LA CEITEC

Central European Institute of Technology
BRNO | CZECH REPUBLIC

HLH
I I|I||I||!III||I||I||.||l||.||.]||||||||nmmn.....--._.
nilhe
il
|i|||||I||i|||||I|||||I|IIIIIIIIIIl|||||||||mn----..-..- |
It |t

|
I
i

Introduction to Bioinformatics T SS =
(LF:DSIB01) EEIEEL L S i wEEEEEREESSsas T

Week 1 : Introduction; @
Algorithm Basics oo

Panos Alexiou
panagiotis.alexiou@ceitec.muni.cz

Introduction to LF:DSIB01 - Course Goals

* Introductory course for Bioinformatics

 Students will:
— become familiar with fundamental concepts
— able to design, implement, and run basic analyses
— decipher domain specific language in publications
— understand the field and opportunities for development of skills

* Not goals:
— solve specific research questions
— cover entirety of Bionformatics field
— teach programming skills

EPCEITEC

Introduction to LF:DSIB01 - Course Material

* Lecture Notes

« Useful Books
— An Introduction to Bioinformatics Algorithms, Jones and Pevzner
— Bioinformatics for Biologists, Pevzner and Shamir

EPCEITEC

Course Schedule

Introduction; Algorithm Basics

Sequence analysis introduction/common file formats
Sequence Alignment / Sequence pattern recognition 1/3
Sequence Alignment / Sequence pattern recognition 2/3
Sequence Alignment / Sequence pattern recognition 3/3
NGS / galaxy

RS o | AN

Introduction to Data Analysis
Principles of Data visualisation
Clustering / PCA

. Basic Statistics

. Bayesian Inference/Bayesian classifier

- = O 0 ~N
AOIII

12. Current Developments in Machine Learning
13. Colloquium Evaluation

EPCEITEC

Introduction to LF:DSIB0O1 - Student Responsibilities

 Attend Classes and Practicals
« Complete Practical Exercises

» Demonstrate Understanding of Material

EPCEITEC

And now for something completely different

Basics of Algorithms

» Definition of an algorithm

- Pseudocode Notation

- Exercise: The Coin Change Problem
» Brute force, Iterative, Recursive

* Big-O notation

EPCEITEC

What is an algorithm

» A sequence of instructions one must perform to solve a well formulated problem
* A step-by-step method of solving a problem
* A set of instructions designed to perform a specific task

Sequence of instructions
Step-by-step method
Set of instructions

Solve Well formulated problem
Perform Specific task

EPCEITEC

Sequence of instructions
Step-by-step method
Set of instructions

Solve Well formulated problem
Perform Specific task

MAKEPUMPKINPIE

11 cups canned or cooked pumpkin
1 cup brown sugar, firmly packed

+ teaspoon salt

2 teaspoons cinnamon

1 teaspoon ginger

2 tablespoons molasses

3 eggs, slightly beaten

12 ounce can of evaporated milk

1 unbaked pie crust

Combine pumpkin, sugar, salt, ginger, cinnamon, and molasses. Add eggs
and milk and mix thoroughly. Pour into unbaked pie crust and bake in hot
oven (425 degrees Fahrenheit) for 40 to 45 minutes, or until knife inserted
comes out clean.

Pseudocode Notation

MAKEPUMPKINPIE (pumpkin, sugar, salt, spices, eggs, milk, crust)
PREHEATOVEN(425)
filling «— MIXFILLING (pumpkin, sugar, salt, spices, eqgs, milk)
pie < ASSEMBLE(crust, filling)
while knife inserted does not come out clean
BAKE(pie)
output “Pumpkin pie is complete”
return pie

NN OGOl W N =

EPCEITEC

10

Pseudocode Notation

Assignment

Format: a — b

Effect: Sets the variable a to the value b.

Example: b « 2
a+b

Result: The value of a is 2

EPCEITEC

11

Pseudocode Notation

Conditional

Format: if A is true
B

else
C

Effect: If statement A is true, executes instructions B, otherwise executes
instructions C. Sometimes we will omit “else C,” in which case
this will either execute B or not, depending on whether A is true.

Example: MAX(a,b)
1 ifa<b
2 return b
3 else
4 return a

Pseudocode Notation

for loops

Format: fori<—atob

B
Effect: Sets 7 to a and executes instructions B. Sets i to a + 1 and executes
instructions B again. Repeats fori =a+2,a+3,...,b—1,b.

