- Disorders of electrolytes and water balance
 - Water

Osmolality

• Electrolytes (ionts)

• Compartments

- Intracellular (ICF)
 - 2/3 of body fluid
 - Located primarily in
 - High in K, PO₄
- Extracellular (ECF)
 - 1/3 of body fluid
 - Comprised of 3 major components
 - Intravascular (plasma X serum)
 - Interstitial
 - Transcellular

• Transcellular component

- Physiologically located in
 - Body cavities (CSF, synovial fluid), gastrointestinal tract, bones, ..
- Potential to increase significantly in abnormal conditions:
 - Hydrothorax, ascites, haematoma (massive bleeding into joint or cavity), ileus (bowel obstruction)

Water bilance (water exchanges)/24 hours

Intake (mL)		Losses (mL)	
Beverages	1000-1500	Urine	1000-1500
Food	700	Skin	400
Metabolic water	300	Respiratory	400
		Sweating	100
		Stool	100
		Drains,	??

Can be measured

Can be estimated

Weigh the patient

• Diuresis/24 hours

Polyuria	> 2500 ml/24 hours
Physiologic volume of urine	500 - 2500 ml/24 hours
Oliguria	50 - 500 ml/24 hours
Anuria	< 50 ml/24 hours

- Lab. analysis of urine
 - Density (osmolality)
 - Losses of ions (Na, K, Cl, Mg, P, Ca)
 - pH of the urine: fresh urine

• Serum osmolality: 275-295 mosm/kg < 240 or > 320 is critically abnormal

- The ratio of the amount of solute (particles) dissolved in a given weight of water
 - Number of particles, regardless of their size/properties

- Osmolality: measurement x calculation
- Osmolality can be measured on an analytical instrument called an osmometer. It works on the method of depression of freezing point

Calculation

$(2 \times Na) + K + glucose + urea$

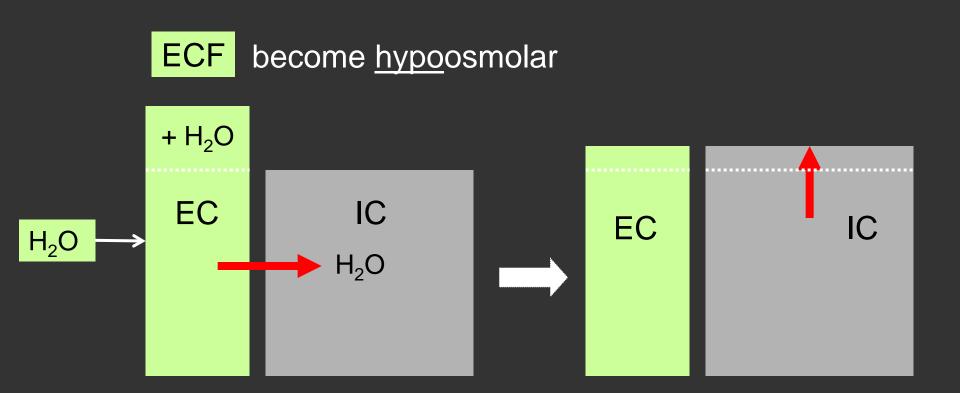
Serum osmolality: 275-295 mosm/kg

- Particles which contribute most to the osmolality
 - Na⁺ (Cl⁻, HCO_3^-), urea, glucose
- Effective osmolality
 - Osmolality by solutes, generating gradient in the cell (semipermeabile) membrane
 - Na⁺ (Cl⁻, HCO₃⁻), glucose

Osmolal gap

- Results of measured (cryoscopic method) and calculated osmolality
 - Approximately equal (negligible difference)
- Osmolal gap
 - Difference between the measured osmolality and the calculated osmolality
 - Measured osmolality is higher than calculated o.
 - Difference > 10 mmol/kg ???
 - Ethanol: 1g/L = 1 ppt = 23 mmol/kg

- Absolute value x change of osmolality
- Osmotic difference between ICF and ECF
 - Osmosis (transfer of water, not ions)
- Rapid changes of effective osmolality
 - Rapid transfer of the water to (from) the cells
- The optimal osmolality changes during treatment of hyper (hypo) osmolality
 - 1 3 mosm/hr.


