FACTORS INFLUENCING DRUG EFFECT. ADVERSE EFFECTS. DRUG-DRUG INTERACTIONS. DRUG DEVELOPMENT.

FACTORS INFLUENCING DRUG EFFECT

- RELATED TO THE DRUG
- RELATED TO THE PATIENT
- RELATED TO BOTH (DRUG AND PACIENT)

FACTORS RELATED TO THE DRUG

- PHYSICS AND CHEMICAL PROPERTIES
 - MOLECULE SIZE, CHEMICAL CONFIGURATION, WEAK ACID/BASE, LIPOPHILICITY...
- Drug dosage form
- FOOD
 - LIPIDS TEND TO SLOW DOWN INTESTINAL ABSORPTION
 - DRUG+ION COMPLEX FORMATION
 - PH CHANGES

FACTORS RELATED TO THE PACIENT

- $1. \overline{\mathsf{AGE}}$
- 2. SEX
- 3. BODY WEIGHT
- 4. CIRCADIAN RHYTHMS
- 5. PATOLOGICAL CONDITION
- 6. GENETIC FACTORS

1. AGE

- CHILDREN
 - Dose adjustment dependent on BW or body surface area
 - NEWBORNS INMATURE LIVER AND KIDNEY PROCESSES, LEAKY BBB
- SENIORS
 - POLYMORBIDITY, POLYPRAGMASY
 - \uparrow T_{1/2} OF ELIMINATION
 - PHARMACODYNAMICS DIFFERENT TARGET SENSITIVITY –
 OFTEN PARADOXICAL AND HYPERERGIC REACTIONS
 - ⇒ ↓ DOSING

2. SEX

- WOMENT TEND TO EXPERIENCE STRONGER EFFECTS
- SENSITIVITY TO DRUGS ACTING IN THE BRAIN IS ALTERED BY MENSTUAL CYCLE / MENOPAUSE
- PREGNANCY AND BREAST FEEDING

3. BODY WEIGHT

- DOSES ARE USUALLY CALCULATED FOR MALE PACIENT WITH 70 KG OF BW
- BODY COMPOSITION
- BETTER FITTING DOSE PER METER SQUARE
 OR BW

4. CIRCADIAN RHYTHMS

- BIOLOGICAL RHYTHMS OF PHYSIOLOGICAL FUNCTIONS (GLUCOCORTICOIDS, ETC.)
- CHRONOPHARMACOLOGY,
 CHRONOTHERAPY

5. PATHOLOGICAL CONDITION

- IMPAIRMENT OF ORGANS RESPONSIBLE FOR METABOLISM OR EXCRETION (LIVER, KIDNEY)
 - ⇒ DOSE ADJUSTMENT
- SOMETIMES THE PATHOLOGY IS NECESSARY TO OBSERVE THE EFFECT
 - ANTIPYRETICS, INHLALATION
 GLUCOCORTICOIDS IN ASTHMA...

6. GENETIC FACTORS

- FARMAKOGENETICS
 - GENETIC POLYMORPHISMS OF CYP450
 - SLOW VS. EXTENSIVE METABOLISERS

FACTORS RELATED TO BOTH, DRUG AND PACIENT

- 1. DOSE
- 2. REPEATED DRUG ADMINISTRATION
- 3. COMBINATION OF DRUGS
- 4. LATE EFFECTS

1. DOSE

Dose-response (dose-effect) curve

2. REPEATED DRUG ADMINISTRATION

- May lead to stronger
 EFFECT
 - CUMULATION
 - RECEPTOR SENZITIZATION
- May lead to weaker
 EFFECT
 - TOLERANCE
 - TACHYPHYLAXIS

3. COMBINATIONS OF DRUGS

• SEE INTERACTIONS LATER

4. LATER EFFECTS

 THERE IS A LONG INTERVAL BETWEEN THE DOSE AND THE EFFECT

- TERATOGENICITY
- MUTAGENICITY
- CANCEROGENICITY

ADVERSE EFFECTS OF DRUGS

ADVERSE EFFECTS (AE) OF DRUGS

= ANY UNINTENDED ADVERSE REACTION TO ANY DOSE ADMINISTRATION

 ADVERSE EFFECTS OF DRUGS ARE THE CAUSE OF UP TO 6 % OF ALL HOSPITALISATIONS

AE FREQUENCY - SPC

- VERY COMMON (WITH OCCURRENCE FREQUENCY ≥10 %)
- COMMON (1 %- 10 %)
- UNCOMMON (0.1 % 1 %)
- RARE (0.01 %- 0.1 %)
- VERY RARE (< 0,01 %)

