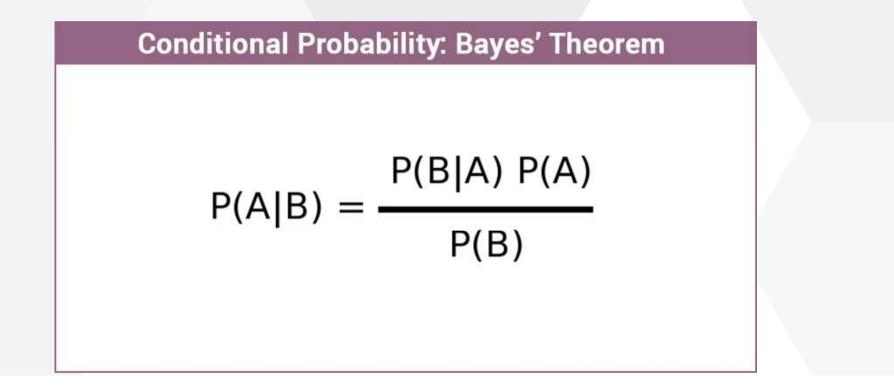
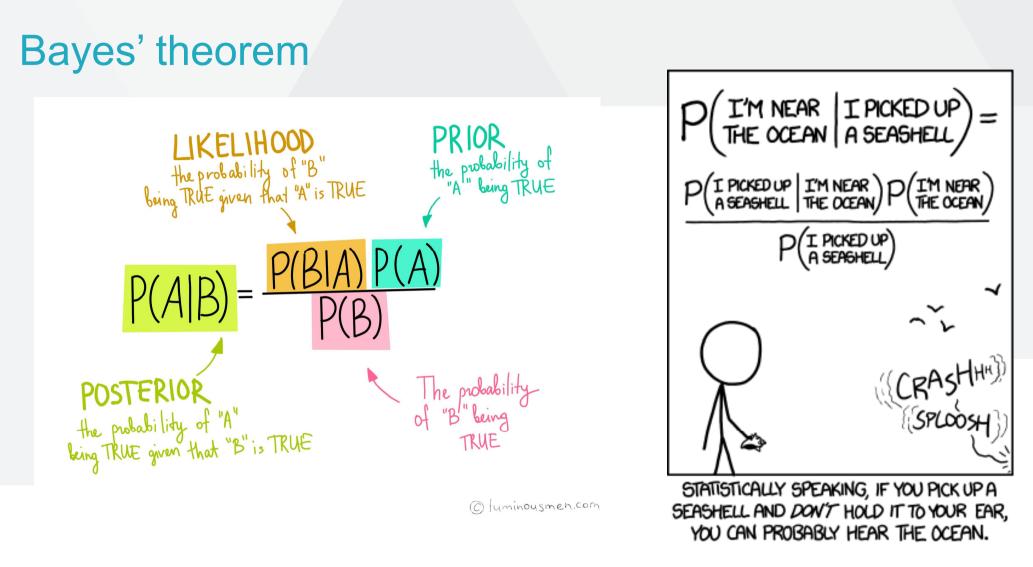
Central European Institute of Technology BRNO | CZECH REPUBLIC

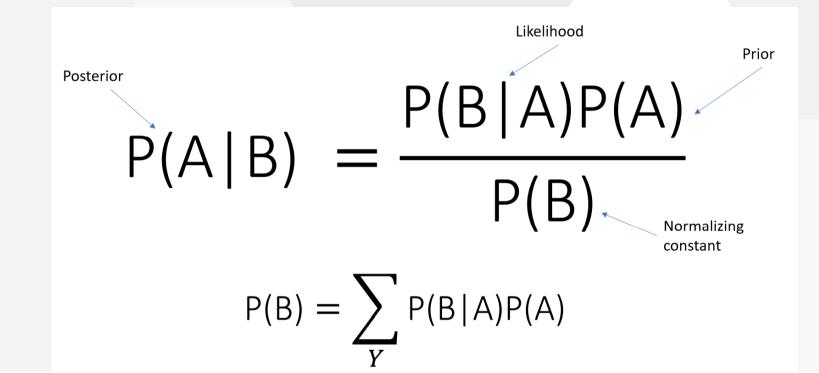
Introduction to Bioinformatics (LF:DSIB01)

