corpus striatum transiently inhibits Gpi, resulting in transient disinhibition of thalamic motor nuclei

NS activates GPi

- NS activates GPi
- GPe tonically inhibits NS

- NS activates GPi
- GPe tonically inhibits NS
- Corpus striatum transiently inhibits
 GPe

- NS activates GPi
- GPe tonically inhibits NS
- Corpus striatum transiently inhibits
 GPe

NS disinhibition

- NS activates GPi
- GPe tonically inhibits NS
- Corpus striatum transiently inhibits GPe

NS disinhibition

Gpi activation

- NS activates GPi
- GPe tonically inhibits NS
- Corpus striatum transiently inhibits GPe

NS disinhibition

Gpi activation

Less important is a direct inhibition of Gpi by GPe

Direct and indirect pathway differences

- Direct pathway
- Motor cortex activation
- Indirect pathway
- Motor cortex inhibition

Direct and indirect pathway differences

- Direct pathway
- Motor cortex activation
- Indirect pathway
- Motor cortex inhibition

Indirect pathway may be considered as a "handbrake" of the direct pathway

Dopaminergic projections

- Dopaminergic projections are crucial for the function of corpus striatum
- S. nigra pars compacta

Dopaminergic projections

- Dopaminergic projections are crucial for the function of corpus striatum
- S. nigra pars compacta
- Direct pathway activation
 - D1 receptors
- Indirect pathway inhibition
 - D2 receptors

Basal ganglia

- Beside motor loop there are other loops associated with other thalamic nuclei
- "Gating" of the other sort of information
- Association loop
- Limbic loop
- Basal ganglia play an important role in information processing in general and this is crucial for thinking process
- Connections of corpus striatum are plastic what allows learning and this was very important during evolution

Cerebellum

Coordination

Cerebellum

Cerebellum plays an important role not only in the coordination of movement, but also in the "coordination" of thoughts