Foundation course - PHYSICS

Lecture 6-2: Momentum; rotational motion
Dynamics of solid bodies

Center of mass
Linear momentum
Impulse

Rotational motion
Torque

Angular momentum

Nada Spackova spackova@physics.muni.cz



Center of mass

System of two particles:
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This is the center of mass

of the two-particle system.
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) The center of mass of a

% system of particles is the point
\ that moves as though:
* « all of the system’s mass
were concentrated there
 all external forces were
applied there

The center of _ m;x, +m,Xx,

" X
mass position: com rn1 + m2
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Center of mass

The center of mass (COM):
- all of the system’s mass were concentrated there
« all external forces were applied there

The center of mass position:

X p—
com
_-}.1
B xcnm >
‘ cOIn
- X(). -

Disk S\

u)}ns

/

/ - LTHNJ

|
I
|
|
|
|
\
\
\
\
|
\
\
\
\
|
\
l
|
_+— Composite plate

|
|
|
|
l \
| \
/ | | \
[ | |
f'l | | \'II
| |
I' I I |
T |
|! | comg| | .'l
\ | | |
\ | Lol
\ | | |
Y | | |
(c) ™ | Il
| | |
| | |
| | |
| |
[ I
[ T T
[ Lo
[ Lo
[ Lo
[ I
(d) *—o ;
comg  comg (()m‘,
Disk particle-/ “Plate particle

Cd’mp031te particle



Linear momentum

Linear momentum of a particle is a vector quantity that is defined as:

p=myv

Newton’s second law expressed in terms of momentum:

d
Fnet:d_ltj

System of two and more particles:

P=ptp,=myv, +mv,
P — M vcom Fnet = Macom

M is a total mass of the system

dv
F =m—=ma
net dt

The internal forces of the
explosion cannot change
the path of the com.




Collision and impulse

The impulse in the collision Collision:
is equal to the area under .
the Curve. The extern.al fo_rce acting
F on a body is brief, has
Y large magnitude, and
suddenly changes the

body’s momentum

A

Impulse:
i The average force gives The impulse on an object is
the same area under the
curve. the product of the average
K force on an object and the
time interval over which it

; Y acts.
|
I
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Impulse-momentum theorem

Av
At

Newton’s second law of motion: F = ma=m

FAt=mAv=mv,—mv,=p,—p,=Ap

Impulse-momentum theorem: J=F,,At=Ap

The impulse on an object is equal to the change in its momentum.

« alarge impulse causes a large change in momentum
 the large impulse could result either from a large F acting over a short
At or from a smaller F acting over a longer At

Example: Air bags in cars reduce injuries by making the force on an passenger
less, by increasing the time interval of force acting and by spreading the force over
a larger area of the person’s body.



Conservation of momentum

Collision of two balls (closed and isolated system):

Fpoo=—Fq (FAt)DC:_<FAt)CD

Pci— Pci — _(pr_pDi) Pcst Ppr = Peit Poi

A system with conserved mass = closed system
A system with the zero net external force (only internal
forces are included) = isolated system

Law of conservation of momentum:
Momentum of any closed, isolated system
does not change.

P = constant

Vs

Pci

Before Collision (initial)

Poi

During Collision

Pct

After Collision (final)

Pot




Checkpoint question:

An initially stationary device lying on a frictionless floor explodes into two pieces,
which then slide across the floor. One piece slides in the positive direction of an x axis.
(a) What is the sum of the momenta of the two pieces after the explosion? (b) Can the
second piece move at an angle to the x axis? (¢c) What is the direction of the momentum
of the second piece?



Collisions: momentum and kinetic energy

Closed and isolated system:

Collision is elastic;

Collision is inelastic:

momentum of the system is constant

kinetic energy of the system is conserved

kinetic energy of the system is not conserved

Inelastic collisions in one dimension

Here is the generic setup
for an inelastic collision.

PiitDPyi=PirT Py

Body 1 Body 2
. Vii Vo,
Before > —>
m "
. Y1f 'of
After —_— —
m g

myV;;+m,v,;=mV, +M,V,,

In a completely inelastic
collision, the bodies
stick together.

