## Foundation course - PHYSICS

### Lecture 7-2: Harmonic motion

- simple harmonic motion
- velocity and acceleration of oscillations
- energy of oscillations
- pendulums
- damped and forced oscillations







#### Frequency *f*:

 number of oscillations that are completed each second

x = 0

$$f = \frac{1}{T}$$

 $x = A \cos \omega t$ 

#### Period T:

• time for one complete oscillation (or cycle)

m

**Displacement** *x*:

$$x(t) = x_m \cos(\omega t + \phi)$$

t = 0 $x_i = A$ 

 $v_i = 0$ 

Displacement  
at time t  
Phase  

$$x(t) = x_m \cos(\omega t + \phi)$$
  
Amplitude Time  
Angular Phase  
frequency constant  
or phase  
angle

Angular frequency  $\omega$ :

$$\omega t + 2\pi = \omega (t + T)$$

$$\omega T = 2\pi$$
$$\omega = \frac{2\pi}{T} = 2\pi f$$

After one period *T* the displacement *x* must return to its initial value: x(t) = x(t + T) for all *t* 

### Amplitude $x_m$ :

- maximum displacement
- positive constant whose value depends on how the motion was started
- displacement x varies between  $\pm x_m$  (cosine varies between  $\pm 1$ )



### Phase (ωt + Φ):

- angular frequency  $\omega$
- phase constant (phase angle) Φ:
  - depends on the displacement and velocity of the particle at time t = 0





### Example:

A particle undergoing simple harmonic oscillation of period T is at  $-x_m$  at time t = 0. Is it at  $-x_m$ , at  $+x_m$ , at 0, between  $-x_m$  and 0, or between 0 and  $+x_m$  when (a) t = 2.00T, (b) t = 3.50T, (c) t = 5.25T?

# Velocity



#### **Displacement** *x*:

$$x(t) = x_m \cos(\omega t + \phi)$$

Velocity: 
$$v_x(t) = \frac{dx}{dt}$$

$$v_x(t) = -\omega x_m \sin(\omega t + \phi)$$

### Acceleration



**Displacement x:**  $x(t) = x_m \cos(\omega t + \phi)$ 

### Velocity: $v_x(t) = -\omega x_m \sin(\omega t + \phi)$

Acceleration: 
$$a_x(t) = \frac{dv_x}{dt}$$

$$a_x(t) = -\omega^2 x_m \cos(\omega t + \phi)$$

$$a_x(t) = -\omega^2 x(t)$$

Acceleration is proportional to the displacement but opposite in sign

### Velocity and acceleration



## The force law for harmonic motion



#### Linear harmonic oscillator

 $F_x$  is proportional to x rather than to some other power of x

### Example:

Which of the following relationships between the force F on a particle and the particle's position x implies simple harmonic oscillation:

- (a) F = -5x, (b)  $F = -400x^2$ ,
- (D)  $F = -400x^{-1}$
- (c) F = 10x, (d)  $F = 3x^2$ ?

#### **Example:** simple harmonic oscillator

A block whose mass *m* is 680 g is fastened to a spring whose spring constant *k* is 65 N/m. The block is pulled a distance x = 11 cm from its equilibrium position at x = 0 on a frictionless surface and released from rest at t = 0.

(a) What are the angular frequency, the frequency, and the period of the resulting motion?(b) What is the amplitude of the oscillation?

(c) What is the maximum speed  $v_m$  of the block and where is the block when it has this speed?

(d) What is the magnitude  $a_m$  of the maximum acceleration of the block?

(e) What is the phase constant  $\phi$  for the motion?

(f) What is the displacement function x(t) for the spring – block system?

