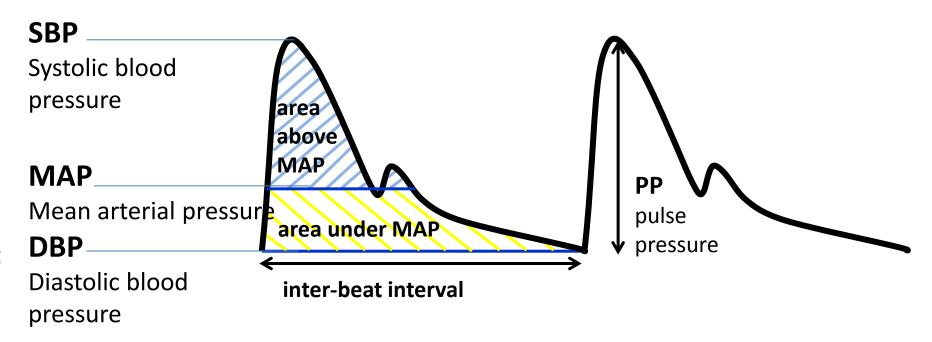
(VIII.) blood pressure in man (IX.) Non-invasive methods of blood pressure measurement

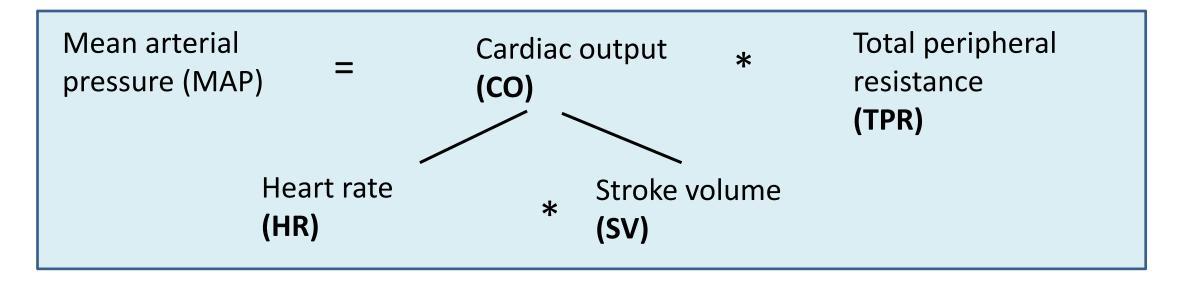
Physiology - practicals

Arterial blood pressure curve

Blood pressure (BP): pressure on vascular vall (continual variable)


Mean arterial pressure (MAP): mean value of blood pressure in the inter-beat interval (IBI)

- area under MAP = area above MAP
- aproximation: MAP≈ DBP + 1/3 PP (PP = SBP DBP)


Definition:

SBP - maximum of BP in the inter-beat interval **DBP** - minimum of BP in the inter-beat interval

Attention: Values of SBP and DBP varies in different parts of cardiovascular system

MAP is a function of cardiac output and total peripheral resistance

- SBP is given mainly by CO
- DBP is given mainly by TPR

Blood pressure regulation

• **Short-term** – neural control, mainly baroreflex

 Medium-term – hormonal regulation, renin-angiotensinaldosteron system (RAAS)

Long-term – hormonal regulation of blood volume

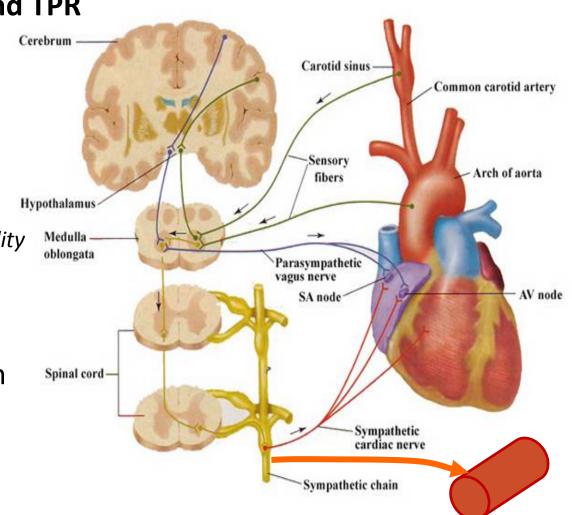
Short-term BP control: Baroreflex

Autonomic nervou system:

sympathetic nerves (↑ BP, HR, SV a TPR) X parasympathetic nerves (↓BP, HR, SV a TPR)

Baroreflex: regulation of BP via changes of HR and TPR

baroreceptors – sinus caroticus + aorticus afferentation: n. vagus, n. glosopharingeus


Cardiac branch of baroreflex:

efferentation: n. vagus - SA node

sympathetic efferentation: change of HR and cardiac contractility \uparrow BP $\rightarrow \downarrow$ HR and vice versa

Peripheral branch of baroreflex:

efferentation: sympathetic vascular innervation \uparrow BP $\rightarrow \downarrow$ TPR and vice versa (vasoconstriction, venoconstriction)

Blood pressure changes

Short-term influences

- blood volume influence to SV (bleeding, dehydration)
- external pressure to the vessels intrathoracal a intraabdominal pressure (cough, defecation, childbirth, artificial ventilation)
- position orthostasis: higher DBP (\uparrow TPR) a lower STK (\downarrow venous return $\rightarrow \downarrow$ heart filling \rightarrow Starling principle $\rightarrow \downarrow$ cardiac contraction $\rightarrow \downarrow$ SV)
- CNS emotions, mental stress,...
- physical load BP changes depend on intensity, duration and type of exercise
- heat (↓ TPR), cold (↑ TPR)
- alcohol, medicaments,...