Example: SUMINTEGERS(n)
1 sum «— 0
2 fori— lton
3 sum «— sum + 1
4 return sum

EPCEITEC

13

Pseudocode Notation

while loops

Format:

Effect:

Example:

while A is true
B

Checks the condition A. If it is true, then executes instructions B.
Checks A again; if it’s true, it executes B again. Repeats until A is
not true.

ADDUNTIL(b)

1 71

2 total < 1

3 while total < b

4 1—1+1

5 total «— total +1
6 return

EPCEITEC

14

Pseudocode Notation

Array access

Format:

Effect:

Example:

EPCEITEC

a;

The ith number of array a = (ay,...qa;,...a,). For example, if
F=(1,1,2,3,5,8,13), then F3 = 2,and F, = 3.

FIBONACCI(n)

1 F} «1

2 Fo «—1

3 fori«< 3ton

1 Fi—F; 14+ Fi_o
5 return F),

15

Pseudocode vs Computer Code

If you were to build a machine that follows these instructions, you would need to make it specific to a particular
kitchen and be tirelessly explicit in all the steps (e.g., how many times and how hard to stir the filling, with what kind

of spoon, in what kind of bowl, etc.)

This is exactly the difference between pseudocode (the abstract sequence of steps to solve a well-formulated
computational problem) and computer code (a set of detailed instructions that one particular computer will be able

to perform).

EPCEITEC 16

Pseudocode Exercise: Coin Change (Euro coins)

Convert an amount of money into the fewest number of coins

Input: Amount of money (M)
Output: the smallest number of 50c (a), 20c (b), 10c (c), 5c (d), 2c (e) and 1c (f)
such that 50a+20b+10c+5d+2e+1f =M

1 while M >0

2 c «+ Largest coin that is smaller than (or equal to) M
3 Give coin with denomination ¢ to customer

4 M~M-c¢

Try: M=60c; M=55c; M=40c

EPCEITEC

17

Pseudocode Exercise: Coin Change (Generalised)

Input: An amount of money M, and an array of d denom-
inations ¢ = (c1,¢2,...,¢q), in decreasing order of value
((31 > Co > "->Cd).

Output: A list of dintegers iy, o, . . . , 14 such that ¢y 21 +caia+
.+« +cqitqg = M,and ¢; + i2 + - - - + 14 is as small as possible.

EPCEITEC

18

Pseudocode Exercise: Coin Change (US coins)

Input: An amount of money M, and an array of d denom-
inations ¢ = (c1,c¢2,...,cq), in decreasing order of value
(c1 >ca >+ > cq).

Output: A list of dintegers iy, 12, . . ., g such that ¢;2; +coio+
o+ +cqiq = M,and i1 + i3 + - - - + 14 is as small as possible.

Try
BETTERCHANGE(M, c, d)
1 r— M
2 for k—1tod
3 'ik — T/Ck
4 ve=T =€ " ?:k

5 return (iq,io,...,174)

NB: Division = “floor”
EPCEITEC 19

Pseudocode Exercise: Coin Change (US coins)

Input: An amount of money M, and an array of d denom-
inations ¢ = (c1,c¢2,...,¢q), in decreasing order of value
(c1 >ca >+ > cq).

Output: A list of dintegers iy, 12, . . ., g such that ¢;2; +coio+
-4 cqig = M, and i1 +i2 + - - - + 14 is as small as possible.

BETTERCHANGE(M, c, d)
1 r— M
2 for k—1tod - .2
) M =40; c1=25, ¢2=20, c3=10, c4=5, c5=1
3 ik — 1/Ck
N :}»J«D) ,,,%‘ |
4 re— T —Ck g {2 Discontinued
. . i g ! 1§75
5 return (iq,io,...,174) ' orbeing too

NB: Division = “floor”
EPCEITEC 20

Pseudocode Exercise: Coin Change (U

Input: An amount of money M, and an array of d denom-
inations ¢ = (c1,c¢2,...,¢q), in decreasing order of value
(c1 >ca >+ > cq).

Output: A list of dintegers iy, 12, . . ., g such that ¢;2; +coio+

-4 cqig = M, and i1 +i2 + - - - + 14 is as small as possible.

BETTERCHANGE(M, ¢,d) = BetterChange
1l r—~M 40=
1x25 + 1x10 + 1x5=

2 for k—1tod Des A0 E G
3 ik — 1/Ck
4 re— 1 —Cp - ip Incorrect!

o) 40 = 2x20=
5 return (‘31;?’25 v a?'d) 2 coins

NB: Division = “floor”
EPCEITEC

S coins)

21

Pseudocode Exercise: Coin Change

Input: An amount of money M, and an array of d denom-
inations ¢ = (c1,¢2,...,cq), In decreasing order of value
(Cl > Ca > "'>Cd).