Week 8 : Bayesian modeling

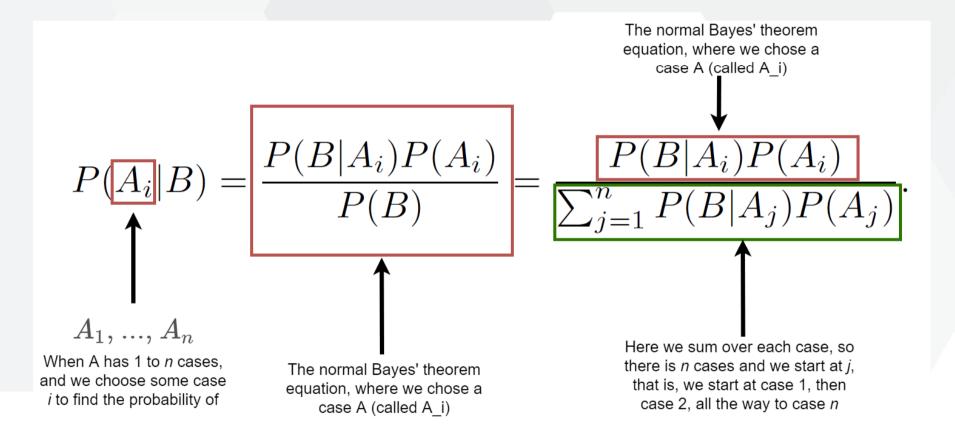




Bayes' theorem



Bayes' theorem



- You might be interested in finding out a patient's probability of having liver disease if they are an alcoholic.
 - Past data tells you that 10% of patients entering your clinic have liver disease. P(A) = 0.10.
 - Five percent of the clinic's patients are alcoholics.
 - Among those patients diagnosed with liver disease, 7% are alcoholics.

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

- You might be interested in finding out a patient's probability of having liver disease if they are an alcoholic.
 - Past data tells you that 10% of patients entering your clinic have liver disease. P(A) = 0.10.
 - Five percent of the clinic's patients are alcoholics.
 - Among those patients diagnosed with liver disease, 7% are alcoholics.

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

- P(A|B) = (0.07 * 0.1) / 0.05 = 0.14
- If the patient is an alcoholic, their chances of having liver disease is 0.14 (14%). This is a large increase from the 10% suggested by past data.

- What is the probability that a woman has cancer if she has a positive mammogram result?
 - One in 1000 of women have breast cancer.
 - 98 percent of women who have breast cancer test positive on mammograms.
 - 1 percent of women without breast cancer have a positive mammogram.

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A) + P(B \mid \neg A) \cdot P(\neg A)}$$

- What is the probability that a woman has cancer if she has a positive mammogram result?
 - One in 1000 of women have breast cancer.
 - 98 percent of women who have breast cancer test positive on mammograms.
 - 1 percent of women without breast cancer have a positive mammogram.

