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Evolutionary medicine is the study of
how evolutionary processes have
produced human traits/disease and
how evolutionary principles can be
applied in medicine.

5 ’ Reptiles
. Dinosaurs

Timeline of evolutionary events that determine human
diseases

Evolution and non-genetic adaptation to enviromental
changes - lifestyle changes and the effect of cultural
evolution

Evolutionary pressure and adaptation in other animal
species

Evolutionary trade-offs and and civilization diseases



A timeline of evolutionary events =

,—‘ Deep evolutionary past }—\

e Self-replicating molecules
e Asymmetric cell division

Immune system
development

Multicellularity ’ ‘ Placentation

Divergence from
chimpanzee

I Recent human evolution I

Anatomically
modern humans

e Agriculture
e Urbanization

Population

e Bipedalism
® Increased brain size
e Gene duplications

QOut-of-Africa
bottleneck

Neanderthal
and Denisovan
introgression

expansion and
migration;
modern
environments

* Ageing

e Genetic disease Cancer Pre-eclampsia

¢ Autoimmune diseases
e Sickle cell disease
e Asthma

e Schizophrenia

e Autism spectrum disorder

e Epithelial cancers
e Pathogen response

Decreased genetic
diversity in non-Africans

¢ Allergies

e Neuropsychiatric disorders

e Chronic kidney
disease

e Obesity

 Type 2 diabetes

e HIV-1/AIDS

e Ulcerative colitis

e Coeliac disease

A timeline patterns of human disease risk 2




Evolutionary medicine and genetic diseases

How evolutionary medicine explains complex genetic diseases

1. natural selection does not result in perfect bodies but
operates on relative reproductive fitness

2. mismatch between our biological legacy and our modern
environments

3. trade-offs, the idea that there are combinations of traits that
cannot be simultaneously optimized by natural selection

4. evolutionary conflicts. Traits expressed by complex metazoans
are a balanced compromise between different genetic
elements and bodily systems
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The influence of evolutionary history
on human health and disease

Mary Lauren Benton'-?, Abin Abraham?®*, Abigail L. LaBella?*, Patrick Abbot®,
Antonis Rokas('*5 and John A. Capra('56%




The evolutionary necessity of disease /
the impact of environment

Reaction norms

Representations of how the expressed phenotype for a genotype varies in response
to a range of environments.

A = | genotypes lead to disease in all environments
st B = | Most diseases fall between these
é C | extremes (lines B and C)
S D = | specific pairing of environment and genotype
v )
2

g

Viewing disease through the lens of evolution provides
a flexible and powerful framework for defining and
classifying disease.

EVOLUTIONARY
Environment ——MEDICINE———




Gene-centered view of evolution

natural selection does not result in perfect bodies but operates on
relative reproductive fitness

"Selfish gene theory"

"We are survival machines -

robot vehicles blindly programmea
to preserve the selfish molecules

known as genes "
RICHARD DAWKINS

e Altruism, cooperation, suicide
* Transposons, genetic waste information
* Sexual selection vs. Natural selection



Interbreeding between archaic and modern

humans
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Cultural evolution ™Y

is the idea that human cultural change—that is, changes in socially Saplens
transmitted beliefs, knowledge, customs, skills, attitudes, languages, A Brief
and so on—can be described as a Darwinian evolutionary process History of

Humankind

Unlike animals, the survival of humans is currently much less
determined by their genetic information.

Much more important to human evolutionary fitness has
become information obtained non-genetically

Neolithic revolution, cooperation and cultural evolution

Slaves to wheat: How a
grain domesticated us




THE LANCET

Dietary carbohydrate intake and mortality: a prospective
cohort study and meta-analysis

Sara B Seidelmann, Brian Claggett, Susan Cheng, Mir Henglin, Amil Shah, Lyn M Steffen, Aaron R Folsom, Eric B Rimm, Walter C Willett,
Scott D Solemon

@ ® Associations of fats and carbohydrate intake with
- cardiovascular disease and mortality in 18 countries from
five continents (PURE): a prospective cohort study

Mahshid Dehghan, Andrew Mente, Xiache Zhang, Sumathi Swaminathan, Wei Li, Viswanathan Mohan, Remaina Igbal, Rajesh Kumar,
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Mechanisms of evolutionary adaptations in different animal species
The traits related to common human diseases

* Cancer

* Ageing

* Pathogen/infection resistance




Cancer and Peto's paradox

* theincidence of cancer does not appear to correlate with
the number of cells in an organism

* |In order to build larger and longer-lived bodies, organisms
required greater cancer suppression.
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Cancer Rate
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Body size vs. risk of cancer
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Gene Quantity in Cancer
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Balance of protein production and its regulation

Interspecies and intraspecies
Infection competition
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AMPK signalling

y4 \ ) JUTRY Low Glucose,

QR Hypoxia, Ischemia,
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https://www.cellsignal.com/pat
hways/ampk-signaling-pathway



{P Qrowth Factors, Qlucose
Hormones, fﬂﬁﬁﬁﬁb

Cytokines, etc.

mTOR and growth factor signalling
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Autophagy

Macroautophagy
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How can we affect protein homeostasis ?