Output: A list of dintegers iy, o, . . . , 74 such that ¢y ¢; +cata+
-4 cqig = M, and i1 +i2 + - - - + 14 is as small as possible.

Tries every combination
Guaranteed to find optimal
Slow

EPCEITEC

22

Input: An amount of money M, and an array of d denom-
inations ¢ = (c1,¢2,...,¢q), in decreasing order of value
((31 = €2 >°°'>Cd).

Brute Force
Algorithm

Output: A list of dintegers i, 12, . . ., 74 such that cy7; +cota+
c+-+cqtq = M,and i1 +i2 + - - - + 14 is as small as possible.

BRUTEFORCECHANGE(M, c, d)

1 smallest NumberO fCoins <+ oo

2 for each (i1,...,iq) from (0,...,0) to (M/c1,...,M/cqa)
3 valueO fCoins «— Zﬁzl 15:Cr

4 if valueO fCoins = M

5 numberO fCoins «— Zﬁ: 1 R

6 if numberO fCoins < smallest NumberO fCoins

7 smallest NumberQO fCoins < numberQO fCoins

8 bestChange & (fi;d3)s<5%4) Guarantoed to find optma
9 return (bestChange) Slow

Spoiler: (There is a better solution: Stay tuned for Week 4)
EPCEITEC

Recursive Algorithms

The Towers of Hanoi puzzle, introduced in 1883 by a French mathematician,
consists of three pegs, which we label from left to right as 1, 2, and 3, and
a number of disks of decreasing radius, each with a hole in the center. The
disks are initially stacked on the left peg (peg 1) so that smaller disks are on
top of larger ones. The game is played by moving one disk at a time between
pegs. You are only allowed to place smaller disks on top of larger ones, and
any disk may go onto an empty peg. The puzzle is solved when all of the
disks have been moved from peg 1 to peg 3.

EDPCEITE:

Discs: - Y)l A

Moves: 0 Restart | Solve!

Minimum Mov

1 disc =1 move
2 discs = 3 moves (1-2, 1-3, 2-3)
3 discs = 7 moves (1-3, 1-2, 3-2, 1-3, 2-1, 2-3,1-3)

https://www.mathsisfun.com/games/towerofhanoi.html 24

Towers of Hanoi (3 disks)
7moves(1 -3, 1-2, 3-2, 1-3, 2-1, 2313)

Dlscs - ¥) u Moves: 0 Restaltl Solve'l

L1

Minimum Moves: 7)

B S -
Dlscs - A7 Moves: 3 | Restart | | Solve! |

411

Minimum Moves: 7)

1

S — —= “
' Discs: -'-\,!,“\A,‘ Moves: 5 | Restart | | Solvel |

Minimum Moves: 7 y

I — N
Discs:-\\v'H\A'l Moves: 7 | Restart | | Solvel

111

Minimum Moves: 7)

EPCEITEC

More generally, to move a stack
of size n from the left to the right
peg, you first need to move a
stack of size n = 1 from the left to
the middle peg, and then from
the middle peg to the right peg
once you have moved the nth disk
to the right peg.

To move a stack of size n = 1 from
the middle to the right, you first
need to move a stack of size n — 2
from the middle to the left, then
move the (n — 1)th disk to the right,
and then move the stack of n - 2
from the left to the right peg, and so
on.

https://www.mathsisfun.com/games/towerofhanoi.html 25

Towers of Hanoi: N disks

Discs: -|7| ‘A Moves: 0 _Restart | Solve!

&

© 2015 MathslsFun.com v0.92 Minimum Moves: | “

EICEITEC https://www.mathsisfun.com/games/towerofhanoi.html 26

fromPeg | toPeg | unusedPeg
1 2 3
Towers of Hanoi: N disks S 2
2 3 1
3 1 2
3 2 1

HANOITOWERS(n, fromPeg, toPeg)

1l ifn=1

2 output “Move disk from peg fromPeg to peg toPeg”
3 return

4 wunusedPeg «— 6 — fromPeg — toPeg

5

6

7

8 return

EPCEITEC https://www.mathsisfun.com/games/towerofhanoi.html 27

fromPeg | toPeg | unusedPeg
1 2 3
Towers of Hanoi: N disks S 2
2 9 1
3 1 2
3 p 1

HANOITOWERS(n, fromPeg, toPeg)

if n=1
output “Move disk from peg fromPeg to peg toPeg”
return

unusedPeg «— 6 — fromPeg — toPeg

HANOITOWERS(n — 1, fromPeg, unusedPeg)

output “Move disk from peg fromPeg to peg toPeg”

