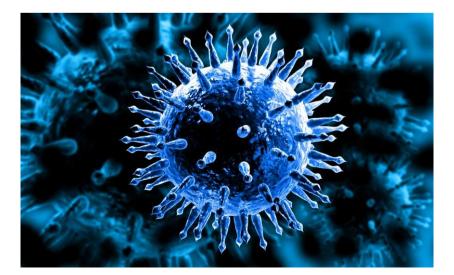
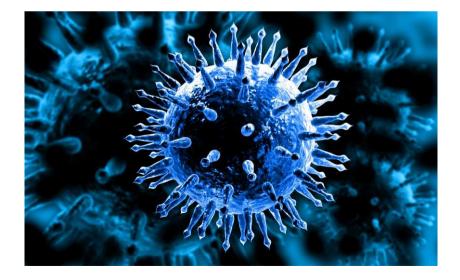
MUNI MED

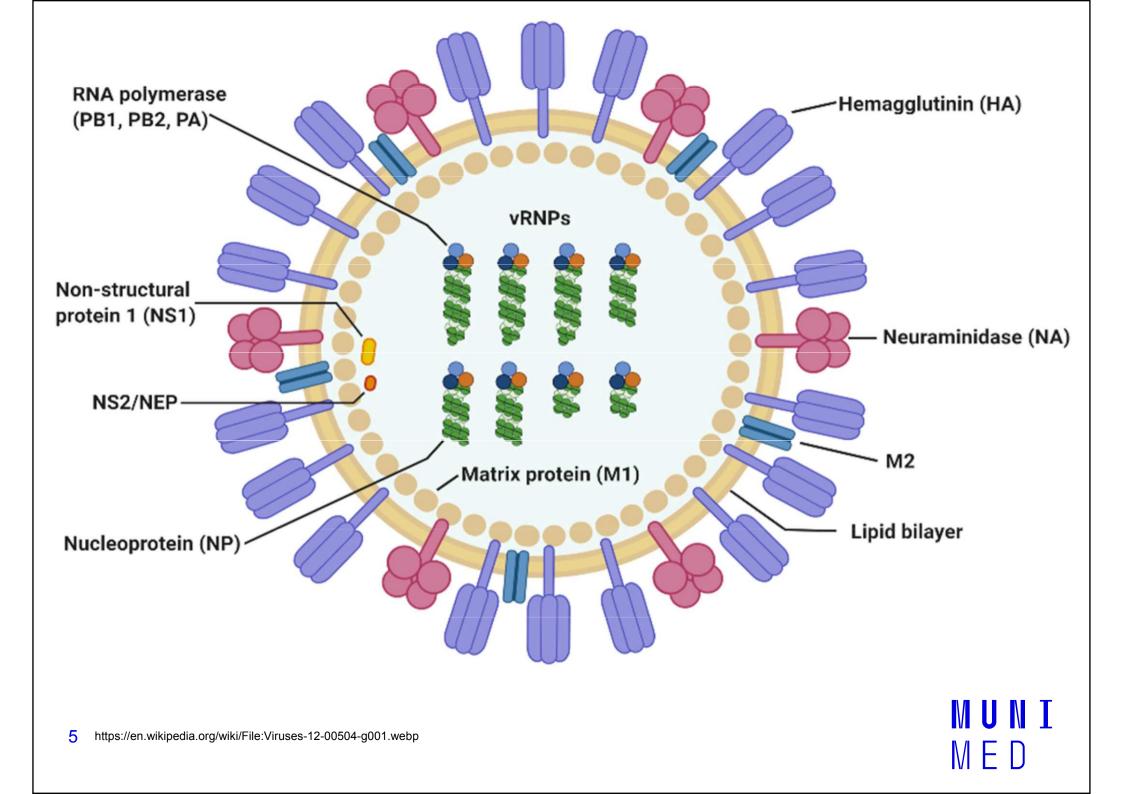

Influenza Avian influenza

Tomáš Gergel

1 Department of infectious diseases, Masaryk univerzity, Univerzity hospital Brno

Influenza

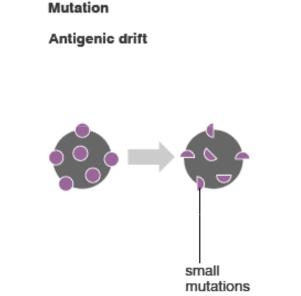

- segmented RNA viruses, family Orthomyxoviridae
- Influenzavirus A seasonal epidemics and pandemics
- Influenzavirus B milder, small epidemics
- Influenzavirus C pigs, dogs, less common, "common cold"
- Influenzavirus D pigs, cattle, no human infection was reported