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A) + P(B \mid \neg A) \cdot P(\neg A)}$$

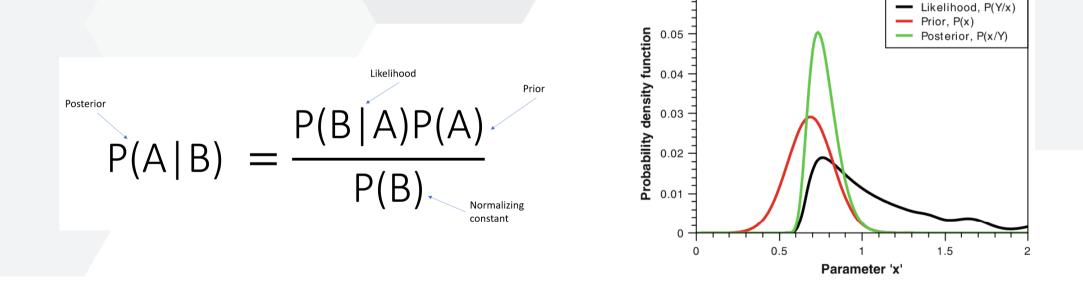
- P(A)=0.001, P(-A)=0.999, P(B|A)=0.98, P(B|-A)=0.01
- (0.98 * 0.001) / ((0.98 * 0.001) + (0.01 * 0.999)) = 0.0893
- The probability of a woman having cancer, given a positive test result, is ~9%.

Bayes' theorem - applications

- Bayesian statistics
 - Data modeling
 - Parameter estimation
- Bayesian networks
 - Naïve Bayesian classifier
 - Dynamic Bayesian networks
 - Hidden markov models
- Can be used in many different context
 - Neural networks

Bayesian statistics

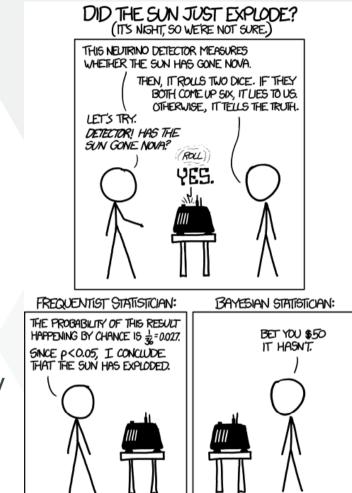
 Bayesian statistical methods use <u>Bayes' theorem</u> to compute and update probabilities after obtaining new data.



0.06

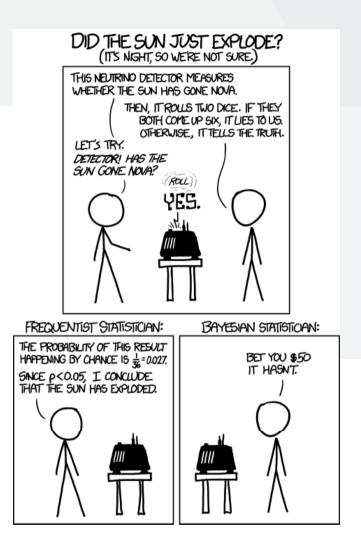
Bayesian vs. frequentists statistics

- Bayesian interpretation of probability where probability expresses a degree of belief in an event
- In the Bayesian view, a probability is assigned to a hypothesis, whereas under frequentist inference, a hypothesis is typically tested without being assigned a probability.
- The frequentist interpretation that views probability as the limit of the relative frequency of an event after many trials



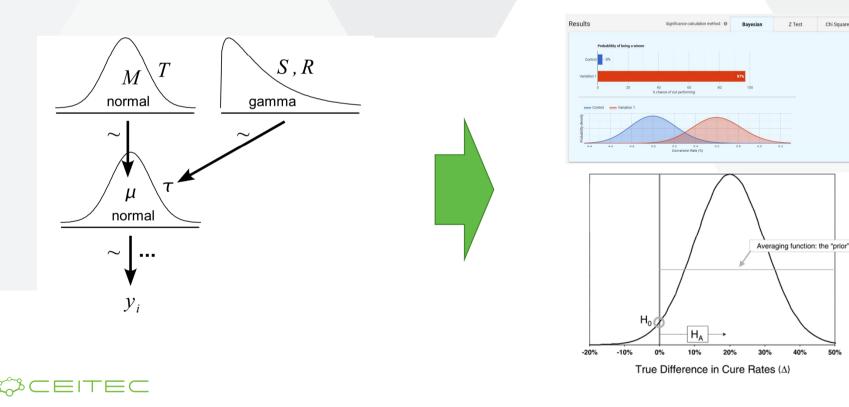
Bayesian vs. frequentists statistics

- Two main sticking points
 - Prior believe
 - Small amount of data situations



Bayesian statistics – parameter estimation

- Data from some probability distribution function (PDF)
- The goal is to get PDF of the parameter of this function

