Experimentally induced arrhythmias in rat

•Adrenergic hyperstimulation •Hyperkalemia •Block of cardiac calcium channels

Normal ECG curve in human…

...and in rat heart

Note the missing ST segment (phase $2 =$ plateau of the ventricles) SA nodal rate about 300/min

Vegetative nervous system and the heart

Receptors:

п

Example 1

Per and Receptors:

Example the nervous system:

And a chronotropic, dromotropic

de chronotropic (mainly through

ening of pacemaker F-channels and

Pacemaker F-channels and

Pacemaker F-channels and

Pacemaker Vegetative nervous system:

Sympathetic nervous system:
 β 1 - positively inotropic, dromotropic

and chronotropic (mainly through

opening of pacemaker F-channels and

Ca²⁺ channels in SA node, AV node

and working m Vegetative nervous system:

Sympathetic nervous system:
 β 1 - positively inotropic, dromotropic

and chronotropic (mainly through

opening of pacemaker F-channels and

Ca²⁺ channels in SA node, AV node

and working m and chronotropic (mainly through
opening of pacemaker F-channels and
Ca²⁺ channels in SA node, AV node
and working myocardium)
 β 2 – apical myocardium, vessels –
vasodilatation
 α 1, α 2 – vasoconstriction (lower
e

vasodilatation

Parasympathetic:

Effects of vegetative nervous system on pacemaker cells

Heart during catecholamine overload Heart during catecholamin
↑ heart rate
↑ contractility
- Increase systolic function at the expense of – **Heart during catecholamine overload**

→ Neart rate

→ Contractility

— Increase systolic function at the expense of diastolic dysfunction
Calcium overload of cardiomyocytes

— DAD → premature beats Heart during catecholamine overloand

↑ heart rate

↑ contractility

- Increase systolic function at the expense of diastolic dysful

Calcium overload of cardiomyocytes

- DAD → premature beats
- ↑ oxygene consumption → i – **Heart during catecholamine overlet**

– heart rate

– lncrease systolic function at the expense of diastolic dys

– lncrease systolic function at the expense of diastolic dys

– DAD → premature beats

– ↑ oxygene consum

- 个 contractility
	-
- -
	-
- † eart during catecholamine overload

↑ heart rate

↑ contractility

← Increase systolic function at the expense of diastolic dysfuncti

Calcium overload of cardiomyocytes

← DAD → premature beats

← ↑ oxygene consumption \uparrow heart rate
 \uparrow contractility
 \lrcorner lncrease systolic function at the expense of diastolic dysfunction

Calcium overload of cardiomyocytes
 \lrcorner DAD → premature beats
 \lrcorner foxygene consumption → ischem **B2-receptor phosphorylation – transition from G_s to G_i** \uparrow heart rate
 \uparrow contractility
 \lnot lncrease systolic function at the expense of diastolic dysfunction

Calcium overload of cardiomyocytes
 \lnot DAD → premature beats
 \lnot 1 oxygene consumption → ischemia
 F heart rate
 \uparrow contractility
 $-$ Increase systolic function at the expense of diastolic dysfunction

Calcium overload of cardiomyocytes
 $-$ DAD \rightarrow premature beats
 \uparrow oxygene consumption \rightarrow ischemia
 32
	-
- **NASOCONStriction?**

Potassium

- **Potassium**
The most abundant intracellular cation (98%
intracellulary)
Most willingly passes cellular membrane intracellulary) **Potassium**
The most abundant intracellular cation (98%)
intracellulary)
Most willingly passes cellular membrane
Concentration gradient is maintained by Na+/K+ ATPase
The extra^{lintracellular distribution is requisted by}
-
-
- **Potassium**
The most abundant intracellular cation (98%
intracellulary)
Most willingly passes cellular membrane
Concentration gradient is maintained by Na+/K+ ATPase
The extra/intracellular distribution is regulated by
hor **Potassium**
The most abundant intracellular cation (98%
intracellulary)
Most willingly passes cellular membrane
Concentration gradient is maintained by Na+/K+ ATPase
The extra/intracellular distribution is regulated by
hor **Potassium**
The most abundant intracellular cation (98%
intracellulary)
Most willingly passes cellular membrane
Concentration gradient is maintained by Na+/K+ ATPase
The extra/intracellular distribution is regulated by
hor The most abundant intracellular cation (98%
intracellulary)
Most willingly passes cellular membrane
Concentration gradient is maintained by Na+/K+ ATPase
The extra/intracellular distribution is regulated by
hormones (insul
-
- The most abundant intracellular cation (98%
intracellulary)
Most willingly passes cellular membrane
Concentration gradient is maintained by Na+/K+ ATPase
The extra/intracellular distribution is regulated by
hormones (insul The most abundant intracemial cation (50%)
intracellulary)
Most willingly passes cellular membrane
Concentration gradient is maintained by Na+/K+ ATPase
The extra/intracellular distribution is regulated by
hormones (insuli