Long-term influences

- age (the fastest changes during childhood and adolescence)
- sex (men: higher BP)

Methods of the arterial blood pressure measurement

In practicals:

Palpatory (sphygmomanometer)

Auscultatory (sphygmomanometer, stethoscope)

Another approaches:

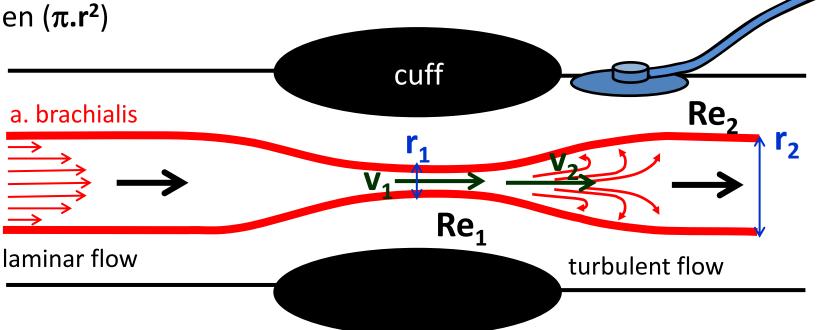
24-hour blood pressure monitoring

Photoplethysmografic (volume-clamp method, Peňáz)

Laminar / turbulent flow, Korotkoff sounds

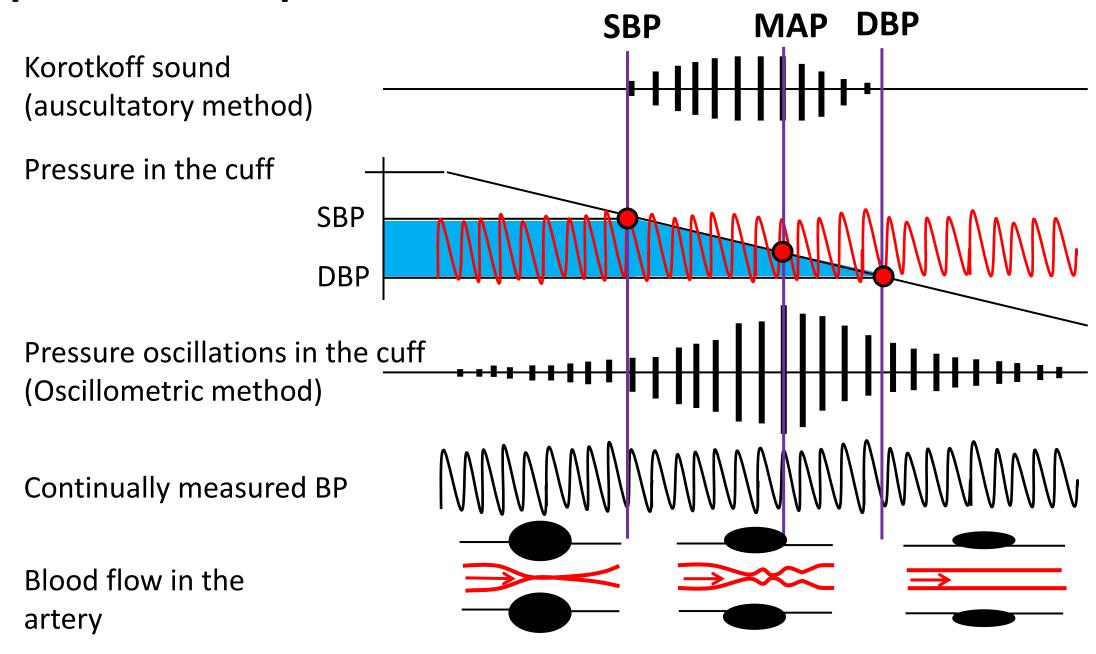
$$Re = \frac{v \cdot S \cdot \rho}{\eta}$$