.
) V1 R}
Before —_—> v, =0

m Mo

Projectile  Target

L”
After —

m 1 + m 9

mvy, = (ml + mz)V



Collisions: momentum and kinetic energy

Elastic collisions in one dimension

Here is the generic setup Pii + Py — plf + p2f

for an elastic collision with

a stationary target. Ekli + EkZi — Eklf + Esz
Before Vi 1

—_—D =0

. )
My Mg

Projectile TEll'gL‘t

After | % Collisions in two dimensions
Afte > >

my g

mvV,;=mvV, +m,v,,

1 » 1 | 2
§m1V1i — Emlvlf +§m2V2f




Circular motion

- Average velocity: V= ﬂ
» g y: At

Av
At

Average acceleration: a

2

: : 1%
Centripetal acceleration: g =—
r

Period of revolution T:

 time needed for the object to make one complete revolution

 during this time the object travels a distance equal to the circumference
of the circle (2rr)
2 2
2nr _(2rr/T)” _ 4x’r

V:T a.— r T T2




Centripetal force

Centripetal force
« because the acceleration of an object is always in the direction of the net
force acting on it, the net force must be toward the center of the circle

Newton’s second law for circular motion

FC: mda, =) =

Examples:
« Earth circling the Sun — F_is Sun’s

gravitational force
« Hammer thrower swings the hammer — F_is

the tension in the chain attached to the ball




Angular displacement

Fraction of one revolution can be measured:
 in degrees (one complete revolution is 360°)
 in radians (one complete revolution is 211)

Radian is related to the ratio of the circumference
of a circle to its radius.

Measuring distance:
e one complete revolution ... x = 2rtr
 generally foranangle 8... x=0r

Radians are dimensionless.
Clockwise rotation is negative, counterclockwise
rotation is positive.

Angular displacement 0: X
» the change in the angle if an object 0=—
rotates r




Angular velocity

* is defined as and angular displacement divided by the time taken
to make the angular displacement

z 2z 2z
Axis Axis Axis

Average angular velocity w: Spinle i
W= —A 0 \\ (1
At | 1‘%-/

Instantaneous angular velocity equals the slope

N : Direction of angular velocity:
of a graph of angular position versus time.

the right-hand rule

Linear velocity of a point at a distance
r from the axis of rotation: A

speed |

C_Ax_rAe _ a0 “ul
At~ At

Earth’s angular velocity



Angular acceleration

Angular acceleration is the change in angular velocity divided by the
time required to make the change

_ Angular frequency:
Average angular acceleration a: number of complete revolutions made

by an objectin1s

_Aw
*- A—t f= W
2T
Linear and angular measurements
Quantity Linear Angular Relationship
displacement x (m) 0 (rad) X=rb
velocity v (m/s?) w (rad/s?) V=rw

acceleration a (m/s?) a (rad/s?) a=ra



Acceleration

Linear speed: V= Wr

The velocity vector is
always tangent to this
y circle around the

The acceleration always
has a radial (centripetal)
y  component and may have

Circle . rotation axis. a tangential component.
traveled by P g
ay
: N
T ,
| X | X
Rotation
Tangential acceleration a,: Radial acceleration a :
v2
— 2
a. = ar a=——=—0r
r




Kinetic energy of rotation

1
E, = Em V. msssss=l-  This equation is valid only for a particle

Rigid body is a collection of particles with different speeds:

Ek—lm v1+1m2v2 Z mv
2 2

E,= Z %miviz = Z %mi<mri)2 - E(Z mry) o

Moment of inertia I:

I=> mr Rotational kinetic energy:
1
The moment of inertia characterizes Ek — E ITw
the resistance to rotation

Moment of inertia of a point mass: [=m r2



The moment of Inertia

%\1&
Solid cylinder

Hoop about “xrmulclr cylinder g
(or ring) cl.l)()llt (or disk) about
\ central axis

central axis
, ' central axis
R \/

I= MR? (a) I=$M(RY + R3) (%) I= IMR2 (¢)
Axis Axis Axis
Solid cylinder Thin rod about _ Solid sphere
(or disk) about axis through center about any
central diameter perpendicular to diameter
length 9R
7L

| | r
R /
S S 1 LYy - 9 S
I=MR? + LML? (d) I= 5MIL2 () I= IMR? o
Axis Axis Axis
_ Thin T Hoop about any Slab about
spherical shell R diameter perpendicular
about any ' axis through
9R diameter Y center
. & B I~ _,__,./
I= 3MR? (&) 1= $MR? (&) M (a® + b?) )

h...distance between parallel axis and
axis through the center of mass

N

Parallel-axis theorem: I=1__+ Mh



Checkpoint question:

The figure shows three small spheres that rotate
about a vertical axis. The perpendicular distance be-
tween the axis and the center of each sphere 1s given.
Rank the three spheres according to their rotational
inertia about that axis, greatest first.

Rotation
axis




Checkpoint question:

The figure shows a book-like object (one side is
longer than the other) and four choices of rotation
axes, all perpendicular to the face of the
object. Rank the choices according to the rotational
inertia of the object about the axis, greatest first.

L _ _[]

(1) (2)

(3) (4)



Torgue

How to open a door most easily — how to get the most effect from the
least force

No effect Some effect Maximum effect

Application of the force farthest
from the hinges is most effective.

i >
Application of the force at an angle
perpendicular to the door is most
/ -— effective.

No effect Some effect Maximum effect



Torgue

Torgue T:

» quantity characterizing the ability of the force F to rotate the body
- it depends on the magnitude of F, and how far from O the force Is

applied

7 Torque is:

F * IS a vector

Pﬁf’/ » is a vector product of r and F
P

e measured in units N.m

Rotation
axis

B T=rXF

The torque due to this force
causes rotation around this 7T =r Fsin ¢
axis (which extends out
toward you).




/ Rotation
ax15

But actually only the tangential
component of the force causes
the rotation.

Torque

F
T =rFsing /ﬂ
/ iy . -
/ Rotation y nge of R
. action of F
axis
M()_r)ne rm
of F

You calculate the same torque
by using this moment arm
distance and the full force
magnitude.

Two equivalent ways of computing the torque:

7 =(r)(Fsing)=

v =(rsing)(F)=r F




Checkpoint question:

The figure shows an overhead view of a meter stick that can pivot about the dot at the
position marked 20 (for 20 cm). All five forces on the stick are horizontal and have the

same magnitude. Rank the forces according to the magnitude of the torque they pro-
duce, greatest first.

Pivot point

0 20 40
ﬁ
1\{1 Iy

I Fs




Torgue

Direction of torque:
 clockwise rotation = torque is negative
« counterclockwise rotation = torque is positive

When several torques act on a body, the net torque is the sum of the
Individual torques.

Torque is a vector and a vector product of r and F: T=rXF

NEWton’S Second IaW for rotation: The torque due to the tangential

component of the force causes
an angular acceleration around
the rotation axis.

F.,.=ma == |7 =1«

net Y

t=F,r=mar=m(ar)r= (mr’)a=1Ia

Rod
6

0] . .
Rotation axis



Finding net torque

Torque

Short lever arm requires to exert
big force

Long lever arm requires to exert
less force

T,=T,+T, System is in

r=rand F. = F equilibrium and

P2 ' _2  does not rotate
F F, 1,=Fr,—Fr,=0




Angular momentum

r=Io=139 TAt=TAw =T~ o,
At
Angular momentumL: | L=1]w units: 1 kg.m?.s*

The angular momentum is defined as a product of the object’'s moment
of inertia and the object’s angular velocity.

Corresponding variables:
Translational motion Rotational motion

Position X Angular position )
Velocity v Angular velocity w
Acceleration a Angular acceleration o
Mass m Moment of inertia /
Force F Torque T
Linear momentum p Angular momentum L



Conservation of angular momentum

An isolated system’s initial angular momentum is equal to its final angular
momentum.

L;,= Lf L =1w .. isconstant

L = constant Increased angular velocity is accompanied
by a decreased moment of inertia.

angular velocity: w, < w,
Moment of inertia can be decreased by
decreasing the radius of rotation

2
I~r

The direction of rotation of a spinning
object can be changed only by applying
a torque.

Spinning slowly Spinning quickly
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