Potassium and the membrane potential
Positively charged intracellular ion: ↑

- Potassium and the membrane potential
Positively charged, intracellular ion: ↑
concentration → lowering of membrane Potassium and the membrane potential
Positively charged, intracellular ion: ↑
concentration → lowering of membrane
polarity (analogy of a small and a large basin Potassium and the membrane potential
Positively charged, intracellular ion: \uparrow
concentration \rightarrow lowering of membrane
polarity (analogy of a small and a large basin
connected by a hose) Potassium and the membrane
Positively charged, intracellular ior
concentration \rightarrow lowering of mem
polarity (analogy of a small and a l
connected by a hose)
Various functionally different K⁺ ch Potassium and the membrane potential
Positively charged, intracellular ion: ↑
concentration → lowering of membrane
polarity (analogy of a small and a large basin
connected by a hose)
Various functionally different K⁺ ch Positively charged, intracellular ion: \uparrow
concentration \rightarrow lowering of membrane
polarity (analogy of a small and a large basin
connected by a hose)
Various functionally different K⁺ channels
By various mechanisms, Positively charged, intracellular ion: \uparrow
concentration \rightarrow lowering of membrane
polarity (analogy of a small and a large basin
connected by a hose)
Various functionally different K⁺ channels
By various mechanisms, $\begin{array}{l} \text{concentration} \rightarrow \text{lowering} \ \text{colority} \text{(analogy of a sma} \ \text{connected by a hose)} \ \text{/arious functionally differ} \ \text{By various mechanisms, } \ \text{ncreases the permeability} \ - \ \text{direct binding} \ - \ \text{component with Mg$^{2+}$ that close} \ \text{chances in expression and train} \ \text{c} \end{array}$ polarity (analogy of a small and a large basin
connected by a hose)
/arious functionally different K⁺ channels
By various mechanisms, potassium
ncreases the permeability of K⁺ channels
– direct binding
– competion with
- Various functionally different K⁺ channels
- increases the permeability of K⁺ channels connected by a hose)

Various functionally different K⁺ channels

By various mechanisms, potassium

ncreases the permeability of K⁺ channels

– direct binding

– competion with Mg²⁺ that closes the K⁺ channels

–
	-
	- competion with Mg^{2+} that closes the K⁺ channels
	-

Effect on sodium channels Effect on sodium channels
Mild hyperkalemia – easier excitation
Severe hyperkalemia – block of a portion of Na⁺ channel
- Slower conduction Effect on sodium channels

Mild hyperkalemia – easier excitation

Severe hyperkalemia – block of a portion of Na⁺ channel

– Slower conduction

– Finally the threshold voltage "runs away" from baseline voltage and the

- п
- Severe hyperkalemia block of a portion of Na⁺ channel п
	-
- Effect on sodium ch

Mild hyperkalemia easier excitation

Severe hyperkalemia block of a portion of Nat

 Slower conduction

 Finally the threshold voltage "runs away" from ba

depolarization is no longer possible Effect on sodium channels
Alid hyperkalemia – easier excitation
Severe hyperkalemia – block of a portion of Na⁺ channel
- Slower conduction
- Finally the threshold voltage "runs away" from baseline voltage and the
depola Effect on sodium channels

diffect on sodium channels

different a position

different and the position

depolarization

different a border possible

different a border possible

different and the polarization

different
- п
- Effect on sodium channel
Mild hyperkalemia easier excitation
Severe hyperkalemia block of a portion of Na⁺ channel
- Slower conduction
- Finally the threshold voltage "runs away" from baseline volta
depolarization is Effect on sodium channels

Mild hyperkalemia – easier excitation

Severe hyperkalemia – block of a portion of Na⁺ channel

– Slower conduction

– Finally the threshold voltage "runs away" from baseline voltage and the
 п

Potassium – main effects Potassium — main effects

Hyperkalemia

— Peaked T wave (dif. dg. hyperacute phase of MI)

— Widening, flattening and event, disappearing of the P wave (but sinus

— Widening, flattening and event, disappearing of the P wa

Hyperkalemia

-
-
- Potassium main effects

Hyperkalemia

 Peaked T wave (dif. dg. hyperacute phase of MI)