• Hyperosmolality

- Causes
 - Water deficit
 - Vomiting, diarrhea, fever, uncontrolled DM
 - Excess of solutes, retention/supply Na⁺
 - Uncontrolled DM, alkohol
- Sings, symptoms
 - Water deficit
 - Weight loss, ↓ skin turgor, rapid pulse, ↓ BP, oliguria and ↑ urine osmolality
 - Sensations of thirst
- Labs
 - Increased HCT, TP, osmolality

• Hyperosmolality

- Intervention = hydration
 - 1. Isotonic solution
 - 2. Hypotonic solution ??
- Osmolality changes during treatment should be gradual
 - 1 3 mosm/hr.
- Risk of rapid changes (rapid treatment of hyperosmolality)
 - Brain oedema !!

Treatment of hyperosmolality by hypotonic solutions

• Leak of water into ICF $\rightarrow \uparrow$ intracranial pressure in CNS (expansion of CNS)

• Hypoosmolality

- Causes
 - Excess of water (water retention)
 - Hypersecretion ADH (brain injury)
 - Loss of Na⁺, chronic catabolism, protein malnutrition
- Sings, symptoms
 - Oedema, dyspnoea, mental status changes, cramps, cephalea,..
- Lab:
 - Decreased HCT, TP, osmolality (serum, urine)

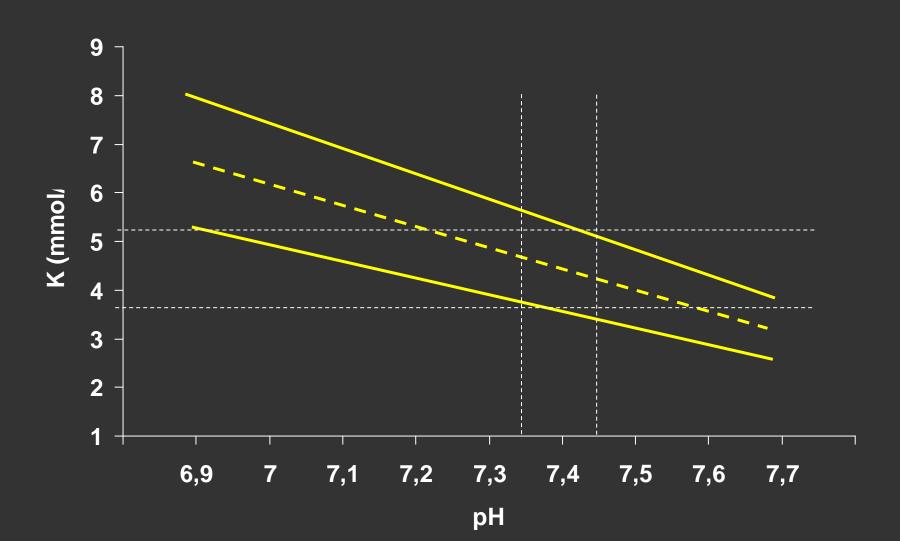
• Hypoosmolality

- Intervention
 - 1. Isotonic solution
 - 2. Hypertonic solution ?
- Osmolality changes during treatment
 - 1 3 mosm/hr.

• Urine osmolality

- Reference interval:...
 - 50 1400 mosm/kg H2O
 - In elderly: max. 800 mosm/kg H20
- Depends on secretion of ADH

- Disorders of *electrolytes* and water balance
 - Water
 - Osmolality
 - Electrolytes (ions)


Ions in ECF and ICF

	ECF (blood) mmol/L	ICF (cells) mmol/L
Na	140	10
CI	102	8
K	4,0	155
Ca	2,2	0,001
Mg	1,0	15
Р	1,0	65

• K⁺ - potassium

- Physiological concentration
 - 3,5 5,1 mmol/L
 - Major cation in ICF
- Why examinate K⁺?
 - ABB
 - Neuromuscular excitation
- Evaluation of the kalemia
 - Connection to pH !