HANOITOWERS(n — 1, unusedPeg, toPeg)

return

O ON Ul = W=

EPCEITEC https://www.mathsisfun.com/games/towerofhanoi.html 2s

HANOITOWERS(n, fromPeg, toPeg)

ifn=1
output “Move disk from peg fromPeg to peg toPeg”
return

unusedPeg «— 6 — fromPeg — toPeg

HANOITOWERS(n — 1, fromPeg, unusedPeg)

output “Move disk from peg fromPeg to peg toPeg”

HANOITOWERS(n — 1, unusedPeg, toPeg)

return

Towers of Hanoi: 4 disks

O N ONU W

EPCEITEC https://www.mathsisfun.com/games/towerofhanoi.html 29

Towers of Hanoi: 4 disks

0

HANOITOWERS(n, fromPeg, toPeg)

1 ifn=1

2 output “Move disk from peg fromPeg to peg toPeg”
3 return

4 wunusedPeg — 6 — fromPeg — toPeg

5 HANOITOWERS(n — 1, fromPeg, unusedPeg)

6 output “Move disk from peg fromPeg to peg toPeg”

7 HANOITOWERS(n — 1, unusedPeg,toPeg)

8 return

/

~ /N N ~ N\~ .

EPCEITEC

https://www.mathsisfun.com/games/towerofhanoi.html 3o

Iterative Algorithms — Immortal Rabbits

A baby pair of rabbits takes the same time to mature

as a mature pair of rabbits takes to produce a new pair. /(%ﬁ
How many rabbits are there after N iterations? (%ﬁ i *‘w.
PS: rabbits cannot die! / : \\t&f- .

k &
& — o
S

EPCEITEC 1 pair 1 pair 2 pairs 3 pairs 5 pairs 8 pairs

1,1,sum of previous two, ...

32

Iterative Algorithms vs Recursive Algorithms

RECURSIVEFIBONACCI(n) FIBONACCI(n)
1 if n=1lorn=2 1 F, 1
2 return 1 2 F«1
3 else 3 fori<—3ton
4 a < RECURSIVEFIBONACCI(n — 1) 4 F,—F,_ 1+ F;,_»
5 b «— RECURSIVEFIBONACCI(n — 2) 5 return F,
6 return a + b : :
lterative: Fast (linear)

Recursive: Slow (exponential)

EPCEITEC 33

RECURSIVEFIBONACCI(n)

1 ifn=1orn=2

2 return 1

3 else

4 a «— RECURSIVEFIBONACCI(n — 1)
5 b <— RECURSIVEFIBONACCI(n — 2)
6 return a + b

Recursive: Slow
(exponential)

AY

In 3||n—4||n—41

N / \ /N /
~_~ ~_~ ~_~

A

|n—4| m— | in—ol

Algorithms

- Brute force : Try Everything, slow but always correct
» Recursive : To Solve for n, first solve for n-1

- |terative : Loop on something, can be faster

EPCEITEC

35

Fast vs Slow algorithms

* How many operations does an algorithm take as N increases?
* |s the relationship linear? Quadratic? Exponential?

* What is the upper limit of the running time of an algorithm as N increases?

EPCEITEC

36

Guess random number (up/down)

1ms / check
N =100
@ Simple search:
ﬁ' D:llj Foriin1toN
- .- If i == the number
——— ’ return i
Binary search:
Range-min = 1
V 5 Range-max = N
While ()
i = middle number of range
BINARY if i == the number; return |
SIMPLE SEARCH elsif i < number; Range-max=i;
SE ARCH elsif i > number; Range-min=i;

1¢¢ms 7m5

EPCEITEC

37

Guess random number (up/down)

SIMALE RINARY
~ SEARCH I SEARCH
100 ELEMENTS 100 rs | Foms ~15 times faster

- — e ows oww

??? Guess 7?7
1,000 000,000 ELEMENTS

EPCEITEC

38

Guess random number (up/down)

SIMALE RINARY
~ SEARCH I SEARCH
100 ELEMENTS 100 rs | Foms ~15 times faster
10,000 ELEMENTS -
1,000 000,000 ELEMENTS ~450ms ? ¢ ¥ ~15 times faster ?

EPCEITEC

39

Guess random number (up/down)

SIMALE RINARY
~ SEARCH I SEARCH
100 ELEMENTS 100 rs | Foms ~15 times faster

-_— e

bl e .
- —

1,000 000,000 ELEMENTS i1 Ja.-js | x ¥ 1 ~15-times-faster doesn’t make sense!

