Introduction to Pathophysiology as an integrating medical discipline

Etiology and pathogenesis of disease Definition of health vs. disease Problem of normality in medicine

WHO definition of health

- Health is a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity.
 - Preamble to the Constitution of the World Health Organization as adopted by the International Health Conference, New York, 19-22 June, 1946; signed on 22 July 1946 by the representatives of 61 States (Official Records of the World Health Organization, no. 2, p. 100) and entered into force on 7 April 1948.

• The Definition has not been amended since 1948.

Pathophysiology (PP) as a medical discipline

- medical science dealing with the study of disease
 - physiology = how the healthy body works
 - pathophysiology = how the ill body works (or does not)
 - PP is "physiology of altered health"
 - PP explains functional consequences of a disease process
- PP studies namely two processes
 - disease etiology i.e. what causes disease to develop
 - disease pathogenesis how the disease develops
 - disease pathology what anatomic changes disease produces
- PP bridges basic medical sciences with clinical medicine
 - experimental approach
 - molecular biology, genetics, immunology, ...
 - models (in vitro, animals, simulations)
 - human samples (DNA, proteins, fluids, tissues)
 - clinical trials
 - observational studies
 interventional studies

- Distinction between health and disease
- stating disease can have a profound mental, social, economic and philosophical consequences for the individual
- however, distinction is not always easy
 see further interindividual variability and normality
- disease is perceived both subjectively
 - "I am not feeling well", anxiety, fear, failure, ...
- objectively by medical specialists
 - to some extent independently from the subject

Two approaches to definition of disease

- neutral
 - each organ and organ system in our body has its function and the function is impaired than there is a disease
 - does not take into account the subjective feelings of a subjects
 - more close to the current medicine paradigm
- normative
 - if the person is not limited by his/her condition and can achieve the desired goals than he/she is healthy
 - blindness or autism is not a disease if the person suffering from it does not feel limited in any way

Disease etiology

- infections (bacterial, viral, fungal, parasites, ...)
- toxins
- prions
- psychological and social
 - mental trauma
 - stress

Diseases from one single cause vs. multifactorial

- Monofactorial
 - one single cause potent enough to cause disease
 - environment and lifestyle play generally minor role
 - examples
 - trauma
 - highly virulent infection
 - monogenic disease
- Multifactorial (= complex)
 - products of concomitant exposure to internal and external factors with typically equal role of both, so called "diseases of civilization"
 - examples
 - obesity
 - diabetes
 - atherosclerosis
 - allergy
 - cancers

Disease pathogenesis

- Response of the body to the action of etiological factor(s)
 - adaptation = no disease
 - dysadaptation = disease
- Pathogenesis of disease
 - sequence of molecular, cellular, tissue and organ events taking the place from the initial contact/exposure to etiological factor(s) until the expression of disease
 - organ-centered
 - limited to a single organ (system)
 - however, usually only at the beginning of the disease
 - later, majority of diseases becomes systemic, i.e. having systemic signs - for example tumors, liver steatosis and fibrosis, ...
 - systemic
 - some disease are widespread

Ever DiseaseImage: Displace of the second of the secon

Common misconceptions

- Atherosclerosis might be cited as a etiology of coronary artery disease
- However, progression of the process from initial clinically unapparent lesion (fatty streak) to manifest occlusive vessel disease is a continuum of pathogenesis
- the very cause(s) of atherosclerosis are generally unknown and subjects of research with many identified etiologic contributors
 - external diet, exercise, smoking,
 - internal genetic susceptibility, metabolic, inflammation, ...

Clinical manifestation of diseases

- diagnosis of diseases is based on the recognition and proper interpretation of diseases manifestation
 - symptom = feature recognized subjectively by the patient
 - sign = objectively noticeable
 - physical examination
 - diagnostic method (laboratory, X-ray, ultrasound, ...)
- typical cluster of signs and symptoms present usually together creates a syndrome
 - however, many conditions can present by the same syndrome, therefore one must test multiple working hypotheses as to what led to this particular state = differential diagnosis

Pathophysiology vs. clinical medicine

Natural history of disease

- refers to the progression of a disease process in an individual over time in the absence of treatment
- this is how the PP is usually taught

Clinical course of the disease

- "disease background"
 - individual constitution (incl. genetic susceptibility and lifelong fitness) matters, i.e. the same etiological factor will not have the same effect in various people
 - risk factors
 - variable exposure due to environment (incl. geographical location, altitude, climate etc.), individual lifestyle, history and social habits etc.
- pre- or subclinical stage
 - prodromal usually unspecific signs of upcoming disease
 - e.g. fatigue, weakness, anorexia, pain, fever,
- acute illness (limited number of days, can be 1 day to 1 month)
 - severe but self-limiting
- chronic illness (longer that typical pro given disease)
 - long term, continuous process
 - follows the acute stage
 - disease was not eliminated completely due to various reasons (e.g. immune deficiency)
 - chronic from the very beginning
 - e.g. due to pathogen making itself inaccessible, or targeting the very means od body defense

Chronic disease

- Exacerbations = aggravation of symptoms, signs and severity of disease
- Remissions = lessening of severity
- Remission = disappearance of disease induced by treatment however with the risk of reoccurrence
 - e.g. cancer with current methods we cannot be sure we eliminated all cancer cells
- Residual disease = detectable with lab test but not by symptoms and clinical signs
 - e.g. leukemia PCR detection of genetic changes typical of leukemic clone but otherwise patients appears healthy
- Carrier status = patient harbors the microorganism but may have few or no symptoms, clinical or laboratory signs
- Complication = possible adverse extensions of a disease in spite of the treatment

Diagnosis of disease – problem with "normality"

- trait used as diagnostic parameters
- qualitative
 - alternatives yes/no
 - e.g. cleft palate, congenital valve disease etc.
- quantitative
 - measurable
 - continuous distribution in population
 - typically influenced by many factors
 - problem to distinguish what is normal and what is not
 mean ± 2 SD
- alternative vs. continuous model of disease

Distribution vs. selection (mortality)

Diagnostic tests

- diagnosis is performed using various ways
 - personal history
 - clinical examination
 - instrumental and laboratory test
- requirements on diagnostic tests
 - reproducibility = repeated measurements give equal results
 - validity = the extent to which measurement masures what is intended to measure
 - specificity = % of subjects free of disease correctly identified as negative (= true negativity)
 - 95% specificity = 95 out of 100 healthy people is diagnosed as healthy, 5% je false positivity
 - sensitivity = % of subjects with diseases correctly identified as ill (= true positivity)
- predictive value of diagnostic test
- biomarker
 - measured characteristic which may be used as an indicator of the probability of development of diseases or complication

Practical notes

- <u>http://www.med.muni.</u> <u>cz/patfyz</u>
- literature:
 - Pathophysiology
 (Damjanov I), Elsevier
 2009
 - Essentials of
 Pathophysiology (Porth CM), Lippincot W&W
 2007

