

ELECTROMYOGRAPHY EVOKED POTENTIALS

Josef Bednařík, Department of Neurology, University Hospital Brno and Faculty of Medicine, Masaryk University Brno

DEFINITION OF ELECTROMYOGRAPHY (EMG)

– EMG is an electrodiagnostic method aimed at the diagnosis of neuromuscular disorders (i.e., involvement of peripheral motor, sensory, and autonomic neurons, neuromuscular transmission and voluntary muscles).

- Methodologically it comprises two groups of techniques:
- Needle EMG using needle recording electrodes for registration of bioelectrical potentials from voluntary muscles;
- Conduction studies using artificial electrical stimulation of nerves and recording evoked responses from muscles or nerves with surface recording electrodes

NEEDLE EMG I

1. Insertion activity:

- Example of abnormal insertion activity: myotonic discharges

NEEDLE EMG II

- ("end-plate noise")

- ("end-plate spikes")

NEEDLE EMG III

- -2. Abnormal spontaneous activity:
- fibrillation potentials and positive sharp waves

NEEDLE EMG IV

- 2. Abnormal spontanneous activity:
- tetanic discharges
 (dublets, triplets, multiplets)

NEEDLE EMG V

2. Abnormal spontaneous activity: neuromyotonic discharges

NEEDLE EMG VI

3. Physiological activity at rest(no potentials)

~~ <u>~</u> ~		 		
			~~~	<del>~~~~</del> ~~~
·····				
· · · ·	·	 ^	~~~~~	
	~~~~ <b>``````````````</b>	 		
				3 m.V

NEEDLE EMG VII

- 3. Quantification of parameters of motor unit potentials (MUPs)
- indicator of microarchitecture of motor unit
- \rightarrow Signs of chronic reinnervation

 $M \vdash D$

NEEDLE EMG VIII

3. Quantification of parameters of motor unit potentials (MUPs)

 indicator of microarchitecture of motor unit

 → Signs of myogenic lesion (decreased number of muscle fibers)

 $N/I \vdash I$

NEEDLE EMG IX

3. Quantification of parameters of motor unit potentials (MUPs) – indicator of microarchitecture of motor unit

- \rightarrow Signs of myogennic lesion (decreased number of muscle fibers)

NEEDLE EMG X

4. Assessment of recruitment of motor units and interference pattern

 \vdash \square

12

CONDUCTION STUDIES I

1. Motor conduction studies: diffuse conduction slowing

CONDUCTION STUDIES II

1. Motor conduction studies : focal conduction slowing + conduction block

CONDUCTION STUDIES III

1. Motor conduction studies : focal conduction slowing + axonal loss

RECORD			# 1	4.51	~	- 14 L F	. a	Median Nerve.R Ulmar Nerve.R						15:05:14				
ERAGE:	ON /	OFF	STE	P: 5	T	EKP:2	4,9°C	LEVE	, ‡	97 V	1	SWITCH	l: S	TIM /	STOP			
							5 ms	FREQUENT	JENCY: FION : 0	រអ ភ្ញ	ż 5	RECL	IRREN	T / 👖	ONREC			
·							128V	Recor	ding Si	te A:	APP	3						
	· ·						2 mV	Recor	ding Si	te B:	ÄDI	1						
	• •	•	•	•	•	•		STIM	ULUS SIT	E	Ţ1	LAT2	AMP	ARE				
·	~~~	4~			•	_	2 mV	A1: 2	apesti	1	1,3	15,9	0.82	0 3, 20	6 32, 0			
·Δ						•		HZ: A3: r	loket Saze	"	ŧ, 1	19.5	U. 96'	13, 38	932.0 32.0			
- / \								B4; z	zapesti		ł. 0	8.9	8.948	8 25.3	5 32.0			
- { }			•				'	86: I	20d I. 1ad.1.		(.J	15.0	8.120	J24, 1	2 32.0			
	Λ.		•		•		168V	(<u></u>		r								
-7	:}÷	 •	 •				2 mV	5	EGMENT	E	IST	<u>_</u>	CV co m/s	rfBXP Z	78868			
- 1	<u>/</u>] -							APB-2	aposti		BO							
	″ Ì · .	,	<u>_ز</u>	~`~-	<u> </u>		970 2 mV	zapes loket	sti-loke t-paze	ĩ	140	50	56	117,4	105.7			
	17	•	•	•	•	•	·	ADM-z	apesti		80							
	' if	•		·	•	•	· 1	i7apes	ti-ond	1. 1	185	55	62	90.7	19511			

