MUNI MED

Masaryk University GRADE Workshop

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

Session 1: Introduction to GRADE

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

GRADE centers

McMaster University GRADE Center, Canada Lanzhou University GRADE Center, China Barcelona GRADE Center, Spain Freiburg GRADE Center, Germany American University of Beirut GRADE Center, Lebanon Lazio Region-ASL Rome GRADE Center, Italy JBI Adelaide GRADE Centre, Australia Melbourne GRADE Centre, Australia Nottingham Ningbo GRADE Center, China Masaryk University GRADE Center, China Krakow University GRADE Center, Poland Minds Tokyo GRADE Center, Japan

GRADE networks

U.S. GRADE Network Dutch GRADE Network UK GRADE Network South African GRADE Network

Groups and projects

DECIDE research project

Environmental health Prognosis Outcomes valuation **GRADE-CERQual** Diagnosis Network meta-analysis Observational studies GRADE training and credentialing Public health Rare diseases Evidence to decision Equity Algorithms and pathways Modeling Biosimilars Animal studies Complex interventions GRADE NRS risk of bias integration

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Institute of Medicine

- Be based on a Systematic review of the existing evidence; best available evidence
- Be developed by a knowledgeable, multidisciplinary panel of experts and representatives from key affected groups; **diverse group**
- Consider important patient subgroups and patient preferences as appropriate;
 patient values
- Provide a clear explanation of the logical relationships between alternative care options and health outcomes, and provide ratings of both the quality of evidence and the strength of recommendations; and
- Be reconsidered and revised as appropriate when important **new evidence** warrants modifications of recommendations.
- Be based on an explicit and transparent process that **minimizes** distortions, biases, and **conflicts of interest**;

CLINICAL PRACTICE GUIDELINES WE CAN TRUST

OF THE NATIONAL ACADEMICS

he Czech Republic (Middle European) entre for Evidence-Based Healthcare

Guidelines 2.0: systematic development of a comprehensive checklist for a successful guideline enterprise. CMAJ. 2014 Feb Institute of Biostatistics and Analyses Czech Revision Agentic 23-42.

for Evidence-Placed Healtheare

Masaryk University GRADE

Centre for Evidence-Based Healthcare

Who are GRADE?

- Grading of Recommendations Assessment, Development and Evaluation (GRADE)
- International working group
- Endorsed by many EBHC organisations
- Website: <u>http://www.gradeworkinggroup.org/</u>

he Czech Republic (Middle European) entre for Evidence-Based Healthcare

After over 20 years of increasing confusion, GRADE developed a unifying, transparent and sensible system for grading the certainty of evidence and making decisions

- WHO, NICE, CDC, AHRQ, JBI, Cochrane, professional societies, academic institutions since 2000 – over 120 use GRADE
- For systematic reviews, HTA and guidelines
- International & diverse contributors (>800), regular workshops at GIN, Cochrane, WHO, JBI
- 2004/2008 BMJ series; 2011 JCE series: > 60,000 cites
- Various other publications (incl. GRADE Handbook)
- IT applications

History of GRADE

- Began as an informal working group in 2000
- Informal collaboration of researchers/guideline developers with interest in methodology
- Purpose: to develop a common system for grading the quality (certainty) of evidence and the strength of recommendations that is transparent and sensible

he Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Over 100 organisations From 19 countries

evalmed	 a do Tyrkothanopeut b a do Tyrkothanopeut b an bot sony in Rour house 	American Brogeneoologic Society	CDC 🜮	1 Helsedirektaratet	east	nederlands hultaritien genaatischa
Gerranden	American Red Cross	SAI	fraser health Mercuit bestudies		CERAM Representation matteries	Texas Children' Hospital
North Shore LIJ	Trimbos instituut Neturinde suitpar of Neturi really and addeman		China balan ngan	Belgian Red Cross		<u></u>
the passes makes with the		ERBP	CANADIAN MEN'S HEALTH Foundation	trans-evidence	COMALSHOBBLEGGER	Annue as Contact or Runtationate
DynaMed Plus	No the later means	Ereptit Carentision	AALEODE EMITTERITY DESIMATE	ACCOG THE AMERICAN CONGRESS OF OBSTETRICANS AND CINECOLOGISTS		bsg BRITISH SOCIETY OF GARTOCHTEROLOGY
JBI 🦲	The C Centr	Czech Republic (Midd re for Evidence-Basec	le European) I Healthcare	Masaryk l		

 JBI and Cochrane explicitly endorse the use of GRADE methods and require GRADE

More than 100 organizations from 19 countries around the world have endorsed or are using GRADE.

-New-	All	Asia	Europe	International	North America	Ocea

Methodological Expectations of Cochrane Intervention Reviews (MECIR) Assessing the quality of evidence and summarizing the findings

Standard	Rationale and Elaboration
C74 Assessing the quality of the body of evidence	Mandatory
Use the five GRADE considerations (risk of bias, consistency of effect, imprecision, indirectness and publication bias) to assess the quality of the body of evidence for each outcome, and to draw conclusions about the quality of evidence within the text of the review.	GRADE is the most widely used approach for summarizing confidence in effects of interventions by outcome across studies. It is preferable to use the online GRADEpro tool, and to use it as described in the help system of the software. This should help to ensure that author teams are accessing the same information to inform their judgments. Ideally, two people working independently should assess the quality of the body of evidence and reach a consensus view on any downgrading decisions. The five GRADE considerations should be addressed irrespective of whether the review includes a 'Summary of findings' table. It is helpful to draw on this information in the Discussion, in the Authors' conclusions and to convey

the certainty in the evidence in the Abstract and Plain language

See Handbook 12.2

summary.

Institute of Biostatistics and Analyses **Czech National Centre** for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Masarvk University GR

25

In the Czech Republic – Guideline Developers

Evropská unie

Evropský sociální fond

V ČR 🔛 😕 🙋 🔁

(iiii)) A7

MINISTERSTVO ZDRAVOTNICTVÍ

Masarvk University

In the Czech Republic – Guideline Developers

Souhrn a klasifikace kvality vědeckých důkazů dle přístupu a metodiky GRADE

Přístup GRADE (*The Grading of Recommendations Assessment, Development and Evaluation*) umožňuje třídit vědecké důkazy, zhodnotit jejich kvalitu a tvořit doporučení (Atkins et al., 2004; Guyatt, Oxman, Kunz, Vist, et al., 2008; Guyatt, Oxman, Vist, et al., 2008).

To be trustworthy evidence informed guidelines will:

- Be ADOLOPED (If they use GRADE methods)
- Newly developed following Czech national methodology which is baased on the GRADE
- Be informed by well contucted systematic reviews
- Consider the body of evidence for each outcome (including the quality of that evidence) and other factors that infuence the process of making recommendations including benefits and harms, values and preferences, resource use and acceptability

иј зоинти чецескуси цикази ше ризнири ОКЛИЕ

Závěrečným bodem systematického review či HTA dokumentující pouze vědecké důkazy je tzv. souhrn vědeckých důkazů "*Summary of evidence*", hodnocení kvality každého každého výstupu "*quality rating for each outcome*" a odhad účinnosti "*estimate of effect*". Pro tvůrce KDP a HTA, která obsahují doporučení pro tvůrce politik, představuje souhrn vědeckých

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Zde předložený dílčí metodický postup byl vypracován jako část celkové metodiky s cílem vytvořit pracovní materiál pro tvůrce KDP. Během tvorby pilotních KDP lze předpokládat částečné změny či korekce metodiky finální verze metodiky projde finálním recenzím řízením.

扃AZV C

Metodické nostuny nro vytvoření a

Evropský sociální fond Operační program Zaměstnanost

Verze 2.0, duben 2018 Součást projektu: Klinické doporučené postupy Autoři: PhDr. Miloslav Klugar, Ph.D., doc. PhDr. Andrea. Pokorná, Ph.D., Mgr. Jitka Klugarová, Ph.D., MUDr. Radim Ličenik, Ph.D., RNDr. Jan Mužik, Ph.D., Mgr. Dana Dolanová, Ph.D., RNDr. Martin Komenda, Ph.D., RNDr. Jakub Gregor Ph.D., doc. RNDr. Ladislav Dušek, Ph.D.

Session 2: Why GRADE?

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

GOBSAT Method

- 'Good old boys sat around the table'
- Initial approach to development of recommendations within guidelines
- Based on expert opinion, powerful figures, eminence based medicine

Institute of Biostatistics and Analyses

Czech National Centre

for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Clinical Practice guidelines & the

odi

origin of evidence appr

Effectiveness of intervention

The effectiveness of intervention was graded according to the quality of the evidence obtained, as follows:

I: Evidence obtained from at least one properly randomized controlled trial.

II-1: Evidence obtained from well designed cohort or case-control analytic studies, preferably from more than one centre or research group.

II-2: Evidence obtained from comparisons between times or places with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin in the 1940s) could also be regarded as this type of evidence.

III: Opinions of respected authorities, based on clinical experience, descriptive studies or reports of expert committees.

*Chairman of epidemic McGill United

Classification of recommendations

On the basis of these considerations the task force made a clear recommendation for each condition as to whether it should be specifically considered in a periodic OPCE REPtions were classified as follows: A: There is health examination. Recommenda-

A: There is good evidence to support the recommendation that the condition be specifically considered in a periodic health examination.

B: There is fair evidence to sup-NAL/NOVEMBER 3, 1979/V port the recommendation that the condition be specified. in a periodic health examination.

