Synapse and integration of information at the synaptic level

Introduction

Synapse

 Communication between neurons

Synapse

 Communication between neurons

- Electrical
- Chemical

Electrical synapse

- Evolutionary old
- Less frequent than ch.
- Ubiquitous

Electrical synapse

- Evolutionary old
- Less frequent than ch.
- Ubiquitous
- Gap junctions
- Bidirectional transmission
- Fast
- Strength of signal may decrease

Chemical synapse

- Evolutionary young
- Majority type of s.

Chemical synapse

- Evolutionary young
- Majority type of s.
- Unidirectional
- Synaptic cleft
- Neurotransmitter
- Constant signal strength

Present in presynaptic neuron

- Present in presynaptic neuron
- Released into the synaptic cleft due to depolarization of presynaptic neuron (Ca²⁺ dependent mechanism)

- Present in presynaptic neuron
- Released into the synaptic cleft due to depolarization of presynaptic neuron (Ca²⁺ dependent mechanism)
- Specific receptor has to be present in postsynaptic membrane

- Specific receptor has to be present in postsynaptic membrane:
 - A. Ionic channel
 - B. Second messenger system

Guyton&Hall. Textbook of Medical Physiology, 11th ed.

Neurotrans

Neuropeptide, Slowly Acting Transmitters or Growth **Factors**

Small-Molecule, Rapidly Acting Transmitters

Hypothalamic-releasing hormones Thyrotropin-releasing hormone

Luteinizing hormone-releasing hormone

Somatostatin (growth hormone inhibitory factor)

Pituitary peptides

Adrenocorticotropic hormone (ACTH)

β-Endorphin

α-Melanocyte-stimulating hormone

Prolactin

Luteinizing hormone

Thyrotropin

Growth hormone

Vasopressin

Oxytocin

Peptides that act on gut and brain

Leucine enkephalin

Methionine enkephalin

Substance P

Gastrin

Cholecystokinin

Vasoactive intestinal polypeptide (VIP)

Nerve growth factor

Brain-derived neurotropic factor

Neurotensin

Insulin

Glucagon

From other tissues

Angiotensin II

Bradykinin

Carnosine Sleep peptides

Calcitonin

Class I Acetylcholine Class II: The Amines

Norepinephrine

Epinephrine

Dopamine

Serotonin

Histamine

Class III: Amino Acids

Gamma-aminobutyric acid (GABA)

Glycine

Glutamate

Aspartate

Class IV

Nitric oxide (NO)

Guyton&Hall. Textbook of Medical Physiology, 11th ed.

- Specific receptor has to be present in postsynaptic membrane:
 - A. Ionic channel
 - B. Second messenger system

1) Excitatory transmitters

- opening of sodium channels
- decreased conduction through chloride and/or potassium channels
- changes in internal metabolism of the postsynaptic neuron exciting cell activity

2) Inhibitory transmitters

- opening of chloride channels
- increased conduction through potassium channels
- changes in internal metabolism of the postsynaptic neuron decreasing cell activity

Excitatory/inhibitory postsynaptic potential

Excitatory/inhibitory postsynaptic potential

Excitatory/inhibitory postsynaptic potential

Signal summation

- Temporal
- Spatial

Signal summation

Synaptic convergence

"Convergence" of multiple input fibers onto a single neuron. A, Multiple input fibers from a single source. B, Input fibers from multiple separate sources.

Synaptic convergence

Average number of synapses in one neuronal cell in primates

- ✓ Primary visual cortex (area17)
 - aprox. 4 000
- ✓ Primary motor cortex (area4)
 - aprox. 60 000

"Convergence" of multiple input fibers onto a single neuron. A, Multiple input fibers from a single source. B, Input fibers from multiple separate sources.

Synaptic divergence

Figure 46-11

"Divergence" in neuronal pathways. A, Divergence within a pathway to cause "amplification" of the signal. B, Divergence into multiple tracts to transmit the signal to separate areas.

Networking

Networking

Neuromuscular junction

Neurotransmission vs. Neuromodulation

Neurotransmission vs. Neuromodulation

Information transmission

Regulation of NS activity

Neurotransmission

- Information transmission
- Specific

vs. Neuromodulation

- Regulation of NS activity
- Difuse (volume transmission)

Neurotransmission

vs. Neuromodulation

Information transmission

Regulation of NS activity

Specific

Difuse (volume transmission)

• Receptors – ion channels

• Receptors – G-proteins

Neurotransmission

- Information transmission
- Specific

- Receptors ion channels
- Short duration
 - membrane potential changes

vs. Neuromodulation

- Regulation of NS activity
- Diffuse (volume transmission)
- Receptors G-proteins
- Longer duration
 - changes in synaptic properties

THE STRUCTURES OF NEUROTRANSMITTERS

STRUCTURE KEY:

SEROTONIN

ADRENALINE

Fight or flight neurotransmitter

Produced in stressful or exciting situations. Increases heart rate & blood flow, leading to a physical boost & heightened awareness.

NORADRENALINE

Concentration neurotransmitter

Affects attention & responding actions in the brain, & involved in fight or flight response. Contracts blood vessels, increasing blood flow.

DOPAMINE

Feelings of pleasure, and also addiction, Contributes to well-being & happiness; helps movement, and motivation. People repeat sleep cycle & digestive system regulation. behaviours that lead to dopamine release. Affected by exercise & light exposure.

GABA

Calming neurotransmitter

Calms firing nerves in CNS. High levels improve focus; low levels cause anxiety. Also contributes to motor control & vision.

ACETYLCHOLINE

Involved in thought, learning, & memory. Activates muscle action in the body. Also associated with attention and awakening.

GLUTAMATE

Memory neurotransmitter

Most common brain neurotransmitter. Involved in learning & memory, regulates development & creation of nerve contacts.

ENDORPHINS

Euphoria neurotransmitters

Released during exercise, excitement, & sex, producing well-being & euphoria, reducing pain. Biologically active section shown.

© COMPOUND INTEREST 2015 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem This graphic is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives licence.

Acetylcholin

- Nucleus basalis (Meynerti) abd other nuclei
- Nicotin receptors
- Muscarin receptors

- Sleep/wake regulation
- Cognitive functions
- Behavior
- Emotions

Noradrenalin

- Locus coeruleus
- Nuclei raphe caudalis
- Vigilance
- Responsiveness to unexpected stimuli
- Memory
- Learning

Dopamin

- Nigrostriatal system
 - Movement
 - Sensory stimuli
- Ventrotegmentno-mesolimbicfrontal system
 - Reward
 - Cognitive function
 - Emotional behavior
- Tubero-infundibular system
 - Hypotalamic-pituatory regulation
- D1 receptors excitatory
- D2 receptors inhibitory

Serotonin

- Nuclei raphe rostralis
- Nuclei raphe caudalis
- Anxiety
- Impulsive behavior

Neuromodulatory systems

Jeffrey L. Krichmar, Adaptive Behavior 2008; 16; 385

Neuromodulatory systems