laminar flow Re < 2000 turbulent flow Re > 3000

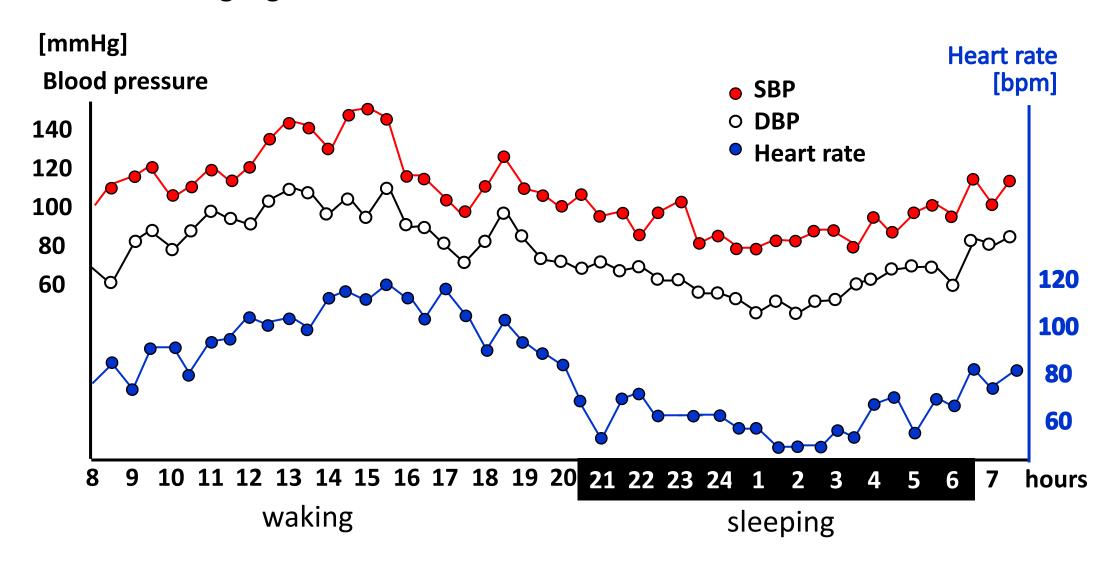

Reynolds number Re: predicts the transition from laminar to turbulent of flo

v: velocity of blood flow

S: area of vascular lumen $(\pi \cdot r^2)$


ρ: density of blod

η: viskosit of blood (higher in anemy)


closely behind narrowing of the artery: $S_1 < S_2$ a $v_1 \approx v_2 \rightarrow Re_1 < Re_2 \rightarrow$ turbulent flow

Principles of blood pressure measurement

24-hour blood pressure monitoring

BP decrease during night: 10 - 15%

During BP measurement following rules must be observed

- Patient is sitting for a few minutes before the measurement.
- Only validated apparatus must be used.
- Perform at least two measurements in the course of 1–2 minutes.
- Use cuff of standard size (12–13 cm width and 35 cm length); however smaller and bigger cuffs must be available for patients with smaller or bigger size of arm, respectively.
- Cuff must be always at the level of heart of examined person.
- Pressure in the cuff must be decreased slowly: 2mmHg/s.

methods	advantages	disadvantages	measured value
auscultatory	exact estimation of SBP/DBPeasy, it doesnt require electricity	subjective, experience is necesarySBP/DBP from differen IBI	STK a DTK
oscillometric	 exact estimation of MAP automatic, fast BP can be measured by layman, cheap (home measurement) 	 DBP/SBP is calculated (dependence on model, influence on shape of puls wave) SBP/DBP from different IBI false values during arrhytmia 	MAP, sometimes SBP (it depends on device)
24 – hour BP monitoring	 BP record from whole day diagnosis of white-coat hypertension 	 disruptive influence of measuring (during sleeping) SBP/DBP from different IBI 	BP is mesured each 15 – 60 min
photople- thysmographic (Peňáz)	 continual BP record possibility of beat-to beat SBP/DBP calculation (BP variability analysis) 	 measuring on the finger, brachial BP recalculating expensive device 	continual BP record

Diagnosis of hypertension

	blood pressure	SBP [mmHg]	DBP [mmHg]	posible complications
normal	optimal	<120	<80	
	normal	120 – 129	80 – 84	
	high normal	130 – 139	85 – 90	
hyper- tension	1. stage	140 – 159	90 – 99	without organ changes
	2. stage	160 – 179	100 – 109	hypertrophy of L ventricle, proteinuria, angiopathy,
	2. stage3. stage	> 180	> 110	morphological and functional changes of some organs, retinopathy, heart and renal insufficiency, ischemia of CNS, bleeding in CNS

- isolated systolic hypertension: SBP> 140 and DBP <90
- high normal BP annual monitoring recomended
- home measurement to exclude white coat hypertension
- hypertension is diagnosed when:
- average BP from 4 5 examinations is > 140/90
- BP during a home measurement repeatedly > 135/80
- mean BP from 24-hour monitoring is > 130/80

Changes of blood pressure during exercise

- increase of BP depends on the type, intensity and duration of the load
- sympathetic activation: changes in the cardiovascular system serve to satisfy metabolic needs of working muscle
- impact of exercise on blood pressure
 - increased cardiac output $\rightarrow \uparrow STK$
 - Redistribution of blood in the body metabolic vasodilation in muscle (muscle increases blood flow), vasoconstriction in the GIT, skin and kidneys → maintaining or slight change in DBP (depending on the extent of the TPR decrease)
- vasoconstriction in the skin is temporary, since thermoregulatory mechanisms dominate
- DBP increases during isometric muscle work (eg. weightlifting)
- after exercise: decrease of BP on the initial or a slightly lower value, the blood flow in the muscle remains elevated until recovery
- Recovery interval is determined by the parasympathetic tone (can be increased training)