Epidemiology

- the illness occurs in outbreaks and epidemics worldwide
- mainly during the winter season
- self-limited infection in the general population
- associated with increased morbidity and mortality in certain high-risk populations (cardiovascular ilnesses, chronic respiratory tract illnesses, immunocompromised patients,...)
- CDC + WHO track influenza virus isolates throughout the world → monitor disease activity → predict the appropriate components for the annual influenza vaccine

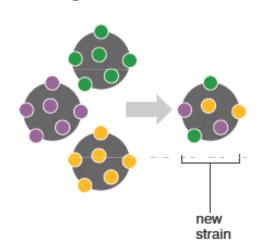
- infected >10% world population anually
- 5 millions of sever cases / year
- 0,5 million deaths / year
- in Czech republic 3000 deaths / year

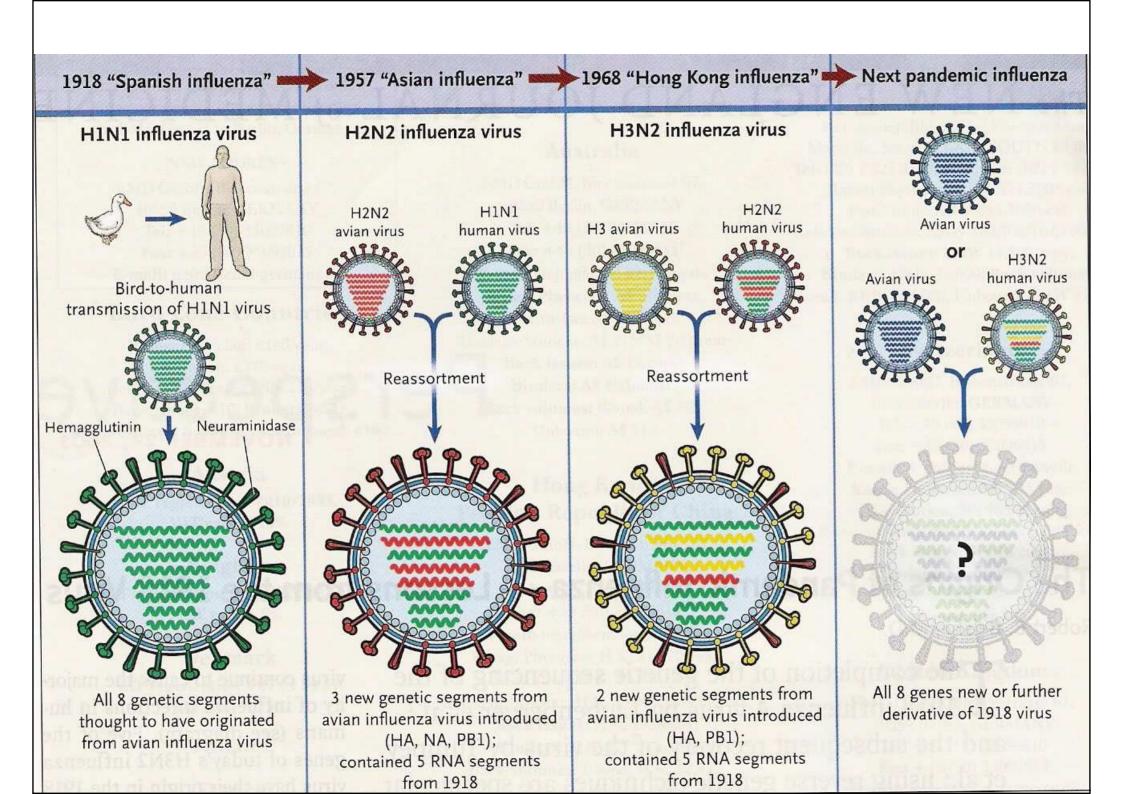


- 2 large surface antigens glycoproteins
 - Hemagglutinin HA (H1-H18, humans only H1-H3)
 - binding the viral particle to the host cell
 - Neuraminidase NA (N1-N11, humans only N1-N2)
 - internalization of particle into the host cell, release the new particles from the cell