> C: There is poor evidence regarding the inclusion of the condition in a periodic health examination, and recommendations may be made on other grounds.

alth KCE ON THE PERIOD port the recommendation that the D: There is fair evidence to supneral, research program deration in a periodic health examin-

ow director, departmen ation. ow director, user Cane E: There is good evidence to hiology, provincial Ms. support the board, formerly resear the condition he condition he doard, Edmonitor, resear the condition be excluded from con-

itions and a mmendations exclusion of conditions in mination; a set Ith protection eration of reelating to the instion: a dis-

Institute of Biosta **Czech National Ce** for Evidence-Base

Levels of Evidence

Designate study types

Czech National Centre

for Evidence-Based Healthcare

- Better study designs, with greater methodological quality, are ranked higher
- Assigned to findings of research

Grades of Recommendation

- Assist in applying research into practice
- Recommendations assigned a 'Grade'

						Table: Grade of re	ecommendation	n and levels of evidence.	
		CDADES		Table I – Classificati	on of the proc	edures	n Levels of	Types of	
	Why GRADE?					cuires	evidence	study	
	Adjustment Description by Type of Question		Class I Conditions for which conclusive evidence exists, or in its absence, ge neral consensus that the procedure is useful or effective, or both.			, or in its absence, ge ffective, or both.	1 1a	Systematic review of homogeneous RCTs with good	
Level	Aujustment	Description by Type of Questio	Class II Conditions for which conflicting evidence or divergence of opinion, or both, exists in regard to usefulness/efficacy of the procedure. Class IIA Weight or evidence/opinion favoring usefulness/efficacy.			argance of opinion or		methodological quality	
	а	SR (with homogeneity) of prospective cohort				e procedure.	1b	Individual RCIs with narrow confidence intervals	
1	b	Prospective cohort study with good follow-up				fulness/efficacy.	2	Uncontrolled studies (dramatic findings)	
	с	All or none case-series	Class IIE	Class IIB			2a	Systematic review of cohort studies (with	
	а	SR (with homogeneity) of 2b and better studie	Usefulness/efficacy less well-established by evidence or opinion. Class III				2b	homogeneity) Individual cohort studies (including low quality	
2	b	Retrospective cohort study, or poor follow-up	Condition procedure	s for which evidence of is not useful/efficient, a	r consensus, or nd, in some cas	both, exists that the es, it may even be	2.	RCTs, e.g. <80% follow-up)	
	с	Ecological studies	noxious. Adapted fi	noxious. Adapted from the criteria used in the guidelines of the American College		20	Uncontrolled conort studies/ecological studies		
3	а	SR (with homogeneity) of 3b and better studie	of Cardio	logy/American Heart A	ssociation.	nencan nearr As	sociation C	Suctematic review of case control studies (with lassification Of Recommendations And	
	b	b Non-consecutive cohort study, or very limited µ		Dopulation Level Of Evidence					
4		Case-series or superseded reference standards		s Rich body of Levels of Evidence					
5		Expert opinion without explicit critical appraisal, or		quality RCT	Level A	Multiple populat ized controlled t	tions evaluat trials or meta	ted. Data derived from multiple random- a-analyses.	
Adapted from: Oxford Centre for Evidence-based Medicine Levels of Evidence (May 2001), http://w			//www.cebm.net/	Limited body (data or high-q	Level B	Limited populati ized trial or non	ions evaluat randomized	ed. Data derived from a single random- studies.	
III-2 Evidence obtained from comparative studies with concurrent controls and allocation not randomised (cohort studies), case-control studies, or interrupted time series without a control group.			в	non-RCT d	Level C	Very limited pop perts, case stud	oulations eva lies, or stand	aluated; only consensus opinion of ex- dard of care	
III-3 Evidence obtained from comparative studies with historical control, two or more single-arm studies, or interrupted time series with a parallel control group.			С			of Evidence			
single-ann studies, or interrupted time series with a paraller control group.			Limited evide	Clase	Bonofit >>> P	>> Disk			
IV Evidence obtained from case series, either post-test or pre-test and post-test.			С		Class II.	Denefit >>> R			
				•	Class IIa	Denetit >> Ris	SK		

No evidence a

Benefit ≥ Risk

D

Quality of evidence

STUDY DESIGN

- Randomized Controlled Trials
- Cohort Studies and Case **Control Studies**
- Case Reports and Case Series, Non-systematic observations

Expert Opinion

Institute of Biostatistics and Analyses **Czech National Centre** for Evidence-Based Healthcare

Schünemann & Bone, 2003

BIAS

he Czech Republic (Middle European)

Expert Opinion

'Eventually, the traditional hierarchies of evidence started to fall apart due to attempts to fit too many elements as well as a lack of standardization. Now, we have to move on to a new phase of trying to unify the principles'

Guyatt, Gordon, Victor Montori, Holger Schünemann, and Paul Glasziou. "When Can We Be Confident about Estimates of Treatment Effects?." The Medical Roundtable General Medicine Edition (2015).

he Czech Republic (Middle European) entre for Evidence-Based Healthcare

Systems for grading the quality of evidence and the strength of recommendations I: Critical appraisal of existing approaches The GRADE Working Group

David Atkins, Martin Eccles, Signe Flottorp, Gordon H Guyatt, David Henry, Suzanne Hill, Alessandro Liberati, Dianne O'Connell, Andrew D Oxman, Bob Phillips, Holger Schünemann, Tessa Tan-Torres Edejer, Gunn E Vist , John W Williams Jr and The GRADE Working Group³

BMC Health Services Research 2004 4:38 | DOI: 10.1186/1472-6963-4-38 | © Atkins et al; licensee BioMed Central Ltd. 2004 Received: 23 January 2004 | Accepted: 22 December 2004 | Published: 22 December 2004

Open Peer Review reports

Abstract

Background

A number of approaches have been used to grade levels of evidence and the strength of recommendations. The use of many different approaches detracts from one of the main reasons for having explicit approaches: to concisely characterise and communicate this information so that it can easily be understood and thereby help people make well-informed decisions. Our objective was to critically appraise six prominent systems for grading levels of evidence and the strength of recommendations as a basis for agreeing on characteristics of a common, sensible approach to grading levels of evidence and the strength of recommendations as a basis for agreeing on characteristics of a common,

IN UNI Czech National Centre for Evidence-Based Healthcare

Centre for Evidence-Based Healthcare

Forming recommendations with GRADE

NUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Our certainty in the evidence

- If not by study design:
 - How can we ascertain the 'quality' of the evidence?
 - What impacts our 'confidence' regarding the evidence?

Activity 1: Example meta-analysis discussion

 From the example provided, what information would increase or decrease your confidence in these results?

Study or subgroup	CHYMOPAPAIN	PLACEBO	Odds Rati M-	o Weight	Odds Ratio M-	Waddell G.
	n/N	n/N	H,Kandom,95) Cl	%	H,Kandom,957 Cl	interventions
Dabezies 1988	18/87	38/86		26.3 %	0.33 [0.17, 0.64]	for lumbar
Feldman 1986	9/20	14/19		13.6 %	0.29 [0.08, 1.13]	disc prolapse.
Fraser 1982	I 3/30	21/30		18.0 %	0.33 [0.11, 0.95]	Cochrane Database of
Javid 1983	11/55	28/55	_ _	22.3 %	0.24 [0.10, 0.56]	Systematic Reviews
Schwetschenau 1976	17/31	16/35		19.7 %	1.44 [0.55, 3.81]	2007, Issue
Total (95% CI) Total events: 68 (CHYMOP: Heterogeneity: Tau ² = 0.27;	223 APAIN), 117 (PLACEBO) ; Chi ² = 8.73, df = 4 (P = 0	225 0.07); I ² =54%	•	100.0 %	0.40 [0.22, 0.75]	2. Art. No.: CD001350. DOI: 10.1002/146
Test for overall effect: $Z = 2$	2.85 (P = 0.0044)					51858.CD00 1350.pub4.)
		Fave	0.05 0.2 I 5 burs chymopapain Favoi	20 urs placebo		ryk University

Czech National Centre

Cochrane

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

GRADE

Meta-analysis forest plot "referesher"

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Discussion results

- Increase:
- Heterogenita nižší
- Novější studie

- Decrease:
- Střety zájmů
- Kde publikováno, kým
- fulltexty studií srovnatelnost intervence a populace, zdrav. prostředí
- Metodologie meta-analýzy
- Vyšší počet pacientů
- Více studií
- Efekt velikost
- Cl užší

GRADE

- Decrease
 - Limitations in study design and execution (risk of bias)
 - Indirectness (i.e applicability, generalisability, transferability etc)
 - Inconsistency (heterogeneity)
 - Imprecision (uncertainty)
 - Publication bias

- Increase
 - Large, consistent, precise effect
 - All plausible biases underestimate the effect
 - Dose response effect

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Session 3: Introduction to the GRADE approach

NUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Key principle

- Important to communicate
 - Results

• Our certainty in these results?

Study or subgroup	CHYMOPAPAIN	PLACEBO	Odds Ratio M-	Weight	Odds Ratio M-
	n/N	n/N	H,Kandom,95% Cl		H,Random,95%
Dabezies 1988	18/87	38/86		26.3 %	0.33 [0.17, 0.64]
Feldman 1986	9/20	14/19		13.6 %	0.29 [0.08, 1.13]
Fraser 1982	13/30	21/30		18.0 %	0.33 [0.11, 0.95]
Javid 1983	11/55	28/55		22.3 %	0.24 [0.10, 0.56]
Schwetschenau 1976	17/31	16/35		19.7 %	1.44 [0.55, 3.81]
Total (95% CI)	223	225	•	100.0 %	0.40 [0.22, 0.75]
Total events: 68 (CHYMOP	APAIN), 117 (PLACEBO)				
Heterogeneity: Tau ² = 0.27	; $Chi^2 = 8.73$, $df = 4$ (P = 0.0	07); I ² =54%			
Test for overall effect: $Z = 2$	2.85 (P = 0.0044)				
			0.05 0.2 I 5 20		
		Favo	ours chymopapain Favours placebo	0	

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare Cochrane

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Certainty of evidence

How confident in the research?