# Energy of harmonic oscillator

The energy of a linear oscillator transfers back and forth between **kinetic energy**  $E_k$  and **potential energy**  $E_p$ , while the sum of  $E_k$  and  $E_p$  (= mechanical energy E of the oscillator) remains constant



# Energy of harmonic oscillator

Potential energy  $E_{p}$ :

$$E_{p} = \frac{1}{2} k x^{2} = \frac{1}{2} k x_{m}^{2} \cos^{2}(\omega t + \phi)$$

Kinetic energy *E*<sub>k</sub>:

$$E_{k} = \frac{1}{2}mv^{2} = \frac{1}{2}kx_{m}^{2}\sin^{2}(\omega t + \phi)$$

we used substitution 
$$\omega^2 = \frac{k}{n}$$

**Mechanical energy** *E*:

$$E = E_p + E_k = \frac{1}{2} k x_m^2$$

The mechanical energy of a linear oscillator is constant and independent of time

### Example:

In the figure, the block has a kinetic energy of 3 J and the spring has an elastic potential energy of 2 J when the block is at x = +2.0 cm.

(a) What is the kinetic energy when the block is at x = 0?

(b) What is the elastic potential energy when the block is at x = -2.0 cm?

(c) What is the elastic potential energy when the block is at  $x = -x_m$ ?



**Example:** kinetic and potential energy of simple harmonic oscillator

The block has mass m = 2.7 kg and oscillates at frequency f = 10.0 Hz and with amplitude  $x_m = 20.0$  cm.

(a) What is the total mechanical energy E of the spring – block system?

(b) What is the block's speed as it passes through the equilibrium point?

## Angular harmonic oscillator

**Restoring torque** 

### **Torsion pendulum**



# Simple pendulum

### Simple pendulum:

 consists of a particle of mass *m* (called the *bob* of the pendulum) suspended from one end of an unstretchable, massless string of length *L* that is fixed at the other end



# Simple pendulum

Restoring torque:

 $\tau = -L(F_g \sin \theta)$  $I \alpha = -L(mg \sin \theta)$ 

*I*...moment of inertia,  $\alpha$ ...angular acceleration

We assume the angle  $\theta$  is small: then sin  $\theta \approx \theta$ 

$$\alpha = -\frac{mgL}{I}\theta$$

It is similar to the equation:  $a_x(t) = -\omega^2 x(t)$ 

Simple pendulum swinging through only <u>small</u> <u>angles</u> is approximately <u>simple harmonic</u> <u>oscillator</u>

Period of swinging:



Period of the simple pendulum swinging is not dependent on the mass of the bob



All mass of the simple pendulum is concentrated in the bob:

 $I = m L^2$ 

$$T = 2 \pi \sqrt{\frac{L}{g}}$$

# Physical pendulum

Period of swinging of the physical pendulum:



*I* is not simply  $mL^2$  because it depends on the shape of the physical pendulum, but it is proportional to *m* 

The physical pendulum does not swing if it pivots at its center of mass

This component brings the pendulum back to center.





The physical pendulum that oscillates about a given point O with period T is a simple pendulum of length  $L_o$  with the same period T – the point at distance *L*<sub>o</sub> is called the **center of oscillation** 

### Example:

Three physical pendulums, of masses  $m_o$ ,  $2m_o$ , and  $3m_o$ , have the same shape and size and are suspended at the same point. Rank the masses according to the periods of the pendulums, greatest first.

### Simple harmonic motion and uniform circular motion

Simple harmonic motion is the projection of uniform circular motion on a diameter of the circle in which the circular motion occurs.



# **Damped oscillations**





Angular frequency of a damped oscillator:

$$\omega = \sqrt{\omega_0 - \left(\frac{b}{2m}\right)^2}$$

# Forced oscillations and resonance

- free oscillations
  - *natural* angular frequency  $\omega$  causing the free oscillation
- driven (forced) oscillations
  - angular frequency  $\omega_d$  of the external driving force causing the driven oscillations
- the system oscillates with angular frequency  $\omega_d$
- the velocity amplitude is greatest when  $\omega_d = \omega$
- the amplitude x<sub>m</sub> of the system is (approximately) greatest under the same condition.



 $\omega_d = \omega$ 

...this condition is called **resonance**