Subtype f.e. : H1N1

Antigenic drift


- minor antigenical change
- occurs almost annually
- results in outbreaks of variable extent and severity
- outbreaks less extensive and severe than the epidemics or pandemics associated with antigenic shifts
- point mutations in the RNA gene segments that code for the hemagglutinin or the neuraminidase


Antigenic shift

- major antigenical change
- segmented genome can be reassorted among viruses coinfecting the same cell
- reassortment between animal and human viruses may result in the emergence of pandemic strains
- caused the pandemics of 1957, 1968 and 2009
- reassortment, switching the genom segments, among viruses coinfecting the same cell
- great role of pig and bird (avian) influenzaviruses

Antigenic shift

Outbreak characteristics

- 2-3 different strains circulate in a influenza season, 1 dominant
- Seasonality exclusively during the winter months in the Northern and

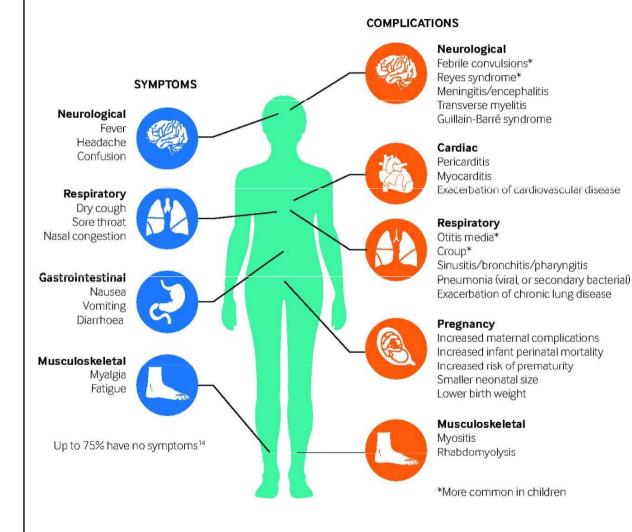
Southern hemispheres (occur at different times of the year)

- !!! traveling to tropical regions
- persistance between outbreaks poorly understood import from geographically distant sites ??
- Factors determining the severity of an outbreak
 - not fully understood
 - the susceptibility of the population = prevalence of antibodies to circulating virus = major role.

Outbreak characteristics

Time course of an outbreak

- begin abruptly
- peak ober 2-3 weeks
- last for 2-3 months
- earliest indicator of outbreak = increase in febrile respiratory illnesses in children → increases in influenza-like illnesses in adults
- outbreaks attack rates = 10-20% in the general population, >50 % in pandemics, extraordinarily high attack rates in institutionalized and semiclosed populations.

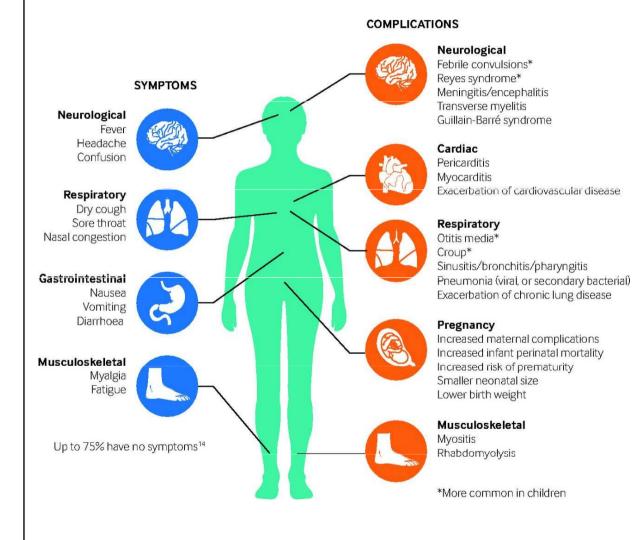

Transmission

- large amounts of influenza virus in respiratory secretions \rightarrow cough, sneezing
 - \rightarrow large dropplets (>5um) small distance (up to 2 m/6 feet)
 - \rightarrow small particle aerosols long distances
 - \rightarrow contact with contaminated surface
 - \rightarrow respiratory tract
 - \rightarrow (ocular mucousa)
- Incubation period: 1-4 days
- Duration of shedding: detected 24 to 48 hours before illness onset, 5 days