- Are the research studies well done? Risk of bias
- Are the results consistent across studies ? Inconsistency
- How directly do the results relate to our question? Indirectness
- Is the effect size precise due to random error? Imprecision
- Are these all of the studies that have been conducted? Pub. Bias
- Is there anything else that makes us particularly certain? Large effects, worst case scenario predictors still strong conclusions, exposure-effect relation

he Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Certainty/quality/ confidence in the evidence

> Masaryk University GRADE

Czech National Centre for Evidence-Based Healthcare

report (Reprinted by permission from the Wall Street

Determinants of certainty in a body of evidence: GRADE

- A body of evidence starts as: high | $\oplus \oplus \oplus \oplus$
- 5 factors that can lower certainty
 - 1. Risk of bias criteria
 - Lack of randomization (observational studies) lowers confidence to low
 - 2. Inconsistency (or heterogeneity)
 - 3. Indirectness (PICO and applicability)
 - 4. Imprecision
 - 5. Publication bias
- 3 factors can increase certainty
 - 1. large magnitude of effect
 - 2. opposing plausible residual bias or confounding
 - 3. dose-response gradient

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

he Czech Republic (Middle European) entre for Evidence-Based Healthcare

Hodnocení jistoty důkazů

Určení počáteční úroveň

spolehlivosti

Design studie	Prvotní spolehlivost odhadu účinku
Randomizované	Vysoká
kontrolované studie	spolehlivost
Observační studie	Nízká
	spolehlivost

Posouzení snížení či zvýšení stupně

spolehlivosti

Důvody pro snížen	í či zvýšení stupně
kvality vědec	kého důkazu
Snížující faktory	Zvyšující faktory
Riziko zkreslení	Velký rozsah
výsledků	účinnosti
Nekonzistence	Gradient dávky a
Nepřímost	odezvy
Nepřesnost	Věrohodné matouci
Publikační zkreslení	faktory:
	 by snižovaly prokázanou účinnost,
	• by
	naznačovaly falešnou účinnost v případě že
	nebyla žádná účinnost

zjištěna.

5. Finální úroveň spolehlivosti Spolehlivost odhadu účinku na základě těchto posouzení Vysoký $\oplus \oplus \oplus \oplus$ Střední $\oplus \oplus \oplus \ominus$ Nízký $\oplus \oplus \ominus \ominus$ Velmi nízký $\oplus \Theta \Theta \Theta$

Czech National Centre for Evidence-Based Healthcare ₹

Centre for Evidence-Based Healthcare

Lowering certainty in Studies

Table: GRADE's approach to rating certainty/quality of evidence (aka confidence in effect estimates)

For each outcome based on a systematic review and across outcomes (lowest quality across the outcomes critical for decision making)

MUNI Institute of Biostatistics and Analyses Czeer Mattona Poentre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Altering certainty of observational studies not assessed with ROBINS

 Table: GRADE's approach to certainty/rating quality of evidence (aka confidence in effect estimates)

 For each outcome based on a systematic review and across outcomes (lowest quality across the outcomes critical for decision making)

MUNI Institute of Riostatistics and Analyses Czech Wational Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

GR

F

Framing questions and selecting outcomes

- Use PICO for your SR or Guideline question/s
- Include a range of outcomes, addressing benefit and harms
 - SRs often miss harms, guideline panels need to consider all outcomes for decision making
- Should include all potential patient-important outcomes
 - Classify outcomes regarding importance for decision making:
 - Critical
 - Important but not critical
 - Of limited importance

an) re

Activity 2: Classifying outcomes

• Turn to your workbook and begin activity 2.

Have you thought about....?

- What would be important for someone making a decision?
- Have you considered benefits as well as harms?
- What outcomes are likely included in studies, and what may be missed?
- What outcomes should be included in a summary of findings table or evidence profile?

Activity 2: Example outcomes

• Outcomes

• Ranking

- Mortality (all cause)
- Infection (deep sternal or other)
- Length of stay
- Time on mechanical ventilation
- Acute renal failure
- Stroke
- Hypoglycaemic episode
- Health related quality of life
- Weight gain

Activity 2: Example outcomes

Outcomes

• Ranking

- Mortality (all cause)
- Symptomatic VTE
- Major bleeding
- Minor bleeding
- Thrombocytopenia
- Quality of life

GRADE is outcome-centric

- Previously, rankings were done on a study basis
- GRADE evaluations focus on the evidence relating to an outcome
- Different outcomes have different rankings

GRADE is outcome-centric

Other systems

GRADE

"GRADE is much more than a rating system. It offers a transparent and structured process for developing and **presenting evidence summaries** for systematic reviews and guidelines in health care and for carrying out the steps involved in *developing recommendations*. GRADE specifies an approach to *framing questions, choosing outcomes* of interest and rating their importance, evaluating the evidence, and incorporating evidence with considerations of values and preferences of patients and society to arrive at recommendations. Furthermore, it provides clinicians and patients with a **guide to using those recommendations** in clinical practice and policy makers with a guide to their use in health **policy.**" JCE, 2011

Session 4: Determining quality (certainty) of the evidence

What does this mean?

- High quality: We are very confident that the true effect lies close to that of the estimate of the effect
- Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
- Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
- Very low quality: We have very little confidence in the effect estimate: The

true effect is likely to be substantially different from the estimate of effect

NUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

What is the effect?

Mortality

The odds for mortality are 0.79 (95% CI 0.57-1.09) of that in the experimental group compared to the control group

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare GRADE

Misinterpretation of effects

Mortality

	Experim	ental	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Asida 2012	1	50	4	50	4.7%	0.23 [0.03, 2.18]	· · · · · · · · · · · · · · · · · · ·
Desai 2012	7	91	10	98	10.7%	0.73 [0.27, 2.02]	
Gandhi 2007	54	185	59	186	50.4%	0.89 [0.57, 1.38]	— — —
Lazar 2011	12	40	16	42	13.2%	0.70 [0.28, 1.75]	
Rujirojindakul 2014	17	99	21	100	20.9%	0.78 (0.38, 1.59)	
Total (95% CI)		465		476	100.0%	0.79 [0.57, 1.09]	•
Total events	91		110				
Heterogeneity: Chi² = Test for overall effect: .	1.50, df = 4 Z = 1.41 (F	4 (P = 0. P = 0.16)	83); I² = ())%			0.1 0.2 0.5 1 2 5 10 Favours [experimental] Favours [control]

🔗 Contents 🧿 Search	- Search - 🔁 🔿
🕞 🕤 🛛 🕅	Home > Part 2: General methods for Cochrane reviews > 12 Interpreting results and drawing conclusions > 12.4 Interpreting results of statistical analyses > 12.4.2 P values and statistical significance
Handbook information Part 1: Cochrane reviews Part 2: General methods for Cochrane revi	12.4.2 P values and statistical significance
 5 Defining the review question and de 6 Searching for studies 7 Selecting studies and collecting data 8 Assessing risk of bias in included students 	A P value is the probability of obtaining the observed effect (or larger) under a 'null hypothesis', which in the context of Cochrane reviews is either an assumption of 'no effect of the intervention' or 'no differences in the effect of intervention between studies' (no heterogeneity). Thus, a P value that is very small indicates that the observed effect is very unlikely to have arisen purely by chance, and therefore provides evidence against the null hypothesis. It has been common practice to intervent a P value by examining whether it is smaller than particular threshold values. In particular, P values less than 0.05-

P values are commonly misinterpreted in two ways. First, a moderate or large P value (e.g. greater than 0.05) may be misinterpreted as evidence that "the intervention has no effect". There is an important difference between this statement and the correct interpretation that "there is not strong evidence that the intervention has an effect". To avoid such a misinterpretation, review authors should always examine the effect estimate and its 95% confidence interval, together with the P value. In small studies or small meta-analyses it is common for the range of effects contained in the confidence interval to include both no intervention effect and a substantial effect. Review authors are advised not to describe results as 'not statistically significant' or 'non-significant'.

	Box 12.8.a: The Cochrane Applicab	an effect of a particular magnitu	ide will be greater (the P value	will be smaller) in a larger study	than in a smaller study.	
1	12.9 References					
Part 3	Special tonics					

The second misinterpretation is to assume that a result with a small P value for the summary effect estimate implies that an intervention has an important benefit. Such a misinterpretation is more likely to occur in large studies, such as metaanalyses that accumulate data over dozens of studies and thousands of participants. The P value addresses the question of whether the intervention effect is precisely nil; it does not examine whether the effect is of a magnitude of importance to potential recipients of the intervention. In a large study, a small P value may represent the detection of a trivial effect. Again, inspection of the point estimate and confidence interval helps correct interpretations (see Section <u>12.4.1</u>).