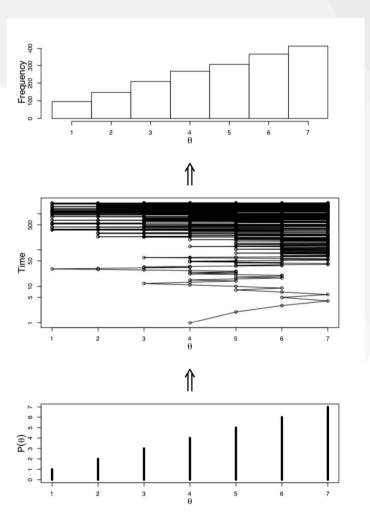


Chi Squarec

50%

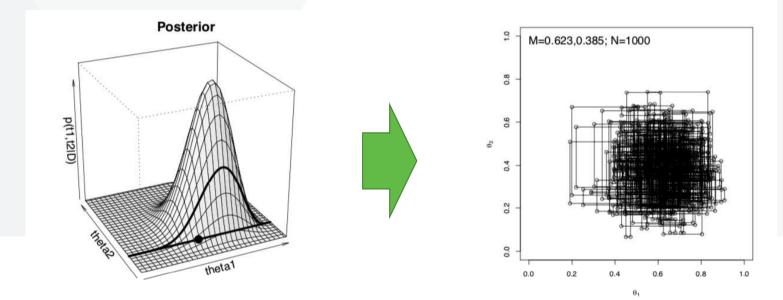
PDF estimation with sampling

- Impossible (very hard) to compute analytically
- Markov chain Monte Carlo (MCMC)
 - This allowed usage of Bayesian statistics



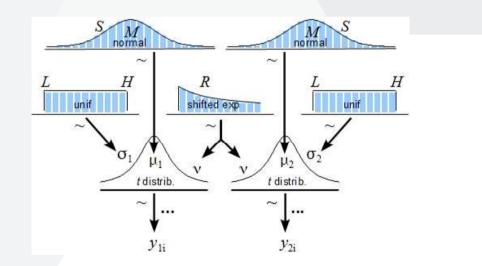
PDF estimation with sampling

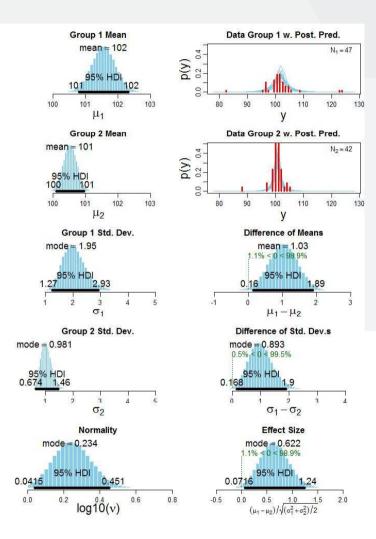
- Impossible (very hard) to compute analytically
- Markov chain Monte Carlo (MCMC)
 - This allowed usage of Bayesian statistics