after onset of symptoms in avarage

Clinical manifastation

•



Uncomlicated influenza

- abrupt onset of fever (37.8-40.0°C), headache, myalgia, and malaise
- respiratory tract illness nonproductive cough, sore throat, and nasal discharge
- GIT vomiting, diarrhea (ussualy children)
- patient appears hot and flushed
- oropharyngeal hyperemia, mild cervical lymphadenopathy
 - physical examination is unremarkable
 - Lab: unspecific, leukocyte normal, leukopenia in the early state, >15,000 cells/microL suggest bacterial superinfection
- improvenment usually 2-5 days
- postinfluenza asthenia persistent symptoms of weakness, fatigability, last for several weeks

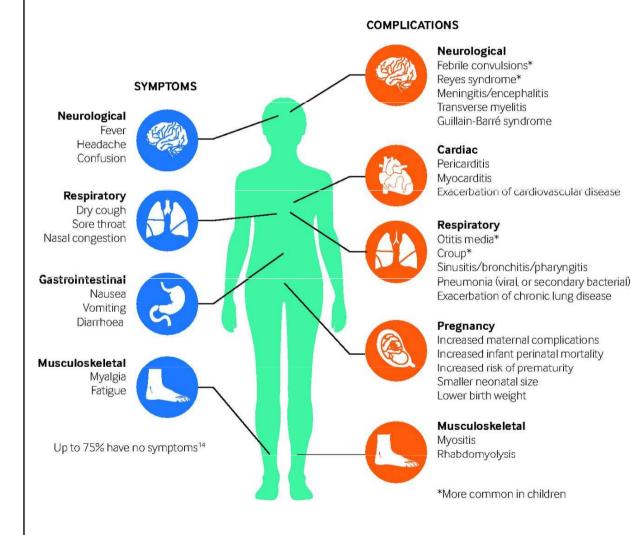
MUNT

Clinical manifastation

Complicated influenza

- Pneumonia most common complication
 of influenza
- Primary influenza pneumonia
 - severe pneumonia
 - symptoms persist and increase instead of resolving
 - high fever, dyspnea, cyanosis
 - X-ray, CT

Secondary bacterial pneumonia


- ↑morbidity and mortality ≥65 years
- exacerbation symptoms after initial improvement, production of purulent sputum, pulmonary infiltrates
- bacterial pathogens:

S. pneumoniae , S.aureus, (S.pyogenes, P.aeruginosa, H.influ enzae, K.pneumoniae, M.catarrhali s, E.coli

MUNT

Mixed viral and bacterial pneumonia

Clinical manifastation

Complicated influenza

Acute respiratory distress syndrome (ARDS) and multisystem organ failure (MOF)

Myositis and rhabdomyolysis

- most frequently in children
- extreme tenderness of affected muscles (legs)
- elevated serum creatine phosphokinase, myoglobinuria with associated renal failure

Cardiac

•

•

 ↑risk acute coronary syndrome, myocarditis and pericarditis

Central nervous system

 encephalopathy, encephalitis, transverse myelitis, aseptic meningitis and Guillain-Barré syndrome

MUNT

- during season/outbreak
- clinical dg.
 - uncomplicated acute respiratory ilness
 - not requiring hospitalization
 - ↓risk of complications

• whom to test:

- symptomatic immunocompromised patients / patients at \risk
- patients requiring hospitalization with acute respiratory illness, including pneumonia, with or without fever
- patients requiring hospitalization with acute worsening of chronic cardiopulmonary disease (eg, COPD, asthma, coronary artery disease, or congestive heart failure)
- acute onset of respiratory symptoms with or without fever, or respiratory distress, after hospital admission

• RT-PCR

- golden standard, genome identification
- most sensitive and specific
- rapid results (1-8 hours)
- differentiates between influenza types and subtypes
- nasopharyngeal aspirates, bronchoalveolar lavage fluid, nasal and throat swabs