732 North Washington Street, Alexandria, VA 22314 • (703) 684-1221 • Toll Free: (888) 231-3473 • www.amstat.org • www.twitter.com/AmstatNews

The statement's six principles, many of which address misconceptions and misuse of the *p*-value, are the following:

- 1. P-values can indicate how incompatible the data are with a specified statistical model.
- P-values do not measure the probability that the studied hypothesis is true, or the probability that the data were produced by random chance alone.
- Scientific conclusions and business or policy decisions should not be based only on whether a p-value passes a specific threshold.
- 4. Proper inference requires full reporting and transparency.

for Evidence-Based Healthcare

- A p-value, or statistical significance, does not measure the size of an effect or the importance of a result.
- 6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

ealthcare

Key takeaways

- 1. The CI obtained provides a range of uncertainty
- 2. The point estimate and confidence interval provide information to assess the clinical usefulness of the intervention.
- 3. 'Not statistically significant' does not equal 'no effect'
- 4. If review authors decide to present a P value with the results of a meta-analysis, they should report a precise P value, together with the 95% confidence interval. (Cochrane Handbook)

GRADEing the evidence

- Pre-ranking
 - Evidence from RCTs start as high, Observational studies as low
- Quality of evidence ranges from
 - High
 - Moderate
 - Low
 - Very low
- Can be downgraded 1 or 2 points for each area of concern
- Maximum downgrade of 3 points overall

GRADE domains	Rating (circle one)	Footnotes (explain judgements)	Certainty of evidence (Circle one)			
Risk of Bias	No serious (-1) very serious (-2)					
Inconsistency	No serious (-1) very serious (-2)		⊕⊕⊕⊕ High			
Indirectness	ess No serious (-1) very serious (-2)					
Imprecision	No serious (-1) very serious (-2)		⊕⊕OO Low			
Publication Bias	ublication Bias Undetected Strongly suspected (-1)					
Other](upgrading factors,	Large effect (+1 or +2) Dose response (+1)					

Session 5: Study limitations (Risk of bias)

MUNI Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

Bias

- A bias is a systematic error, or deviation from the truth, in results or inferences (Higgins & Altman, 2008)
- Bias in research may lead to misleading estimates of effect
- Studies may be at risk of bias due to issues with the conceptualization, design, conduct or interpretation of the study
- There are many different types of bias that can arise in research

Steps to assess risk of bias

- Assess the risk of bias for each study providing data for an outcome
- Use tools appropriate to the question and study design
 - RCTs Cochrane Risk of Bias Tool
 - Non-randomised studies ROBINS-I (Cochrane), NewCastle-Ottawa
 - Diagnostic studies QUADAS
 - Prognostic studies QUIPS
- Consider the risk of bias across all studies providing data for an outcome, decide whether:
 - No concern (do not downgrade)
 - Serious concern (consider downgrade of 1 level)
 - Very serious concern (consider downgrade of two levels)

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Addressing Bias

Type of bias	Method to reduce bias	When and whom
Selection	Randomization Allocation concealment	Patients, trial coordinators/investigators and allocators during the process of screening for inclusion and allocation to groups
Performance	Blinding	Trial participants and those delivering the intervention throughout the trial period
Detection	Blinding	The participant (if self-reported outcomes) or those assessing outcomes at the time of outcome assessment
Attrition	Complete follow-up Intention-to-treat analysis	Trial investigators collecting and analysing data
Reporting	Comprehensive and full reporting of all	Trial investigators and authors following the trial

Type of bias	Description	Relevant domains in Cochrane's 'Risk of bias' tool		
Selection bias.	Systematic differences between baseline	•Sequence generation.		
	characteristics of the groups that are compared.	 Allocation concealment. 		
Performance	Systematic differences between groups in	 Blinding of participants and personnel. 		
bias.	the care that is provided, or in exposure to factors other than the interventions of interest.	 Other potential threats to validity. 		
Detection bias.	Systematic differences between groups in	 Blinding of outcome assessment. 		
	how outcomes are determined.	•Other potential threats to validity.		
Attrition bias.	Systematic differences between groups in withdrawals from a study.	 Incomplete outcome data 		
Reporting bias.	Systematic differences between reported and unreported findings.	•Selective outcome reporting		
Other bias	Stopping trial early	•Other types of bias		
	Invalid outcome measures			
MUNI Institute of Biosta Czech National Ce	Cluster or crossover trial issues	The Czech Republic (Middle European) Centre for Evidence-Based Healthcare		

Overall Risk of Bias

- Use the risk of bias assessment from all studies to determine overall risk of bias
- This can be difficult!

• Discuss with your partner the example in your workbook and come up with the answer. We will then discuss as a wider group.

So how should we do it?

- Can you simply count the number of green dots compared to yellow and red?
 - Rather than an average, consider judiciously the contribution of each study
- What about weighting?
 - Risk of bias of studies providing more weight to the analysis should be considered more
- Should trials with high risk of bias be excluded?
 - Potentially, although may be implications for imprecision

Key principles

- We suggest the following principles:
 - In deciding on the overall quality of evidence, one does not average across studies (for instance if some studies have no serious limitations, some serious limitations, and some very serious limitations, one does not automatically rate quality down by one level because of an average rating of serious limitations). Rather, judicious consideration of the contribution of each study, with a general guide to focus on the high-quality studies, is warranted.
 - The judicious consideration requires evaluating the extent to which each trial contributes toward the estimate of magnitude of effect. This contribution will usually reflect study sample size and number of outcome events larger trials with many events will contribute more, much larger trials with many more events will contribute much more.
 - One should be conservative in the judgment of rating down. That is, one should be confident that there is substantial risk of bias across most of the body of available evidence before one rates down for risk of bias.
 - The risk of bias should be considered in the context of other limitations. If, for instance, reviewers find themselves in a close-call situation with respect to two quality issues (risk of bias and, say, precision), we suggest rating down for at least one of the two.
 - Reviewers will face close-call situations. They should both acknowledge that they are in such a situation, make it explicit why they think this is the case, and make the reasons for their ultimate judgment apparent. (GRADE Handbook)

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Final points

- You still need to assess risk of bias if only one study
- You still need to assess risk of bias if you cannot pool the results
- You still need to assess risk of bias is there is little information regarding the risk of bias

Session 6: Inconsistency

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

Inconsistency of results (unexplained heterogeneity)

- Widely differing estimates of treatment effect
- if inconsistency exists, look for explanation
 - patients, intervention, comparator, outcome
- if unexplained inconsistency lower quality

Identifying heterogeneity

- Heterogeneity can be determined by:
 - Wide variance of point estimates
 - Minimal or no overlap of confidence intervals
 - Statistical tests
 - standard chi-squared test (Cochran Q test)
 - I square value (I2)

Standard chi-squared test (Cochran Q test)

- This tests the statistical hypothesis that the true treatments effects (the effect size parameters) are the same in all the primary studies included in meta-analysis
- If results of the test are statistically significant (P-value <0.1) the statistical hypothesis that the true treatments effects are the same in all the primary studies included in meta-analysis (the hypothesis of homogeneity) is rejected, therefore, it is considered that there is statistical heterogeneity

Standard chi-squared test (Cochran Q test)

- The statistical power of the test is in most cases very low due to the small number of studies; heterogeneity may be present even if the Q statistic is not statistically significant at conventional levels of significance such as 0.05. As such, a cut-off significance level of 0.10 rather than the usual 0.05 has been advocated
- With a small number of studies (< 20), the Q test should be interpreted very cautiously
- It is not appropriate to decide the meta-analysis model based only on the results of the Chi-squared statistical test (Q test) for heterogeneity

I square value (I²)

- A statistic used for quantifying inconsistency in meta-analysis
- I² is a percentage and its value lies between 0% and 100%
- A value of 0% indicates no observed heterogeneity, and larger values show increasing heterogeneity. If I² = 0% this means that all variability in effect size estimates is due to sampling error within studies
- If I²= 50% it means that half of the total variability among effect sizes is caused not by sampling error but by true heterogeneity between studies
- With a small number of studies (< 20), the I² test should be interpreted very cautiously

Interpreting I²

- Generally in regards to heterogeneity:
- < 40% may be low
- 30-60% may be moderate
- 50-90% may be substantial
- 75-100% may be considerable

(GRADE Handbook)

Rule of thumb: less than 30% probably fine, above 30% needs to be investigated

• Turn to your workbook and complete activity 4 with your partner. View the forest plots and decide whether or not you would rate down for inconsistency.

Example Forest Plot

	Experim	ental	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, FIXEG, 95% C
Asida 2012	20	450	13	510	8.6%	1.74 [0.88, 3.46]	
Chan 2009	12	500	24	510	16.7%	0.51 [0.26, 1.01]	
Desai 2012	8	22	1	25	0.7%	9.09 [1.23, 67.06]	
Gandhi 2007	8	185	16	186	11.2%	0.50 [0.22, 1.15]	
Hoedemaekers 2005	50	245	36	250	25.1%	1.42 [0.96, 2.09]	
Lazar 2011	1	100	15	120	9.6%	0.08 [0.01, 0.60]	
Rujirojindakul 2014	1	99	40	100	28.0%	0.03 [0.00, 0.18]	
Total (95% CI)		1601		1701	100.0%	0.72 [0.57, 0.92]	•
Total events	100		145				
Heterogeneity: Chi ² = 41	1.50, df = 6	(P ≤ 0.)	00001) (¹³	²= 86%			
Test for overall effect: Z	= 2.62 (P =	(000a)					Favours [experimental] Favours [control]

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Forest Plot example: Continuous Data

	Experimental		Control				Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
Azarfarin 2011	64	8	89	65	10	94	11.6%	-1.00 [-3.62, 1.62]	
Gandhi 2007	72	12	150	76	9	150	13.8%	-4.00 [-6.40, -1.60]	
Hoedemaekers 2005	58	5	110	54	6	108	36.8%	4.00 [2.53, 5.47]	■
Ingels 2006	84	4	79	90	5	64	34.8%	-6.00 [-7.51, -4.49]	• I
Kirdemir 2008	68	16	58	75	12	63	3.1%	-7.00 [-12.07, -1.93]	
Total (95% Cl)			486			479	100.0%	-1.50 [-2.39, -0.61]	•
Heterogeneity: Chi² = 96.92, df = 4 (P < 0.00001); l² = 96%									
Test for overall effect: Z = 3.29 (P = 0.0010)									Favours [experimental] Favours [control]

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Note:

- As we define quality of evidence **for a guideline**, inconsistency is important only when it reduces confidence in results **in relation to a particular decision**. Even when inconsistency is large, it may not reduce confidence in results regarding a particular decision.
- Guideline developers may or may not consider this degree of variability important. Systematic review authors, much less in a position to judge whether the apparent high heterogeneity can be dismissed on the grounds that it is unimportant, are more likely to rate down for inconsistency.