Bayesian statistics - example

• Student t-test

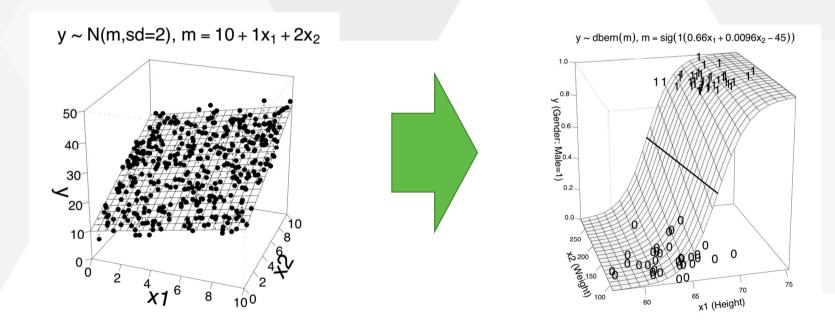




Bayesian statistics – Generalized linear model

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

 $y = \operatorname{sig}(\beta_0 + \beta_1 x_1 + \beta_2 x_2)$



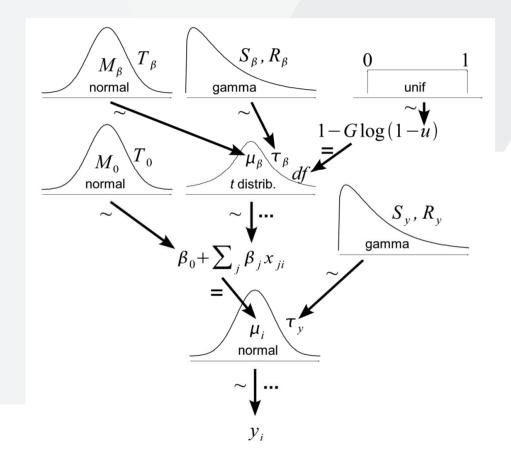
Bayesian statistics – Generalized linear model

y Scale Type	Link Function	pdf
metric	identity	normal
dichotomous	logistic	Bernoulli
ordinal	thresholded cumulative normal	categorical
count	exponential	Poisson

Bayesian statistics – Generalized linear model

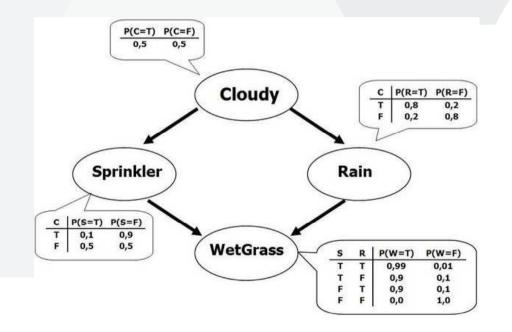
Response variable type	Explenatory variable type	Example test type
Categorical	Categorical	Fisher test
Categorical (two groups)	Continuous	t-test
Categorical (multiple groups)	Continuous	ANOVA
Continuous	Continuous	Linear regression
Continuous	Categorical (two groups)	Logistic regression

Bayesian statistics – hierarchical models

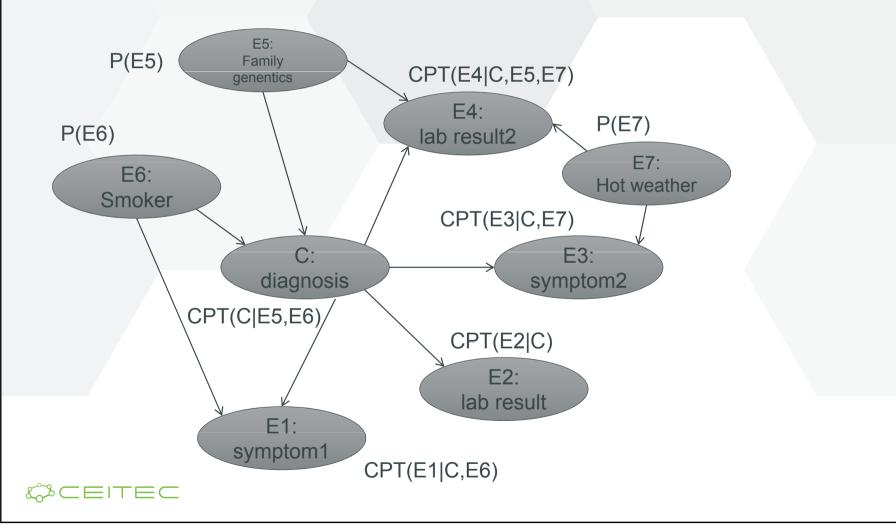


Bayesian networks

- Diracted acyclic probabilistic graph
- Represents a set of variables and their conditional dependencies