ADVERSE EFFECTS

- 1. Type A (AUGMENTED) DOSE-DEPENDENT, PREDICTABLE
- 2. Type B (bizarre) do not follow from the MECHANISM OF ACTION
- 3. Type C (continuing, continuous, chronic) consequence of long-term drug use
- 4. Type D (DELAYED) MANIFESTED AFTER A LONGER INTERVAL FROM THE DRUG ADMINISTRATION
- 5. Type E (end of use) manifested after the drug discontinuation

TYPE A - AUGMENTED

- INTENSIFIED "NORMAL", OR NATURAL DRUG EFFECTS OBSERVED
 FOR USUAL THERAPEUTIC DOSES
- PREDICTABLE
- BREATHING ATTENUATION BY OPIOIDS, BLEEDING AFTER
 WARFARIN ADMINISTRATION, ETC.

TYPE B - BIZARRE

- UNEXPECTED DRUG RESPONSES
- DO NOT FOLLOW FROM THE MECHANISM OF ACTION
- OCCURRENCE IS RARE
- INCLUDE ALLERGIC REACTIONS OR IDIOSYNCRASY -ABNORMAL DRUG RESPONSE DUE TO A GENETIC DEVIATION

TYPE C - CHRONIC ADMINISTRATION

- CONSEQUENCE OF LONG-TERM DRUG USE
- MAY BE ADDITIVE BY NATURE (CUMULATIVE EFFECT OF LONG-TERM USE OF EVEN LOW THERAPEUTIC DOSES)
- NEPHROTOXICITY OF CERTAIN NON-STEROIDAL ANTIPHLOGISTICS (MAINLY PHENACETIN) OR OSTEONECROSIS OF THE JAWBONE AFTER ADMINISTRATION OF BISPHOSPHONATES

TYPE D - DELAYED

- MANIFESTED AFTER A LONGER INTERVAL FROM THE DRUG ADMINISTRATION
- THEIR CAUSALITY IS DIFFICULT TO PROVE
- LEUCOPENIA FOLLOWING ADMINISTRATION OF CYTOSTATIC LOMUSTINE OR LATE PRO-CARCINOGENIC AND TERATOGENIC EFFECTS OF SOME CYTOSTATICS OR HORMONES

TYPE E – END OF USE

- REBOUND PHENOMENON CAUSED BY ADAPTATION
 MECHANISMS ON THE RECEPTOR SIDE AFTER LONG-TERM
 ADMINISTRATION OF RECEPTOR ANTAGONISTS
 (CAUSING UP-REGULATION, OR RECEPTOR NUMBER
 INCREASE).
- INSOMNIA AND ANXIETY AFTER DISCONTINUATION OF BENZODIAZEPINES OR HYPERTENSION AFTER DISCONTINUATION OF BETA BLOCKERS

DRUG-DRUG INTERACTIONS

DRUG-DRUG INTERACTIONS

- EFFECT OF A CONCURRENTLY ADMINISTERED DRUG ON ANOTHER DRUG
- ALSO INCLUDES INTERACTIONS BETWEEN DRUGS AND FOOD SUPPLEMENTS OR BETWEEN DRUGS AND FOOD

DRUG INTERACTIONS

- ■ADITIVE: 1+1=2
- ■SYNERGISTIC: 1+1=3
- ■POTENCIATION OF EFFECT: 1+0=2
- ANTAGONISTIC: 1+1=0

DRUG-DRUG INTERACTIONS

INTERACTIONS CAN BE DIVIDED TO
 PHARMACEUTICAL, PHARMACOKINETIC
 AND PHARMACODYNAMIC

PHARMACEUTICAL DRUG-DRUG INTERACTIONS

- OCCUR ALSO OUTSIDE OF THE BODY
- E.G. IN AN INFUSION BAG

PHARMACODYNAMIC DRUG-DRUG INTERACTIONS

- OPPOSITE MECHANISM OF ACTION
- E.G. Sympatomimetic and Parasympatomimetic drug together