* Georges Nogrady was trying to understand why the inhabitants of
Easter Island, despite walking around barefoot

* The Ayerst Pharmaceuticals team was able to identify a new
antifungal compound in the soil samples that was produced by the
bacterium Streptomyces hygroscopicus

* Identification of the mTOR Signaling Network
* Rapamycin’s eventual development into a clinical compound

(Rapamune), used to prevent organ transplant rejection and
treatment for some cancers

O_ Treat cancer Immunosuppression
Prolonged lifespan m Impaired healing

OH
o} L O /;[
A rapamycin |

https://www.bio-rad-antibodies.com/blog/history-of-rapamycin.html




Gompertz—Makeham law of mortality

Estimated probability of a person dying at

each age, for the U.S. in 2003. Mortality rates Probability\of death

increase exponentially with age after age 30.
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The Gompertz—Makeham law states that the human death rate is the sum of an age-
dependent component (the Gompertz function, named after Benjamin Gompertz),
which increases exponentially with age and an age-independent component (the
Makeham term, named after William Makeham).



Naked mole rats defy the biological law of aging
(Heterocephalus glaber)

In contrast to the mortality
hazards of other mammals,
which increased with
chronological age, the
mortality hazard of naked
mole-rats remained constant.

rarely get cancer

resistant to some types of pain
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Survivorship
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Mechanisms of innate immunity
(fast but non-specific response)

Detection of pathogenic microorganisms
* Membrane receptors
* Intracellular receptors of foreign nucleic acids
* Cytokine signalling

!

Intracellular signalling pathways

!

Activation of transcription / gene expression
* Expression of cytokines
* Activation of specificimmune response
* Elimination of microorganisms
* Use of gene




Mechanisms of innate immunity
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APOBEC family members

* APOBEC ("apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like") is a family
of evolutionarily conserved cytidine deaminases.

* Discovered due to their ability to eliminate HIV infection

*  When misregulated, are a major source of mutation in numerous cancer types.

* AIDis a part of adaptive immunity; it is responsible for hypermutation of variable
immunoglobulin regions in lymphocytes

APOBEC1
T’ERNAeditin APOBEC2
NH: HO NH, o ” APOBEC3A
H
e - A3Z1 APOBEC3B
N - N A3Z1
| C | U ' APOBEC3C
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N~ O N~ O , ; APOBEC3D
Immunity
| | APOBEC3F
WSS L YU\ =
m" E Adaptive APOBEC3H
wza}t iImmunity APOBEC4

AID (activation induced deaminase)



viruses

m\p\py The results suggest that the heterogeneous mutation

Article

The Mutation Profile of SARS-CoV-2 Is Primarily Shaped by
the Host Antiviral Defense

Cem Azgari 7, Zeynep Kilinc
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Mutation Type

Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier.com/locate/ybbrc

Host-directed editing of the SARS-CoV-2 genome

Tobias Mourier * ™', Mukhtar Sadykov *', Michael J. Carr ¢, Gabriel Gonzalez ™,
William W. Hall > ¢, Arnab Pain * ¢~

 King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering
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% Cotologue Of Somatic Mutations In Cancer

Signatures of Mutational Processes in Human
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ROS can oxidize guanine to oxoguanine,
which pairs with A, leading to G-to-U
changes.

Valyi-Nagy and Dermody (2005);

Smith (2017); Graudenzi et al. (2020)

APOBEC can deaminate cytosine to uracil,
leading to C-to-U changes

When: After replication, before packaging
Salter et al. (2016); Di Giorgio et al. (2020)

ADAR can deaminate adenine to inosine (I), which pairs
with cytosine, leading to A-to-G changes

When: During replication

Placido et al. (2007); Bass (2002)
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Six reference-quality genomesreveal
evolution ofbat adaptations
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M Check for updates

Loss of genes in NF-kB signalling pathway Expansion of the APOBEC3 gene locus
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