MUNI MED

CONDUCTION STUDIES IV

1. Motor conduction studies : focal conduction slowing ("inching" technique)

CONDUCTION STUDIES V

17

1. Motor conduction studies : focal parcial conduction block

C RECOR	D			# 2	HÖLA	NE	K MILO	05	Peroneal Nerve.L 16:04:43
JERAGE:	ON	/ 0	F	STE	P: 2		TEMP:	25.0°C	LEVEL: 193 U SWITCH: STIN / ISTOP
				· · · · · · · · · · · · · · · · · · ·				5 ms	EREATION : 0.2 Hz RECURRENT / NONREC
		•	•						
• /	~	·	•			-			Recording Site :TA
	•	· X	<u>.</u>				<u>=</u>	273V 5 mV	
					•	•	•	•	STINULUS SITE LATI OUR AMP AREA TEMP
							,		R1: NRD HL,FI 4,4 13.36,02949,7832.0
								•	A3: Knee 32,0
'.			•		•	•			
		~-	<u> </u>					5 mV	
	•					:			
-	-	•	•	•					NRD HL, -POD HL 80 36 40 22.8 19.7
-	-	•	•	•	•	١			POD HL.FI-Knee
•		•	•	•	-	•	•	·	

CONDUCTION STUDIES VI

1. Motor conduction studies : multifocal conduction slowing + conduction block

MUNT

MED

18

CONDUCTION STUDIES VII

1. Motor conduction studies : repetitive stimulation of motor nerve

icro	RECC	RD			# 5	HRD	LICK	A VLI	ASTIM	IIL		Facia Nasal	1 R is R			11:31:4
500	ΰV		_		_		8	ECOR	DING	ND				-	50	0 ms
	•	•	•	·		•	•	·	•	•	•	• •	-	• •	• •	•
		•	•	•	•	•	•	٠	•	•	•	• •	•	• •	• •	-
i	ſ	•														
	ļ	ļ.	1	1 L	1	J.	3	1	4							
]		1]	ļ	- A		Ĩ		•			-	•		
,	¹	<u>۲</u>	┉			┉╢┉	~~	¦	┉╇	•	•	• •	•	• •	• •	•
	ļ	2	.'			.'	."	-'	.'	•	•	· ·	•		• •	•
		-	•			-					•				· •	
1																
			-							-	_					
		•	•			•	•	•	•	•	•	• •	•	. 'ເ	FUEL	77. 2 aA
	2	3	4	Ś	6	7	в	9	10	. /						, <u></u>
500	11															
200	. QV							. 2	2 ņs		FOOT Stim	SWITCH I.MODE;	i: <u>rea</u> i	DY / ST INN / SI	'imulate Ngle	/ stop
200	. uv		~				•		2 m,s		FOOT STIM <u>Biim</u>	SWITCH MODE:	IL REAL	DY / ST M / SI NO. IN	IMULATE	: / <u>Stop</u>
200	. 40	- . /					•		2 ms		FOOT STIM STIM STIM STIM STIME:	SWITCH MODE: FRED: DUR: 0 11:33		DY / ST M / SI NO. IN STIM R	IMULATE NGLE ITRAIN JCT: 0	10 10 5 ms
200	. 00	. /							2 ms		FOOT STIM STIM STIM STIM STIME: COMPE	SWITCH I.MODE; FREQ: DUR: 0 11:33 NT:		DY / ST IN / SI NO. IN STIM R	IMULATE NGLE TRAIN JCT: 0	10 5 ms
200	. 00	. j				•			2 ms			SWITCH I. MODE; FRED: DUR: 0 11:33 NT:		DY / ST IN / SI NO. IN STIM R		
_	- 00 - - -			· · · · ·					2 m/s			SWITCH FREQ: DUR: 0 11:3: NT: P-P P-P	12 REAL	DY / ST NO. IN STIM R AREA	IMULATE NGLE TRAIN JCT: 0	STIM.
_									2 ms - - -			SWITCH I. MODE; FRED: DUR: 0 11:33 NT: P-P RKR RV 8,30	2 Hz 1 REA 2 Hz 1 ms 1 34 1 34 0 CECR X 0	DY / ST NO. IN STIM R AREA MVms 19,19	IMULATE NGLE TRAIN JCT: 0 AREA OECR	/ STOP
_						· · · · · · · · · · · ·			2 ms			SWITCH FRED: DUR: 0 11:31 NT: P-P RMP RMP RMP 1:52 1.52 1.25	1 REA 2 Hz 1 ms 34 34 CECR X 0 34 46 46	DY / ST NO. IN STIM R BREA mVms 10.10 6.90 5.55		/ STOP 10 ,5 ms STIM, LEVEL 72.2mR 72.2mR 72.2mR
<u> </u>						· · · · · · · · · · · · · · · · · · ·			2 ms			SWITCH FREQ: DUR: 0 11:33 NT: P-P RKMP MV 2.30 1.52 1.25 1.25 1.25 1.25 1.25	2 Hz 1 ms 2 Hz 1 ms 34 34 0 ECR 2 0 34 46 34 46 34 46 34 46 34 46 34 46 34 46 34 46 34 46 34 46 34 46 34 46 34 34 34 34 34 34 34 34 34 34	DY / ST NO. IN STIM R AREA mVms 10.10 6.90 5.35 5.35		/ STOP 10 , 5 ms STIM, LEVEL 72.2mR 72.2mR 72.2mR 72.2mR 72.2mR
								-	2 ms			SWITCH FRED: DUR: 0 11:33 NT: P-P SKOP 2.30 1.52 1.25 1.25 1.19 1.19 1.22	2 Hz 1 ms 2 Hz 1 ms 34 34 005CR 2 Hz 49 49 49 49 49 49 49 49	DY / ST NO. IN STIM R BREA MVms 10.10 5.555 5.43 5.45 5.43		/ STOP 10 ,5 ms 5 ms 72.2mR 72.2mR 72.2mR 72.2mR 72.2mR 72.2mR 72.2mR 72.2mR