Caution: subgroups

- Although the issue is controversial, we recommend that metaanalyses include formal tests of whether a priori hypotheses explain inconsistency between important subgroups
- If inconsistency can be explained by differences in populations, interventions or outcomes, review authors should offer different estimates across patient groups, interventions, or outcomes. Guideline panelists are then likely to offer different recommendations for different patient groups and interventions. If study methods provide a compelling explanation for differences in results between studies, then authors should consider focusing on effect estimates from studies with a lower risk of bias.

	Experim	ental	Contr	ol	Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl		
1.1.1 Nondiabetic patients									
Chan 2009	3	54	3	55	4.3%	1.02 [0.20, 5.29]			
Desai 2012	1	91	1	98	1.5%	1.08 [0.07, 17.49]			
Gandhi 2007	4	185	0	186	0.7%	9.25 [0.49, 173.00]			
Ingels 2006	16	477	37	493	53.6%	0.43 [0.23, 0.78]			
Lazar 2011	0	40	0	42		Not estimable			
Rujirojindakul 2014	6	99	8	100	11.4%	0.74 [0.25, 2.22]			
Subtotal (95% CI)		946		974	71.5%	0.62 [0.39, 0.98]	◆		
Total events	30		49						
Heterogeneity: Chi ^z = 5.34, df = 4 (P = 0.25); l ^z = 25%									
Test for overall effect: Z	= 2.04 (P =	= 0.04)							
1.1.2 Diabetic patients									
Hoedemaekers 2005	2	60	6	59	8.9%	0.30 [0.06, 1.58]			
Ingels 2006	1	110	3	108	4.6%	0.32 [0.03, 3.14]			
Kirdemir 2008	3	200	10	201	15.0%	0.29 [0.08, 1.07]			
Subtotal (95% CI)		370		368	28.5 %	0.30 [0.12, 0.76]	◆		
Total events	6		19						
Heterogeneity: Chi ^z = 0.01, df = 2 (P = 1.00); I ^z = 0%									
Test for overall effect: Z = 2.53 (P = 0.01)									
Total (95% CI)		1316		13/2	100.0%	0.53 (0.35, 0.80)			
Total (35% Cl)	26	1510	60	1342	100.070	0.55 [0.55, 0.60]	•		
i otal events 36 68									
Heterogeneity. $Cn = 6.79$, $a = 7$ (P = 0.45); P = 0% Track for events!! effects $Z = 2.05$ (P = 0.002) 0.111 10 500									
Test for overall ellect, $z = 3.05$ (F = 0.002) Favours [experimental] Favours [control]									
Test for subgroup differences: Chi ² = 1.85, df = 1 (P = 0.17), I ² = 46.0%									

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Session 7: Imprecision

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

Imprecision

- Small sample size
- Small number of events
- Wide confidence intervals
 - uncertainty about magnitude of effect
- Optimal information size
- Different for SRs vs Guidelines
 - Guidelines contextualized for decision making and recommendations
 - SRs free of this context

Optimal Information Size

 If the total number of patients included in a systematic review is less than the number of patients generated by a conventional sample size calculation for a single adequately powered trial, consider rating down for imprecision.

Total Number of Events	Relative Risk Reduction	Implications for meeting OIS threshold			
100 or less	<u><</u> 30%	Will almost never meet threshold whatever control event rate			
200	30%	Will meet threshold for control event rates for ~ 25% or greater			
200	25%	Will meet threshold for control event rates for ~ 50% or greater			
200	20%	Will meet threshold only for control event rates for ~ 80% or greater			
300	<u>></u> 30%	Will meet threshold			
300	25%	Will meet threshold for control event rates ~ 25% or greater			
300	20%	Will meet threshold for control event rates ~ 60% or greater			
400 or more	<u>></u> 25%	Will meet threshold for any control event rate			
400 or more	20%	Will meet threshold for control event rates of ~ 40% or greater			

OIS rule of thumb:

- dichotomous: 300 events
- continuous: 400 participants
- HOWEVER, carefully consider the OIS and event rate

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Activity 5: would you rate down?

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Forest Plot example: Continuous Data

	Experimental			Control				Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
Azarfarin 2011	64	8	89	65	10	94	11.6%	-1.00 [-3.62, 1.62]	
Gandhi 2007	72	12	150	76	9	150	13.8%	-4.00 [-6.40, -1.60]	-
Hoedemaekers 2005	58	5	110	54	6	108	36.8%	4.00 [2.53, 5.47]	-
Ingels 2006	84	4	79	90	5	64	34.8%	-6.00 [-7.51, -4.49]	*
Kirdemir 2008	68	16	58	75	12	63	3.1%	-7.00 [-12.07, -1.93]	
Total (95% Cl)			486			479	100.0%	-1.50 [-2.39, -0.61]	•
Heterogeneity: Chi² = 96.92, df = 4 (P < 0.00001); l² = 96%									-20 -10 0 10 20
Test for overall effect: Z = 3.29 (P = 0.0010)								Favours [experimental] Favours [control]	

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Session 8: Indirectness

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

Directness of Evidence (generalizability, transferability, external validity, applicability)

- Confidence is increased when we have direct evidence
- Ask: is the evidence applicable to our relevant question?
 - Population
 - Intervention
 - Comparisons
 - Outcome

Population

- Ask: Is the population included in these studies similar to those in my question?
 - Indirect evidence examples:
 - Evidence from high income countries compared to LMIC
 - All women as compared to pregnant women
 - Sick (or sicker) people compared to all people (mild vs severe)
 - Adults compared to children
 - May be addressed in subgroups where appropriate and possible
 - Can indicate different levels of risk for different groups
 - Can create different SoF tables for different groups, therefore won't need to downgrade

Interventions

- Ask: Is the population included in these studies similar to those in my question?
 - Older technology compared to newer technology
 - Co-interventions
 - Different doses, different delivery, different providers

Comparisons

- Are comparisons direct or indirect?
 - Interested in A vs B
 - A vs Control
 - B vs Control
 - May downgrade

Outcomes

- Make sure to:
 - Choose patient important outcomes
 - Avoid surrogate outcomes
- If surrogate outcomes used, is there a strong association between the surrogate and patient important outcome?

Note:

 Authors of systematic reviews should answer the health care question they asked and, thus, they will rate the directness of evidence they found. The considerations made by the authors of systematic reviews may be different than those of guideline panels that use the systematic reviews. The more clearly and explicitly the health care question was formulated the easier it will be for the users to understand systematic review authors' judgments.

Session 9: Publication bias

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare GRADE

Publication Bias

- Publication bias occurs when the published studies differ systematically from all conducted studies on a topic
- It is a serious threat to the validity of systematic reviews and metaanalyses
- Should always be suspected
 - Only small "positive" studies
 - For profit interest
 - Various methods to evaluate none perfect, but clearly a problem

Publication Bias

 "Publication bias is the term for what occurs whenever the research that appears in the published literature is *systematically unrepresentative* of the *population of completed studies*. Simply put, when the *research that is readily available differs in its results from the results of all the research that has been done in an area*, readers and reviewers of that research are in danger of drawing the wrong conclusion about what that body of research shows." (Rothstein, Sutton and Borenstein 2005, p.1)

Rothstein HR, Sutton AJ, Borenstein M (Editors). Publication Bias in Meta-Analysis. Prevention, Assessment and Adjustments. Chichester: Wiley, 2005.

Publication Bias

Potential information suppression mechanisms (causes of publication bias):

- Language bias ("selective inclusion of studies published in English");
- Availability bias ("selective inclusion of studies that are easily accessible to the researcher");
- Cost bias ("selective inclusion of studies that are available free or at low cost");
- Familiarity bias ("selective inclusion of studies only from one's own discipline";
- Outcome bias ("selective reporting by the author of a primary study of some outcomes but not others, depending on the direction and statistical significance of the results") (Rothstein, Sutton and Borenstein 2005, p.3)

Rothstein HR, Sutton AJ, Borenstein M (Editors). Publication Bias in Meta-Analysis. Prevention, Assessment and Adjustments. Chichester: Wiley, 2005.