 Wide QRS (may merge into sinusoid wave with T)

 Widening, flattening and event. disappearing of the P wave (but sinus

rhythm r Potassium – main effects

Hyperkalemia

– Peaked T wave (dif. dg. hyperacute phase of MI)

– Wide QRS (may merge into sinusoid wave with T)

– Widening, flattening and event. disappearing of the P wave (but sinus

– Higher **Potassium – main effects**
 Hyperkalemia

- Peaked T wave (dif. dg. hyperacute phase of MI)

- Wide QRS (may merge into sinusoid wave with T)

- Widening, flattening and event. disappearing of the P wave (but sinus

- H **Hyperkalemia**

- Peaked T wave (dif. dg. hyperacute phase of MI)

- Wide QRS (may merge into sinusoid wave with T)

- Widening, flattening and event. disappearing of the

rhythm remains for a long time)

- Higher excitab – Wide QRS (may merge into sinusoid wave with T)

– Wide QRS (may merge into sinusoid wave with T)

– Widening, flattening and event. disappearing of the P wa

rhythm remains for a long time)

– Higher excitability at th – Widening, flattening and event. disappearing of the P wave (but simply the mains for a long time)

– Higher excitability at the beginning, then lower, diastolic arrest in the (heart is depolarized compared to the normal
- Potassium main effects

Hyperkalemia

 Peaked T wave (dif. dg. hyperacute phase of MI)

 Wide QRS (may merge into sinusoid wave with T)

 Widening, flattening and event. disappearing of the P wave (but sinus

mythm r Potassium — main effects
perkalemia
Peaked T wave (dif. dg. hyperacute phase of MI)
Wide QRS (may merge into sinusoid wave with T)
Widening, flattening and event. disappearing of the P wave (but sinus
thythm remains for a Potassium – main effects
 $\frac{1}{2}$
 $\frac{1}{2}$ – Peaked T wave (dif. dg. hyperacute phase of MI)
– Wide QRS (may merge into sinusoid wave with T)
– Widening, flattening and event. disappearing of the P wave (but sinus rhythm remains for a long time)
– Higher excitabili † rhythm remains for a long time)

– Higher excitability at the beginning, then lower, diastolic arrest in the end

(heart is depolarized compared to the normal state)

– ↑ risk of re-entry († differences in conduction v — Higher excitability at the beginning, then lower, diastolic arrest in the end

(heart is depolarized compared to the normal state)

— ↑ risk of re-entry (↑ differences in conduction velocities)
 - Hypokalemia

— Flat
-

Hypokalemia

-
-
-
-
-
-

Changes of ECG in hyper- /hypokalemia

Calcium

-
- **Calcium**

Ion that is necessary for muscle contraction

Intracellulary, it is present in very low concentration

(making high gradient between cytoplasm and cell) **Calcium**

Ion that is necessary for muscle contraction

Intracellulary, it is present in very low concentration

(making high gradient between cytoplasm and cell)

In cardiomyocyte and skeletal muscle, it is also present **Calcium**

on that is necessary for muscle contraction

Intracellulary, it is present in very low concentration

(making high gradient between cytoplasm and ce

In cardiomyocyte and skeletal muscle, it is also pi

in sarco
- Calcium

on that is necessary for muscle contraction

Intracellulary, it is present in very low concentration

(making high gradient between cytoplasm and cell)

In cardiomyocyte and skeletal muscle, it is also present

in **Calcium**

Ion that is necessary for muscle contraction

Intracellulary, it is present in very low concentration

(making high gradient between cytoplasm and cell)

In cardiomyocyte and skeletal muscle, it is also present

- **Calcium**

Ion that is necessary for muscle contraction

Intracellulary, it is present in very low concentration

(making high gradient between cytoplasm and cell)

In cardiomyocyte and skeletal muscle, it is also present
 Calcium

on that is necessary for muscle contraction

Intracellulary, it is present in very low concentration

(making high gradient between cytoplasm and cell)

In cardiomyocyte and skeletal muscle, it is also present
 lon that is necessary for muscle contraction
Intracellulary, it is present in very low concentration
(making high gradient between cytoplasm and cell)
In cardiomyocyte and skeletal muscle, it is also present
in sarcoplasmi
- Ion that is necessary for muscle contraction
Intracellulary, it is present in very low concentration
(making high gradient between cytoplasm and cell)
In cardiomyocyte and skeletal muscle, it is also present
in sarcoplasmi Formal is riecessary for muscle contraction
Intracellulary, it is present in very low concentration
(making high gradient between cytoplasm and cell)
In cardiomyocyte and skeletal muscle, it is also present
in sarcoplasmic relaxation