EPCEITEC

40

Guess random number (up/down)

SIMPLE BN ARy
~ SEARCH SEARCH
100 ELEMENTS 100 s "’ms
10,000 ELEMENTS A0 seconds 14w, o
_____________ t ~c— == e
1,000 000,000 ELEMENTS i1 Jo.-js 32 ws
Linear Logarithmic
1 ms/element 1 ms/log2(element)
O(n) O(log n)

O)

T w T
Bi¢ O

OPERAT
EPCEITEC

N NUMBER OF

oedt (Worst case scenario)

41

A function f(x) is “Big-O of g(z)”, or O(g(z)), when f(z) is less than or
equal to g(x) to within some constant multiple c. If there are a few points
x such that f(x) is not less than ¢ - g(x), this does not affect our overall
.| understanding of f’s growth. Mathematically speaking, the Big-O notation
deals with asymptotic behavior of a function as its input grows arbitrarily
large, beyond some (arbitrary) value .

Definition 2.1 A function f(z) is O (g(z)) if there are positive real constants c “
and xq such that f(x) < cg(x) for all values of x > .

' | For example, the function 3z = O(.222), butat z = 1, 3z > .222. However,
for all x > 15, .22% > 3z. Here, zy = 15 represents the point at which 3z ||
is bounded above by .2z?. Notice that this definition blurs the advantage
gained by mere constants: 522 = O(z?), even though it would be wrong to
say that 5z? < z2.

‘| Like Big-O notation, which governs an upper bound on the growth of a
function, we can define a relationship that reflects a lower bound on the
growth of a function.

{ | Definition 2.2 A function f(z) is Q (g(x)) if there are positive real constants c
and x such that f(x) > cg(z) for all values of x > x.

If f(z) = Q(g(x)), then f is said to grow “faster” than g.
Now, if f(z) = O(g(x)) and f(x) = Q(g(x)) then we know very precisely
how f(x) grows with respect to g(z). We call this the © relationship.

Definition 2.3 A function f(x) is © (g(x)) if f(z) = O(g(x)) and f(x) =
Q2 (g(2))-

e O(logn), also known as log time. Example: Binary search.

CO m m O n B | g -OS e O(n), also known as linear time. Example: Simple search.

e O(n *logn). Example: A fast sorting algorithm, like quicksort.

e O(n2). Example: A slow sorting algorithm, like selection sort.
Big O Notation

e O(n!). Example: Areally slow algorithm, like the traveling salesperson.

0O(n?)
"Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city and returns to the origin city?"
O(n)
BRUTE -FORCE DYNAMIC '
. o) ALGORITHMS: 0(1)
= . O (n?.zﬂ)
STILL WORKING
ON YOUR ROUTE?
%
4 O(1)
-\
. SHUT THE
Input Size —» HEW UR

https://www.freecodecamp.org/news/big-o-notation-simply-explained-with-illustrations-and-video-87d5a71c0174/

EPCEITEC 43

Week 1 Summary

| know what an algorithm is
| can write pseudocode
| understand

- Brute force

- lterative

- Recursive

Big-O = how slow

A GUIDE TO THE MEDICAL DIAGNOSTIC AND TREATMENT
ALGORITHM USED By 1BM's LJATSON COMPUTER SYSTEM

START NI MEPSURE. PATIENT?

WNEEI_:JTS HEIGHT AND WEIGHT .
G

¥
CONSULT STANDARD
HEIGHT/WEIGHT CHART,

SURGICALLY ADJUST
PATIENT To MATCH

P | o RINSE PATIENT LT
MEDICAL ™ {6RAFTs [sm oE FPTENT]
@B'E‘TL{;‘,,"QEER CHECK WHETHER wa} (RENOVE ORGANS)
00| T o \ENVFONHENT IS SANE T
6000 REQUEST]
RErove EASORE VITAMIN D (oRoi Do

EXTRA LIMBS [0

IGNORE [SUBSTANTIAL
5o —{ L0552 ADDRESS s
‘ SUBDUE CHANGED?
RmOVEtQNLE'DN PATIENT NO
cr MASSAGE|__(PATIENT
o (ST (BRI CRERT o
0-8
9

ADMIT FOR OBSERVATON)

(ONSULT WJITH
HUMAN DOCTOR

1S FLUID

ASK PATIENT T
COMING 00T |YES s
DissECT DocoR) \OF PATENT RATE PANLEVEL) ([ASER EXE REFOVAL)
fOR PARTS RESPONSE

PPLY PERFORM
@?ﬁ)gﬂ% To%RNIQUEF AUTOPSY

(DISCHARGE. PATIENT)

Panos Alexiou

panagiotis.alexiou@ceitec.muni.cz