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Funnel Plot

- Funnel plots are a method of investigating the retrieved studies in a meta-analysis for publication bias
- A funnel plot is a scatter plot in which an effect estimate of each study is plotted against a measure of size or precision
- If no bias, expect symmetric and inverted funnel
- If bias, expect asymmetric or skewed shape
- Can also investigate small study effects

Funnel Plot

- A statistical test for funnel plot asymmetry investigates whether the association between effect estimate and measure of study size or precision is larger than what can be expected to have occurred by chance
- Egger test, Begg test, and Harbord test are the most popular statistical tests
- Due to low power a finding of no evidence of asymmetry does not serve to exclude bias
- Generally 10 studies are considered the minimum number to justify a funnel plot
- When there are less than 30 studies, the statistical power of all three tests is very low and results should be interpreted with caution

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Taken from: Sterne et al 2005 Masaryk University GRADE

What do we do?

"It is extremely difficult to be confident that publication bias is absent and almost as difficult to place a threshold on when to rate down quality of evidence due to the strong suspicion of publication bias. For this reason GRADE suggests rating down quality of evidence for publication bias by a maximum of one level." (GRADE Handbook)

Consider:

- study size (small studies vs. large studies)
- lag bias (early publication of positive results)
- search strategy (was it comprehensive?)
- asymmetry in funnel plot.

Session 10: Factors that raise quality

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Raising the quality

- Initially classified as low, a body of evidence from observational studies can be rated up
- Consideration of factors reducing quality of evidence must precede consideration of reasons for rating it up.
- 5 factors for rating down quality of evidence must be rated prior to the 3 factors for rating it up
- The decision to rate up quality of evidence should only be made when serious limitations in any of the 5 areas reducing the quality of evidence are absent.

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

What can raise quality?

- 1. Large magnitude of an effect
- 2. Dose-response gradient
- 3. Effect of opposing plausible residual confounding

Large magnitude of an effect

- Large, consistent, precise effect
- Although observational studies may overestimate the effect, bias is unlikely to explain or contribute all the effect for a reported very large benefit (or harm)
- What is large?
 - RR of 2 (large), 5 (very large)
 - For example, odds ratio of babies sleeping on stomachs of 4.1 (95% CI of 3.1 to 5.5) for SIDS compared to sleeping on their back
 - New concept of E-value for small effects but substantialy population significant (eg. Air polution RR 1,06 for exposure higher than per 10 μg per cubic meter (increase in mortality per world population 45 mil)
 - May upgrade 1 level for large and 2 for very large

Dose-response gradient

- Dose-response gradient
 - Clear dose-response indicative of a cause-effect relationship
 - Warfarin and bleeding (clear dose response)
 - Delay in antibiotics for those presenting with sepsis (i.e. each hour delayed increases mortality)

Effect of opposing plausible residual confounding

- Rigorous observational studies adjust/address confounding in their analysis for identified confounders
- Cannot control for 'unmeasured or unknown' confounders (hence why observational studies are downgraded), and other plausible confounders may not be addressed
- This 'residual' confounding may result in an underestimation of the true effect
- All plausible residual confounding may be working to reduce the demonstrated effect or increase the effect if no effect was observed
 - Sicker patients doing better
 - Not for profit vs for profit

NUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Effect of opposing plausible residual confounding Example 1

- Example 1: When confounding is expected to reduce a demonstrated effect (Upgraded by One Level)
- A rigorous systematic review of observational studies including a total of 38 million patients demonstrated higher death rates in private for-profit versus private not-for-profit hospitals. It is likely, however, that patients in the not-forprofit hospitals were sicker than those in the for-profit hospitals. This would bias results against the not-for-profit hospitals. The second likely bias was the possibility that higher numbers of patients with excellent private insurance coverage could lead to a hospital having more resources and a spill-over effect that would benefit those without such coverage. Since for-profit hospitals are likely to admit a larger proportion of such well-insured patients than not-forprofit hospitals, the bias is once again against the not-for-profit hospitals. Because the plausible biases would all diminish the demonstrated intervention effect, one might consider the evidence from these observational studies as moderate rather than low quality.

Effect of opposing plausible residual confounding Example 2

- Example 2: When confounding is expected to increase the effect but no effect was observed (Upgraded by One Level)
- Consider the early reports associating MMR vaccination with autism. One would think that there would be over-reporting of autism in children given MMR vaccines. However, systematic reviews failed to prove any association between the two. Due to the negative results, despite the potential presence of confounders which would increase the likelihood of reporting of autism, no association was found. Therefore, we may upgrade the level of evidence by one level.

Session 11: Summary of findings tables and evidence profiles

Introduction to GRADEpro

MUNI Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

GUIDELINE DEVELOPMENT TOOL TUTORIAL

EVIDENCE TABLE GENERATION

Evidence profiles and Summary of Findings tables

- Endpoint of the GRADE process for SRs
- Key milestone for Guideline developers on their way to make a recommendation
- Evidence profiles include outcomes, number of studies, all judgements regarding GRADE factors, assumed risk, corresponding risk, relative effect, absolute effect, overall rating, classification of outcome importance, footnotes
- SoF table includes most of the above but not all GRADE factor judgements

Table 1 GRADE evidence profile: antibiotics for children with acute otitis media

Quality assessment						Summary of findings					
						Number of patients			Absolute risk		
No of studies (Design)	Limitations	Inconsistency	Indirectness	Imprecision	Publication bias	Placebo	Antibiotics	Relative risk (95% CI)	Control risk ^a	Risk difference (95% CI)	Quality
Pain at 24h 5 (RCT)	No serious limitations	No serious inconsistency	No serious indirectness	No serious imprecision	Undetected	241/605	223/624	RR 0.9 (0.78-1.04)	367/1,000	Not Significant	⊕⊕⊕⊕ High
Pain at 2-7 d 10 (RCT)	No serious limitations	No serious inconsistency	No serious indirectness	No serious imprecision	Undetected	303/1,366	228/1,425	RR 0.72 (0.62-0.83)	257/1,000	72 fewer per 1,000 (44-98)	$\oplus \oplus \oplus \oplus$ High
Hearing, infen 4 (RCT)	red from the surrog: No serious limitations	ate outcome abnormal t No serious inconsistency	tympanometry—1 mo Serious indirectness (because of indirectness of outcome)	No serious imprecision	Undetected	168/460	153/467	RR 0.89 (0.75-1.07)	350/1,000	Not Significant	⊕⊕⊕O Moderate
Hearing, infer 3 (RCT)	red from the surrog No serious limitations	ate outcome abnormal t No serious inconsistency	tympanometry—3 mo Serious indirectness (because of indirectness of outcome)	No serious imprecision	Undetected	96/398	96/410	RR 0.97 (0.76-1.24)	234/1,000	Not Significant	⊕⊕⊕O Moderate
Vomiting, dian 5 (RCT)	rhea, or rash No serious limitations	Serious inconsistency (because of inconsistency in absolute effects)	No serious indirectness	No serious imprecision	Undetected	83/711	110/690	RR 1.38 (1.09-1.76)	113/1,000	43 more per 1,000 (10-86)	⊕⊕⊕O Moderate

Abbreviations: GRADE, Grading of Recommendations Assessment, Development, and Evaluation; RCT, randomized controlled trials; CI, confidence interval; RR, risk ratio.

* The control rate is based on the median control group risk across studies.

Summary of Findings tables

- Standard table format
 - one for each comparison (may require more than one)
 - Report all outcomes, even if no data
- Improve understanding
- Improve accessibility
- Created with GRADEpro GDT

http://www.guidelinedevelopment.org/

Summary of findings table

SUMMARY OF FINDINGS FOR THE MAIN COMPARISON [Explanation]

Settings: inpatients and o Intervention: probiotics	utpatients	5					
Outcomes	Illustrative compara	ative risks* (95% CI)	Relative effect (95% Cl)	No of Participants (studies)	Quality of the evidence (GRADE)	Comments	
	Assumed risk Corresponding risk						
	Control	Probiotics					
Incidence of Diarrhea: Probiotic dose (equal to/ greater than) 5 billion CFU/day Follow-up: 10 days to 3 mo's	223 per 1000	89 per 1000 (65 to 122)	RR 0.4 (0.29 to 0.55)	1474 (7 studies)	⊕⊕⊖⊖ low ^{1,2}	Control group risk esti- mates come from con- trol arm of meta-analysis, based on included trials. Relative effect based on available case analysis	
Adverse Events Follow-up: 10 to 44 days	18 per 1000	23 per 1000 (8 to 38)	See comment	1575 (11 studies)	⊕⊕⊖⊖ low ^{3,4}	Risks were calculated from pooled risk dif- ferences. Control group risk estimates come from control arm of the meta- analysis, based on in- cluded studies	
Duration of Diarrhea Follow-up: 10 days to 3 mo's		The mean duration of di- arrhea in the intervention groups was 0.6 lower (1 18 to 0.02 lower)		897 (5 studies)	⊕⊕⊖⊖ low ^{5,6}		

Activity 6: Summary of Findings table

- Using the materials provided, logon to GRADEPro GDT and create a SoF table.
- Dropbox link:

GRADEprojebi		foderate gtycemic o	ontrot for patient	sundergoing card	alac surgery in no	spitat					20 41	Zacriary	.เทนเทเผลนย์เลเน	e.euu.au
	✓ Should	Tight glycemic cont	rol vs. moderate l	be used in hospita	al?							🛠 Explanation	s ? Help	• F
☑ SETTINGS	Tight glyc	emic control compa	red to moderate i	n hospital										C
TASKS	Quality assessment								Summer of Godines					
O TEAM				Quality ass	-cosmene		Other considerations	Nº of	patients	Effect				
	Nº of studie	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision		Tight glycemic contro	l Moderate	Relative (95% CI)	Absolute (95% CI)	Quality	Importance	≡
● SCOPE	Mortality (follow up: range 20 days to 90 days; assessed with: clinical measure)									R				
	8	randomised trials	serious ^a	serious ^b	not serious	serious ^c	none	36/1316 (2.7%)	68/1342 (5.1%)	OR 0.50 (0.33 to 0.77)	25 fewer per 1,000 (from 11 fewer to 33	OOO VERY LOW	CRITICAL	
	Mastality - N	logdishatis patients									tewer)			F 2
EVIDENCE TABLE	Mortauty - N	randomised trials		corious d	not corious			30/046 (3.2%)	40/074 (E 0%)	OP 0 69	15 fower per 1 000		CRITICAL	ك
RECOMMENDATIONS	0	randomised triats		serious -	not serious			50/940 (5.2%)	49/9/4 (3.0%)	(0.35 to 1.37)	(from 17 more to 32 fewer)	-	CRITICAL	
PRESENTATIONS	Mortality - D	iabetic patients												ß
DOCUMENT SECTIONS	3	randomised trials			not serious			6/370 (1.6%)	19/368 (5.2%)	OR 0.30 (0.12 to 0.76)	36 fewer per 1,000 (from 12 fewer to 45	-	CRITICAL	
DISSEMINATION											fewer)			
	Stroke													
	5	randomised trials			not serious			86/428 (20.1%)	65/433 (15.0%)	OR 2.69 (1.45 to 5.00)	172 more per 1,000 (from 54 more to 319 more)	-	CRITICAL	
	Acute renal f	failure												C
	5	randomised trials			not serious			17/479 (3.5%)	18/489 (3.7%)	OR 0.96 (0.49 to 1.87)	1 fewer per 1,000 (from 18 fewer to 30 more)	-	CRITICAL	
	Deep sterna	linfection												C
	3	randomised trials			not serious			7/316 (2.2%)	7/326 (2.1%)	OR 1.01 (0.36 to 2.83)	0 fewer per 1,000 (from 14 fewer to 37 more)	-	CRITICAL	
	Length of sta	зу												Ø
	5	randomised trials			not serious			486	479	-	MD 1.5 lower (2.39 lower to 0.61 lower)	-	IMPORTANT	

CD ADD

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

Activity 6:

- You can also:
 - Export table
 - View different presentation formats
 - View interactive summary of findings table

Session 12: Common questions regarding GRADE

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

What to do when you can't pool?

- Can report results from a single study
- Can report a range from multiple studies if can't pool
- Still need to consider all domains (inconsistency and imprecision included)

Length of intensive care unit (ICU) or hospital stay (follow-up:	See comment	ICU: 1060 (9) Hospital: 1259 (9)	⊕⊕⊕⊝ moderate	Length of intensive care unit stay: Mean differences between intensive and regular glucose control groups ranged from -1.7 days to 2.1 days Length of hospital stay: Mean differences between intensive and regular glucose control groups ranged from -8 days to 3.7 days
varied as a consequence of ICU/hospital stay)				

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Murad, M. H., Mustafa, R. Α., Schünemann, H. J., Sultan, S., & Santesso, N. (2017). Rating the certainty in evidence in the absence of a single estimate of effect. Evidence-Based Medicine, ebmed-2017.

GRADE in Public Health and Complex Interventions– concerns

- Assessment of evidence regarding public health can be challenging:
 - 1. Penalizing when RCTs are not available or even possible
 - 2. Observational studies not being equal, all start as 'low'
 - 3. Heterogeneity in these reviews
 - 4. Dependence on context different findings expected in different settings
 - 5. No pooled effect size
 - 6. Likely to have low ratings

MH, Thomson H, Shaw B, Akl EA, Lhachimi SK, López-Alcalde J, Klugar M, Choi L, Saz-Parkinson Z, Mustafa RA, Langendam MW, Crane O, Morgan RL, Rehfuess E, Johnston BC, Chong LY, Guyatt GH, Schünemann HJ, Katikireddi SV; GRADE Working Group. Challenges in applying the GRADE approach in public health guidelines and systematic reviews: A concept paper from the GRADE Public Health Group. J Clin Epidemiol. 2021 Jan 18:S0895-4356(21)00003-2. doi: 10.1016/j.jclinepi.2021.01.001.

GRADE in public health - responses

- Lower rankings should not be seen as a penalty we know randomisation is of utmost importance – can reframe this as all studies equal and randomisation warrant 'upgrade'
- 2. Although they all start as low, assessment of methodological limitations will tease out differences in quality between observational studies. Also findings from observational studies can be upgraded
- 3. Inconsistency should be explored, investigated, and reasons identified
- 4. GRADE considers context explicitly in indirectness, addressing important contextual aspects for consideration in the summary of evidence
- 5. GRADE can be used when no pooled effect size
- 6. Recommendations rely not only on ranking. Still important to do this process to acknowledge any issues. If issues with interpretation, rankings can be reframed or different terminology used.

Schünemann, Holger, et al. "The GRADE approach and Bradford Hills criteria for

causation." Journal of Epidemiology & Community Health 65.5 (2011): 392-395.

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Considerations when ranking evidence

• While factors influencing the quality of evidence are additive – such that the reduction or increase in each individual factor is added together with the other factors to reduce or increase the quality of evidence for an outcome – grading the quality of evidence involves judgements which are not exclusive. Therefore, GRADE is not a quantitative system for grading the quality of evidence. Each factor for downgrading or upgrading reflects not discrete categories but a **continuum** within each category and among the categories. When the body of evidence is intermediate with respect to a particular factor, the decision about whether a study falls above or below the threshold for up- or downgrading the quality (by one or more factors) depends on judgment.

Considerations when ranking evidence

• For example, if there was some uncertainty about the three factors: study limitations, inconsistency, and imprecision, but not serious enough to downgrade each of them, one could reasonably make the case for downgrading, or for not doing so. A reviewer might in each category give the studies the benefit of the doubt and would interpret the evidence as high quality. Another reviewer, deciding to rate down the evidence by one level, would judge the evidence as moderate quality. Reviewers should grade the quality of the evidence by considering both the individual factors in the context of other judgments they made about the quality of evidence for the same outcome.

Considerations when ranking evidence

- In such a case, you should pick one or two categories of limitations which you would offer as reasons for downgrading and explain your choice in the footnote. You should also provide a footnote next to the other factor, you decided not to downgrade, explaining that there was some uncertainty, but you already downgraded for the other factor and further lowering the quality of evidence for this outcome would seem inappropriate. GRADE strongly encourages review and guideline authors to be explicit and transparent when they find themselves in these situations by acknowledging borderline decisions.
- Despite the limitations of breaking **continua** into categories, treating each criterion for rating quality up or down as discrete categories enhances transparency. Indeed, the great merit of GRADE is not that it ensures reproducible judgments but that it requires explicit judgment that is made transparent to users.

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Is this the end...or next steps?

- The endpoint for systematic reviews and for HTA restricted to evidence reports is a summary of the evidence—the quality rating for each outcome and the estimate of effect. For guideline developers and HTA that provide advice to policymakers, a summary of the evidence represents a key milestone on the path to a recommendation.
- Guideline developers (but not systematic reviewers) then review all the information to make a final decision about which outcomes are critical and which are important and come to a final decision regarding the rating of overall quality of evidence, before considering making recommendations.

Session 13: Making Recommendations

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

Overall certainty of evidence

- Systematic review authors only rate the evidence for each outcome
- Guideline Panels need to determine the quality of evidence across outcomes to make a recommendation

Overall quality of evidence – Guideline panels

- 1. Consider **only** those outcomes that have been deemed **critical**.
- 2. If the quality of evidence is the **same** for all critical outcomes, then this becomes the overall quality of the evidence supporting the answer to the question.
- 3. If the quality of evidence **differs** across critical outcomes, it is logical that the overall confidence in effect estimates cannot be higher than the lowest confidence in effect estimates for any outcome that is critical for a decision. Therefore, the **lowest quality of evidence** for any of the critical outcomes determines the overall quality of evidence.
- 4. There is one exception to this rule that we will discuss.

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

do no harm

do no net harm

When making decisions...

Guideline members use their expertise to weigh all criteria to make a recommendation

- Balance of benefits and harms
- Consideration of patient values and preferences
- Consideration of resources, feasibility, equity, and acceptability

Forming recommendations with GRADE

Balance between benefits, harms and burdens

> **Certainty of Evidence**

Patients values and preferences

Resource use

Feasibility

Equity

Institute of Biostatistics and Analyses **Czech National Centre** for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based

Masarvk University GRADE

Rating the importance of outcomes

- Need to understand that outcomes that are critical for decision making are identified
- Rating is done before, during and after the evidence review
- The rating may change in light of new information

Strength of recommendation

- The strength of a recommendation reflects the extent to which we can, across the range of patients for whom the recommendations are intended, be confident that desirable effects of a management strategy outweigh undesirable effects.
- Strong or weak (conditional)
 - Strong for
 - Weak for
 - Strong against
 - Weak against

Strong recommendation

- For patients: most individuals in this situation would want the recommended course of action, and only a small proportion would not.
- For clinicians: most individuals should follow the recommended course of action. Formal decision aids are not likely to be needed to help individual patients make decisions consistent with their values and preferences.
- For policy makers: the recommendation can be adopted as policy in most situations. Adherence to this recommendation according to the guideline could be used as a quality criterion or performance indicator.
- For researchers: the recommendation is supported by credible research or other convincing judgments that make additional research unlikely to alter the recommendation. On occasion, a strong recommendation is based on low or very low certainty in the evidence. In such instances, further research may provide important information that alters the recommendations.