Relationship between K a pH

• Hyperkalaemia - causes

- Shift K⁺ (from ICF to ECF)
 - Acidosis, hypoxemia, haemolysis, catabolism
- Insufficient excretion by kidney
 - Renal failure, lack of of adrenal corticoids, drugs (spironolacton)
- Critical concentration
 - > 6,5 mmol/L
- MAC is accompanied by hyperkalaemia

• Hyperkalaemia - signs, symptoms

- Signs, symptoms
 - Muscle parestesia, cramps
 - Cardiac arrhythmias (bradycardia)
 - ECG
 - Tall and tented T waves, low P, a-v block, wide QRS complex
 - Muscle weakness, paralysis, paresthesia

Hyperkalaemia - therapy

- Therapy ...
 - Acidosis causal treatment
 - 10 20% G + insulin
 - Diuretics
 - Ion exchanger (resonium)
 - Haemodialysis
 - Avoid K in food (fruit)

• Hypokalaemia - causes

- Shift K⁺ (from ECF to ICF)
 - Alkalosis
 - Transition from catabolism to anabolism
- Excessive K loss
 - Renal diuretics
 - Gastrointestinal diarrhea
 - Drugs large doses of adrenal corticoids
- MAL is accompanied by hypokalemia

• Hypokalaemia - signs, symptoms

- Signs, symptoms ...
 - Muscle weakness, paralysis, ↓ smooth muscle function (paralytic ileus)

 - EKG changes
 - U wave, ↓ T wave, mental depression and confusion

• Hypokalaemia - therapy

- If alkalosis is present
 - Therapy of alkalosis

- Replacement of K
 - Oral
 - Parenteral
 - KCI 7,5 % (hypertonic solution !)
 - Dilution in saline
 - No more than 10 mmol/hr

• K - comments

- Lab. examination of K
- Careful blood collection
 - Haemolysis !
 - Storage of the blood releasing K from ery. to collection tube
 - Time
 - Temperature

• Na+ (sodium): 135-145 mmol/L

Significance

- Major cation in ECF
- One of main factors in determining ECF volume
- Helps maintain acid-base balance
- Regulates voltage of action potential
- Why examinate Na⁺?
 - Hydration (ECF volume)
 - Osmolality

Normal concentration of Na

- Physiological conditon
- Loss of isotonic fluid
- Excess of isotonic fluid

- How to distinguish loss x excess isotonic fluid
 - Lab: TP, Hb, Htk
 - Clinical examination
 - BP, filling of jugular veins

• Hyper and hyponatraemia

- Na = the main ion contributing to the osmolality in the extracellular fluid
- Changes of Na concentration = changes of osmolality in the extracellular fluid
- Changes of osmolality = shift of water to/from the cells

• Hypernatraemia - causes, risks

- Causes
 - Excess of Na gain or loss of water

Hyperatraemia

- Moderate: 150 155 mmol/L
- Serious: < 156 160 mmol/L
- Critical: > 160 mmol/l
- Risk
 - Hypovolemia prerenal failure
 - Hyperhydration heart failure

• Hypernatraemia - symptoms

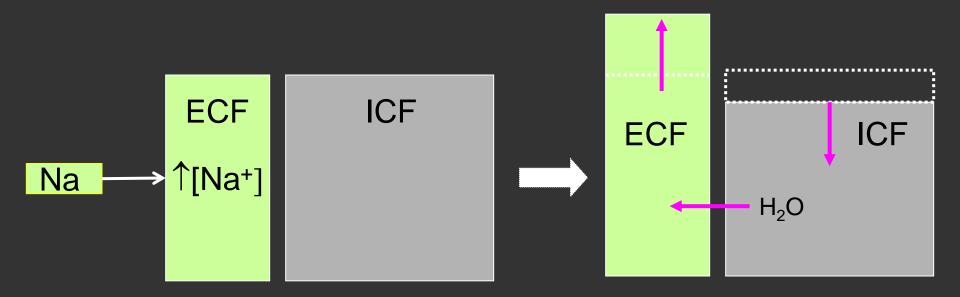
- Early
 - Generalized muscle weakness
- Moderate
 - Confusion, thirst
- Late
 - Oedema, restlessness, thirst, hyperreflexia, muscle twitching, irritability, possible coma
- Severe
 - Brain damage, hypertension, tachycardia

• Hypernatraemia - therapy

- Therapy should be gradual
 - Changes osmolality water from ECF to ICF
 - Fast therapy = risk of brain oedema !!
- When Na > 155 mmol/l start th. with isotonic saline
- Gradual lowering with hypotonic solution of NaCl
- \downarrow natraemia: no faster than 2 mmol/L/hr !