Rapid antigen tests

- influenza A and B viral nucleoprotein antigens in respiratory specimens
- qualitative results (+/-)
- results in approximately 15 minutes or less
- but much lower sensitivity than RT-PCR

Viral culture

- nasal washes, throat swabs, sputum, bronchoalveolar lavage specimens
- results available in 48-72 hours

Serologic testing

- useful primarily for research purposes
- not useful for the diagnosis of acute illness paired acute and convalescent are required
- to establish the diagnosis of influenza retrospectively

Treatment

Nonspecific

- fluids
- vitamins
- antipyretics/analgetics
- antitusics...

Treatment

- Antivirals:
 - neuraminidase inhibitors: zanamivir (inhalation 10 mg 1-0-1, 5 days), oseltamivir (p.o. 75 mg 1-0-1, 5 days), peramivir (i.v. 600 mg 1xdaily)
 - active against both influenza A and B
 - inhibitor of influenza cap-dependent endonuclease: baloxavir
 - active against influenza A and B
 - adamantanes: amantadine, rimantadine
 - only active against influenza A
 - increase in resistant isolates, adverse effects $\rightarrow \downarrow$ of use

MUNI MED

Prevention

- Preexposing measures
 - hand washing, aerosols (masks)
- Vaccinaton
- Profylactic drug use
 - Oseltamivir (75 mg 1xdaily)
 - Zanamivir (5 mg 1-0-1)

Prevention

Vaccination

- most effective prevention
- against hemagglutinine
- every year due to antigenic drifts
 - i.m. inactivated vac., reccombinant vac.
 - nasaly live attenuated vac. (not available in CR)
 - quadrivalent vac. influenza A Ag x2 + influenza B Ag x2
 - trivalent vac. influenza A Ag x2 + influenza B Ag x1
- elderly, chronicly ill, healthcare workers, long term facility workers, ...

MUNT

Avian influenza

- influenza viruses adapted to birds
- mostly influenza A virus
- high pathogenic avian influenza (HPAI), low pathogenic avian influenza (LPAI)
- H1-16, N1-9 = many subtypes
 - only H5N1, H7N3, H7N7, H7N9, H9N2 were confirmed in human
- new strains typically emerge in Southeast Asia (close contact of human, bird and swine)
- \uparrow pandemic potential, \uparrow case fatality rate

Transmission

Bird-to-human

- handling dead infected birds
- contact with infected (animal) fluids
- contaminated surfaces and droppings
- close contact, ↓hygiene

Human-to-human

- rare, only prolonged contact
- spreading after mutation is *\concern*

Role of pigs

• infected by avian and human strains \rightarrow reassortement \rightarrow new strain

MUNT

27

Why so dangerous ?

- avian influenza viruses attach cells via diferent receptors than human strains
 → these reseptors are in lower respiratory tract in human → severe
 pneumonia with ARDS
- \downarrow effect of host antiviral cytokines, \uparrow proinflammatory mediators \rightarrow SIRS \rightarrow ARDS
- predominance of children and young adults

Clinical manifestation

- Incubation period: 2-5 days
 - respiratory illness
 - GIT
 - CNS
- **Complications:** pneumonia, MOF, renal dysfunction, cardiac compromise, pulmonary hemorrhage, pneumothorax, pancytopenia
- Lab: leukopenia, neutropenia, lymphopenia, thrombocytopenia,

↑ aminotransferases (AST>ALT), ↑LDH, ↑ CK, \downarrow albumin

Diagnosis, treatment

DG:

- PCR
- antigen detection
- serology
- viral isolation

Treatment

- nonspecific
- only oseltamivir is recommended in specific treatment of avian flu

Prevention

Infection control measures

- appropriate biosafety precautions when handling suspected specimen
- higher level of infection control than for seasonal influenza viruses eye protection and respirators (eg, N95 masks, FFP2) in addition
- patients in airborne infection isolation rooms
- postexposition profylaxis oseltamivir, zanamivir
- vaccine against H5N1 is available ??? Efficiency after 10 years ???

Thank you for your attention !

COVID-19 pandemic, 1.wave