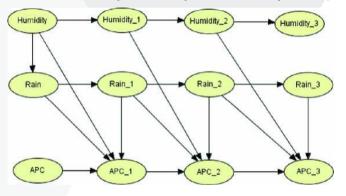


Bayesian networks - example



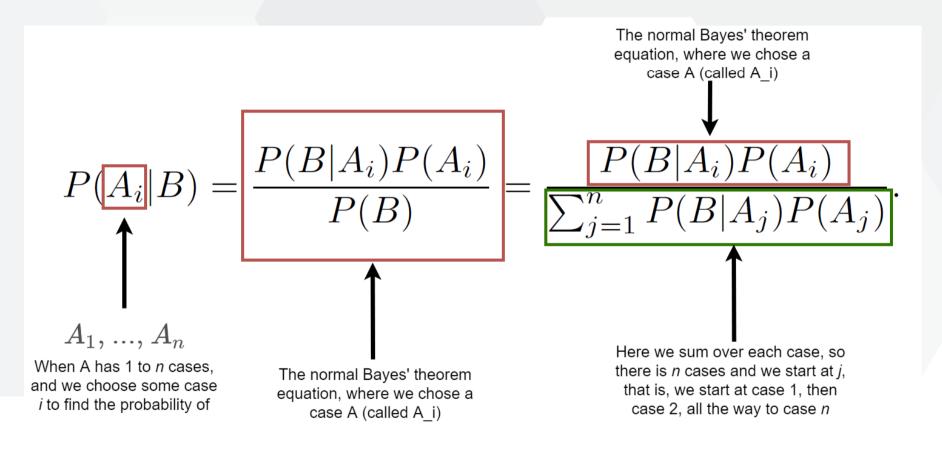
Dynamic Bayesian networks

• Hidden markov models (hmm) are a (simple) special case of DBN

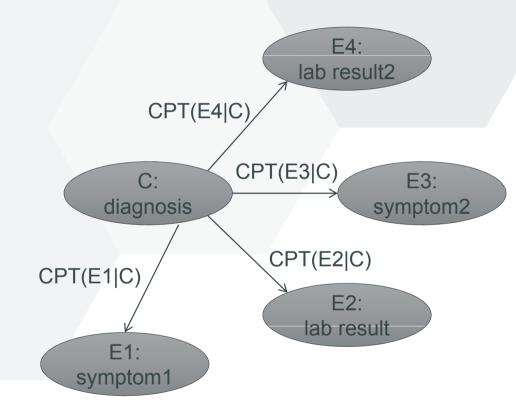


$$(H_1) \longrightarrow (H_2) \longrightarrow (H_3) \longrightarrow \cdots \longrightarrow (H_7)$$
$$(O_1) \qquad (O_2) \qquad (O_3) \qquad \cdots \qquad (O_7)$$

Naive Bayesian Classifier



Naive Bayesian Classifier – simple example



Naive Bayes classifiers - properties

- highly scalable, requiring number of parameters linear in the number of variables
 - curse of dimensionality
- training can be done by evaluating a closed-form expression which takes linear time
- Assumption of independence
 - Simple model
- Successfully being used
- Best if you have poor understanding of the problem.

Naive Bayesian Classifier - example

- Pancreatic tumor classification based on miRNA levels
- miRNA sequencing from plasma samples
 - ~300 miRNAs
- Select ~20 miRNAs to classify tumor types