PHARMACOKINETIC DRUG-DRUG INTERACTIONS

- Most common
- ON LEVEL OF:
 - ABSORPTION (INHIBITION OF ENTEROHEPATAL RECIRCULATION)
 - DISTRIBUTION (BINDING TO PLASMA PROTEINS)
 - METABOLISM (CYP)
 - EXCRETION (COMPETITION ON TUBULAR TRANSPORTERS)

INTERACTIONS ON CYP

INDUCERS OF CYP 450

- DEXAMETHASONE
- PHENOBARBITAL
- RIFAMPICINE
- PHENYTOINE
- St. Johns wort (Hypericum perforatum)

INHIBITORS OF CYP 450

- ANTIDEPRESSANTS (FLUOXETINE)
- CHININE, CHINIDINE
- CHLORAMPHENICOL, ERYTROMYCINE
- KETOKONAZOLE,
 ITRAKONAZOLE
- GRAPEFRUIT JUICE

DRUG DEVELOPMENT

DRUG DEVELOPMENT

Development Stage

Identify Target

Identify Compounds

Establish Activity

Select Clinical Candidates

Test Safety

Clinical Trial
Phase I

Human Clinical Trial Phase II

Human Clinical Trial Phase III

Human Clinical Trial Phase IV

Submit Application for Clinical Trial (IND/CTX/CTA) Submit Registration for Regulatory Approval (NDA/BLA/MAA)

1. SYNTHESIS

- NATURAL RESOURCES
 - HERBS
 - ANIMAL TISSUES (HEPARIN)
 - MICROORGANISMS (PENICILIN)
 - HUMAN CELLS
 - BIOTECHNOLOGY (INSULIN)
- DRUG DESIGN = BASED ON STRUCTURE EFFECT RELATIONSHIP

2. PRECLINICAL TESTING

- CELL CULTURES
- ISOLATED ORGANS
- ANIMALS

3. CLINICAL TRIALS

- Phase 1 Healthy Volunteers
- Phase 2 small group of patients
- PHASE 3 BIG TRIALS
- Phase 4 After Marketing (When the Drug REACHED MARKET)

PHASE 1 — HEALTHY VOLUNTEERS

- ESTABLISHING THE EFFECXT OF THE DRUG ON BODILY FUNCTIONS
- PHARMACOKINETIC DETAILS
- SAFETY!
- Dose selection
- ACUTE DOSE ONLY
- PARTICIPANTS MAY RECEIVE MONEY

PHASE 2 – PILOT STUDY

- FIRST ADMINISTRATION TO REAL PATIENTS
 - ASSESSMENT OF DRUG EFFICACY, ADVERSE REACTIONS, PHARMACOKINETICS IN PATIENTSM REPEATED
 ADMINISTRATION
 - DEFINITION OF INDICATIONS, CONTRAINDICATIONS
- NO FINANTIAL REWARD

PHASE 3 – EXTENSIVE CLINICAL TRIAL

- HUNDREDS TO THOUSANDS OF PATIENTS
- ASSESSMENT OF EFFICACY AND SAFETY COMPARED TO ACTIVE TREATMENT OR PLACEBO
 - = CONTROLLED CLINICAL TRIAL
 - RANDOMIZED
 - SINGLE X DOUBLE BLIND OR OPEN LABEL
- MULTICENTRIC
- REQUIRED FOR SPC REDACTION AND MARKETING AUTHORIZATION

MARKETING AUTHORIZATION

- EU: http://www.ema.europa.eu/ema/
- USA: https://www.fda.gov/
- CZ: HTTP://WWW.SUKL.CZ/

PHASE 4 – POSTMARKETING STUDY

- AT LEAST 5 YEARD FROM REGISTRATION
 - VERIFICATION OF EFFICACY
 - DETAILED ASSESSMENT OF ADVERSE EFFECTS IN MANY DIFFERENT PACIENT POPULATIONS
- COMPARISON TO STANDARD TREATMENT
- POSSIBILITY OF MARKET WITHDRAWAL

FIELD OF PHARMACOLOGY: PHARMACOVIGILANCE