Calcium and the membrane potential
Extracellular ion – Membrane potential gets into more

- Calcium and the membrane potential
Extracellular ion Membrane potential gets into more
negative values
During the action potential, Ca²⁺ activate potassium (and negative values
- **During the action potential, Ca²⁺ activate potassium (and** chloride) channels, which shortens the phase $2 \rightarrow$ **Calcium and the membrane potential**
Extracellular ion – Membrane potential gets into more
negative values
During the action potential, Ca²⁺ activate potassium (and
chloride) channels, which shortens the phase 2 \rightarrow
re Calcium and the membrane potential

Extracellular ion – Membrane potential gets into more

egative values

During the action potential, Ca²⁺ activate potassium (and

hloride) channels, which shortens the phase 2 →

epol alcium and the membrane potent
racellular ion – Membrane potential gets into more
gative values
ring the action potential, Ca²⁺ activate potassium (and
oride) channels, which shortens the phase 2 \rightarrow
olarization leads Franklington – Membrane potential gets into more
egative values
During the action potential, Ca²⁺ activate potassium (and
thloride) channels, which shortens the phase 2 \rightarrow
epolarization leads into the closing of Ca²⁺ Extracellular ion – Membrane potential gets into more

egative values

During the action potential, Ca²⁺ activate potassium (and

thloride) channels, which shortens the phase 2 →

epolarization leads into the closing of megative values

During the action potential, Ca²⁺ activate pota:

chloride) channels, which shortens the phase

repolarization leads into the closing of Ca²⁺ L-

- the proces is impostant for maintaining the

homeost During the action potential, Ca²⁺ activate potassium (and

chloride) channels, which shortens the phase $2 \rightarrow$

epolarization leads into the closing of Ca²⁺ L-channels

- the proces is impostant for maintaining the cal may are because, which shortens the phase olarization leads into the closing of Ca^{2+} the proces is impostant for maintaining homeostasis in the cell
in extreme hypercalcemia, phase 2 may opposite effect may be present
	-
	-
	-
-
- epolarization leads into the closing of Ca²⁺ L-channels

 the proces is impostant for maintaining the calcium

homeostasis in the cell

 in extreme hypercalcemia, phase 2 may be missing

 opposite effect may be presen the proces is impostant for maintaining the calcium
homeostasis in the cell
in extreme hypercalcemia, phase 2 may be missing
opposite effect may be present in hypocalcemia
chanical effects
Extreme hypercalcemia: triggered
	-

Blocking the calcium channels

-
- Blocking the calcium channels
Verapamil class IV antiarrhythmic drug
Tissue distribution roughly symmetrically in the **Tissue distribution roughly symmetrically in the** heart and smooth muscle Blocking the calcium channels
■ Verapamil – class IV antiarrhythmic drug
■ Tissue distribution roughly symmetrically in the
heart and smooth muscle
■ Indikace: antiarrhythmic, antihypertenzive
(rather rarely), local vasod Dre Dramis and Dearemann Dreamned

Verapamil – class IV antiarrhythmic drug

Tissue distribution roughly symmetrically in the

heart and smooth muscle

Indikace: antiarrhythmic, antihypertenzive

(rather rarely), local vas
- **Indikace: antiarrhythmic, antihypertenzive** /erapamil – class IV antiarrhythmic definition of the USS and Clissue distribution roughly symmetrical
neart and smooth muscle
ndikace: antiarrhythmic, antihyperten
rather rarely), local vasodilatant
Dverdose – effect main Fissue distribution roughly sy
Fissue distribution roughly sy
neart and smooth muscle
ndikace: antiarrhythmic, anti
rather rarely), local vasodilat
Dverdose – effect mainly on
- SA arrest and block
– AV block
– Low contrac Fissue distribution roughly symmeart and smooth muscle
ndikace: antiarrhythmic, antihype
rather rarely), local vasodilatant
Dverdose – effect mainly on the s
– SA arrest and block
– AV block
– Low contractility
– Long QT m heart and smooth muscle

Indikace: antiarrhythmic, antihypertenzive

rather rarely), local vasodilatant

Dverdose – effect mainly on the slow cells

- SA arrest and block

- NV block

- Low contractility

- Long QT may som
- -
	-
	-
	-

ECG in calcium levels changes

Practical