• Hyponatraemia - causes, risks

- Excess Na loss or water gain
 - Diuretic therapy, unregulated production of ADH
 - Congestive heart failure, deficit of suprarenal corticoids
- Moderate: < 135 mmol/L
- Serious: < 130 mmol/L
- Critical: < 125 mmol/l
- The major risks
 - Oedema (lungs)
 - Hyponatraemic encephalopathy !


Hyponatraemic encephalopathy

- Intracerebral osmotic fluid shifts
 - Brain oedema developed, brain compression
- Intracerebral vasoconstriction
 - Decrease of blood flow and O₂ saturation
- Risk of respiratory arrest, resulting in death
- Hyponatraemic encephalopathy
 - 5 times more frequent in women than in men
 - Na < 128 mmol/l
 - Estrogens influence Na/K pump

• Hyponatraemia - therapy

- Therapy
 - 0.9% solution NaCl (3% solution NaCl ?)
- Hyponatraemia must be corrected very slowly

 Treatment of hyponatraemia with hypertonic solution (supply of Na⁺)

- Water from ICF to the ECF expansion of ECF
- Deficit of water in ICF disturbances of CNS central pontine myelinolysis
 - Separation of nerve cells from the myelin sheaths (cells shrink)

• Hyponatraemia - therapy

- Therapy
 - 0.9% solution NaCl (3% solution NaCl ?)
- Hyponatraemia must be corrected slowly (risk of the development of central pontine myelinolysis).
 - Separation of nerve cells from the myelin sheaths (cells shrink)
- Rapid correction of hypoNa is the most common cause of that potentially devastating disorder.
- Serum sodium should not be allowed to rise by more than 8 mmol/l over 24 hours (i.e. 0.33 mmol/l/h

• Chloride: 98 - 107 mmol/L

Major anion in ECF

- Why examinate Cl⁻?
 - ABB
 - Acidosis, alkalosis
 - Balance of fluid (hydration)

Hyperchloraemia

- Causes
 - Kidney diseases (CRF)
 - Excessive intake CI
- Hyperchloraemia is accompanied by acidosis
- Therapy
 - Correcting the underlying diseases
 - Loop diuretics

• Hypochloraemia

- Causes
 - Vomiting, (sweating)
 - Loop diuretics

Hypochloraemia is accompanied by alkalosis

- Therapy
 - NaCl, KCl, Arginin-Cl, NH4Cl

- Saline ("0,9 % solution NaCl, 300 mOsm/l)
 - pH = neutral (pH = 7,0)

Saline acidify body fluids !

• Ratio Na : Cl

Na : Cl

Saline: 150 mmol/l : 150 mmol/l = 1,0 : 1,0

• ECF: 140 mmol/l : 100 mmol/l = 1,4 : 1,0

• Phosphorus - P: 0,9 – 1,5 mmol/L

- Intracellular mineral
- Inverse relationship to Ca concentration in blood
- Supply P in bone: > 20 000 mmol

• Hypophosphataemia

Causes

- Malnutrition
- Hyperparathyroidism
- Disorders causing hypercalcemia
- Signs/Symptoms
 - Muscle fatigue, weakness, paresis
 - Disorientation, coma
 - Haemolysis
- Therapy
 - Supplementation of P

• Hyperphosphataemia

Causes

- Chronic renal failure (most common)
- Hypoparathyroidism
- Severe catabolic states
- Conditions causing hypocalcemia
- Signs/Symptoms
 - Muscle cramping and weakness
 - \uparrow HR, diarrhea, nausea
 - Calcifications

• Hyperphosphataemia

Treatment

- Treat cause (if possible)
- Restrict phosphate-containing foods
- Administer phosphate-binding agents
 - CRF CaCO₃
- Diuretics