CONDUCTION STUDIES VIII

2. Sensory conduction studies

EVOKED POTENTIALS (EP): DEFINITION

- Evoked potentials represents bioelectrical response of the brain (or spinal cord and peripheral nerves) to external stimuly (mostly of sensory character) – sensory EP.
- Evoked potentials (as a diagnostic method or tool) are electrodiagnostic methods that register and evaluate bioelectrical potentials triggered by visual (VEP), auditory (BAEP) and somatosensory stimuli (SEP).
- Motor evoked potentials (MEP) use magnetic (originally electrical) stimulation to excitate motor cortex (transcranially) and to register response from a muscle.
- Endogenous or congitive potentials are long-latency responses related to cognitive processes or iniciation of voluntary movement; it is mostly research tool.

 $N/ \vdash D$

EVOKED POTENTIALS: TECHNICAL PRINCIPLE

Evoked potentials generated in the cortex or spinal cord and recorded over the scalp or the spine have the magnitude in order of microvolts (therefore lower than EEG or artifacts). Extraction of these EP "burried" in other electrical activity at the recording areas is enabled by the "averaging" method performed by a computer. EP appears in a constant time interval from the stimulus (in contrast to otherwise accidental other electrical activities).

EVOKED POTENTIALS: CLINICAL IMPORTANCE

They:

- Objectify clinical data and offer quantitative information;
- Capture subclinical lesion or dysfunction
- Offer precision of localisation of the lesion;
- Could monitor function of the system or pathway during surgery

VISUAL EVOKED POTENTIALS

•					-											· ·
VEP			;	ŧ 1	ZOUH	HAROU(R.I.	ana			Pa Ĺ	ttern- ≩ R Ey	shiit (Es/Fut)	/ sual !-F 210	J 1	4:44:28
STIM:	OFF	AVG:	OFF	TF	XC 1:	La An	np1:	0	ہ 995 -	1 m 5 j vV	: Lat Henp	2: 2:	πs Vu	ŋ. 64 0. 44	' :	₩S UV
Raite:	1, 1 Hz	Stim	ulato	:14	101	5								Dela	iy:	0 ms
Į,				_					i		1.PiT ≢5	LAT mS	LRT		AMP чV	AMP uV
						•	·	50		Ì	1,29 1,29	P100 156	229 229		9.66)‴∷%∿≶)]15.65
	•	•	•	•	•			5	υV	2	N73 128	P100 159	N145		17.65	PICC HINS 16.09
	1999 1997 1997	•	24	· ~	\mathbb{N}_{k}	1.44	21	ار د د ک	÷ j	3	N25	P100	N145		13.87	P101 H 45
	96. ya ¹⁹	k.	. É	en.	X, Col			- 90 5	uV	4	N75	PFC0 165	N145		- <u>14, 29</u>	1:22 - 44 1-22 - 04
	· ·	÷	1				·	•		5	N75	P100	N145		475 PICE	
·] ·		18	7	•	·			50	ກຣໄ ມູນໄ	6	N75	P100	N145		HES PICE	*)) 194
Į.		62		•					[1		1	LJ
• .		. F						50	m 5		IPI	LAT		ÄŤ	[P]	LAT S
						÷ .	•.	2 5		[-4	N75	N75	P100	- 100	N145	5 N145
1.000	ina A	ч. Ч.	مرتبہ	, ezd	e inner g	5 A (3)	*\$	≈¢ę	乄劉	2-5	N75	N75	P100	0014	N145	27 5 N145
- 1000 - 1000	New -	k i	م	~				5	Ŭ.	3-6	N75	N75	P100	P100	N145	N145
		1 1	ć.					50	-		- FaHip	COMP	AMP (COMP	╉╾╼╌┅	{
		¥						5	j۳n	1-4	-	- 575 8120	1175 5,345 -	e Proj proj	<u> </u>	
		•							1	2-5	5.36	5 	3.56	5 . ::)) MHE	<u>.</u>	
· ·	•	•	•		•	•	•	•		2-5	VE 20	- 174 7 22	en sie	- 21) M-5	 	
· ·	•	•	•	•	•	·	·					·	l			J
	•	•	•	•		·	·	10	ար Դո							
· ·	-		•				·	•								

MUNI MED

24

BRAINSTEM AUDITORY EVOKED POTENTIALS

SOMATOSENSORY EVOKED POTENTIALS

Cortex

Electrical stimulation of the median nerve at the wrist

Cervico-medullar junction

Cervical posterior horns

Erb's point

SOMATOSENSORY EVOKED POTENTIALS

MOTOR EVOKED POTENTIALS

Magnetic stimulation of the cervical or lumbar roots (RL) and cortex (CL)

MUNI Med