Conditional recommendation

- For patients: the majority of individuals in this situation would want the suggested course of action, but many would not. Decision aids may be useful in helping patients to make decisions consistent with their individual risks, values, and preferences.
- For clinicians: different choices will be appropriate for individual patients, and clinicians must help each patient arrive at a management decision consistent with the patient's values and preferences. Decision aids may be useful in helping individuals to make decisions consistent with their individual risks, values, and preferences.
- For policy makers: policy making will require substantial debate and involvement of various stakeholders. Performance measures about the suggested course of action should focus on whether an appropriate decision-making process is duly documented.
- For researchers: this recommendation is likely to be strengthened (for future updates or adaptation) by additional research.

Session 13: Evidence to decision framework

- Inform panel members' judgements about the pros and cons of each option (intervention) that is considered
- Ensure that important factors that determine a recommendation (criteria) are considered
- Provide a concise summary of the best available research evidence to inform judgements about each criterion
- Help structure discussion and identify reasons for disagreements
- Make the basis for recommendations transparent to guideline users

GRADEpro GDT *interactive Evidence to Decision Frameworks*

Tasks

Team

References

Prognosis

•**T** Comparisons

Scope

[1]

2

 \mathbb{N}

1

(a)

- Question
- Details
 - Subgroups
 - Background
- Assessment
 - Criteria
 - Judgements
 - Research evidence (HTA and Systematic Reviews)
 - Additional considerations

Conclusions

- Type of decision recommendation
- Justification
- Implementation considerations monitoring and evaluation
- **Research considerations**

Presentation

- Guideline group meetings & informing coverage decisions
- Database of decision frameworks •

dothractive Decision Aide (iDeAs), apps als Dansalalta

tistics and Analyses **Czech National Centre** for Evidence-Based Healthcare

Document sections

Dissemination

Multi comparisons

PanelVoice \checkmark

Decision making criteria

- Priority of problem
- Benefits and harms
- Certainty of evidence
- Values and Preferences
- Resources
- Equity
- Acceptability
- Feasibility

EtD frameworks

Discuss

NUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare Cochrane

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

NUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

University

ADE

Evidence sharing, updating & collaboration

Structured process for trustworthy guideline recs

DE

Question

Should Tight glycemic control vs. placebo be used for hospital?								
POPULATION:	hospital	BACKGROUND:						
INTERVENTION:	Tight glycemic control							
COMPARISON:	placebo							
MAIN OUTCOMES:	Mortality; Mortality - Nondiabetic patients; Mortality - Diabetic patients; Atrial fibrillation; Stroke; Acute renal failure; Deep sternal infection; Length of stay;							
SETTING:								
PERSPECTIVE:								

Assessment

	JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
	Is the problem a priority?		
	O No		
	O Probably no		
LEM	O Probably yes		
PROB	O Yes		
	O Varies		
	O Don't know		
	How substantial are the desirable anticipated effects?		
۲	O Trivial		
EC.	O Small		
BLE EF	O Moderate		

E

M

	SIRA	O Large
	B	O Varies
		O Don't know
		How substantial are the undesirable anticipated effects?
	CIS	O Large
	Ĩ	O Moderate
	Ë	O Small
	IRA	O Trivial
	NDES	O Varies
	5	O Don't know
	-	What is the susmill containty of
	щ	the evidence of effects?
	DENC	O Very low
i	E	O Low
	YOF	O Moderate
		O High
	CERT	O No included studies
		Is there important uncertainty about or variability in how much
		O Important uncertainty or variability
		O Possibly important uncertainty or variability
UES	LUES	variability
	A	 Probably no important uncertainty or variability
		O No important uncertainty or variability

E

M

вл г

	Does the balance between desirable and undesirable effects favor the intervention or the comparison?
L2	O Favors the comparison
FEC	O Probably favors the comparison
OF EF	 Does not favor either the intervention or the comparison
ANCE	O Probably favors the intervention
BAL	O Favors the intervention
	O Varies
	O Don't know
	Is the intervention acceptable to key stakeholders?
	O No
È	O Probably no
ABIL	O Probably yes
CEPI	O Yes
AC	O Varies
	Is the intervention feasible to implement?
	O No
≿	O Probably no
IBILIT	O Probably yes
EAS	O Yes
	O Varies
	O Don't know

E

Ml

N / E

Summary of judgements

	JUDGEMENT	UDGEMENT									
PROBLEM	No	Probably no	Probably yes	Yes		Varies	Don't know				
DESIRABLE EFFECTS	Trivial	Small	Moderate	Large		Varies	Don't know				
UNDESIRABLE EFFECTS	Large	Moderate	Small	Trivial		Varies	Don't know				
CERTAINTY OF EVIDENCE	Very low	Low	Moderate	High			No included studies				
VALUES	Important uncertainty or variability	Possibly important uncertainty or variability	Probably no important uncertainty or variability	No important uncertainty or variability							
BALANCE OF EFFECTS	Favors the comparison	Probably favors the comparison	Does not favor either the intervention or the comparison	Probably favors the intervention	Favors the intervention	Varies	Don't know				
ACCEPTABILITY	No	Probably no	Probably yes	Yes		Varies	Don't know				
FEASIBILITY	No	Probably no	Probably yes	Yes		Varies	Don't know				

Conclusions

Should Tight glycemic control vs. placebo be used in hospital?

TYPE OF RECOMMENDATION	Strong recommendation against the intervention	Conditional recommendation against the intervention	Conditional recommendation for either the intervention or the comparison	Conditional recommendation for the intervention	Strong recommendation for the intervention
	0	0	0	0	0
RECOMMENDATION					
JUSTIFICATION					
SUBGROUP CONSIDERATIONS					

Ε

MU

Example Evidence to Decision Framework

<u>https://goo.gl/PEfB72</u> for an example from a recent guideline

https://goo.gl/ztPoUP for patient material

American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Schünemann et al. Blood Adv. 2018 Nov 27;2(22):3198-3225

NUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Example Evidence to Decision Framework

Example from the European Commission Initiative on the use of screening strategies for the detection of breast cancer:

https://ecibc.jrc.ec.europa.eu/recommendations/

https://ecibc.jrc.ec.europa.eu/recommendations/details/5bbf4f4e9a8b bc0fd5635575

NOTE: This is a controversial topic and the purpose here is not to debate the evidence, but see how the group came to their conclusion as an example EtD

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

Should organised mammography screening vs. no mammography screening be used for early detection of breast cancer in women aged 45 to 49?

Recommendation	Justification	Considerations	Assessment	Bibliography	PDF Print
----------------	---------------	----------------	------------	--------------	-----------

Background

Although mammography screening has both potential benefits and harms many countries have organised programmes for women aged 50 or older. However, there continues to be debate about recommendations for mammography screening, generally (Jorgensen 2009, Arie 2014), and particularly for women aged 40 to 49 (Petitti 2010).

<u>Management of Conflicts of Interests (CoI)</u>: CoIs for all Guidelines Development Group (GDG) members were assessed and managed by the Joint Research Center (JRC) following an established procedure in line with the European Commission rules. GDG member participation in the development of the recommendations was according to CoI disclosure. Consequently, for this particular question, the following GDG members were recused from voting: Roberto d'Amico, Jan Danes, Axel Gräwingholt and Ruben van Engen.

All-cause mortality Follow-up: 9.9

Centre for Evidence-Based Healthcare

UKAUE

JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
 No Probably no Probably yes Yes Varies Don't know 	Breast cancer is the second most common cancer in the world and, by far, the most frequent cancer among women with an estimated 1.67 million new cancer cases diagnosed in 2012—accounting for 25% of all cancers (GLOBOCAN 2012). Breast cancer ranks as the fifth leading cause of cancer death worldwide and it is the second leading cause of cancer-related death in developed regions (GLOBOCAN 2012). In the European Union, 367 090 women were diagnosed of breast cancer and 92 000 women died from the disease in 2012 (Ferlay 2013). Breast cancer ranks fourth among the top five cancers with the highest disease burden (Tsilidis 2016). Annual incidence of breast cancer in the EU among women aged 45 to 49 is 1.7 per 1 000 and mortality is 0.2 per 1 000 per year (GLOBOCAN 2012)	
Detailed judgements		

Desirable Effects 1

How substantial are the desirable anticipated effects?

ADDITIONAL CONSIDERATIONS

These studies used an 'intention-to-treat' analysis thus, a per protocol approach would lead to larger absolute effects.

GDG members mentioned that modelling studies describing quality and duration of 'life gained' should be considered.

Long case accrual may dilute the effect of the intervention as for some trials it will include cases diagnosed after closure of the trial when both arms are receiving the same intervention. Therefore, we performed a

Undesirable Effects 🛈

How substantial are the undesirable anticipated effects?

JUDGEMENT

RESEARCH EVIDENCE

Large Moderate Small					💥 Collapse table 🛛 💽	Open table in new window	Overdiagnosis and its magnitud greatly influenced by age at fir
	Outcomes	Nº of participants	Certainty of the evidence	Relative effect (95% CI)	Anticipated absolu	te effects [*] (95% CI)	Overdiagnosis estimates from b and CNBSS2 may have been
		(studies)			Risk with no	Risk difference with	
○ Varies					mammography screening	organised mammography screening	the population (both organised
O Don't know	Breast cancer mortality	348112		PP 0 89	low		CNBSS in 1988. Thus, while at
Detailed judgements	(short case accrual) for women under 50 follow up: mean 16.8 years	(8 RCTs)	MODERATE ^{a,b,c}	(0.79 to 1.01)	400 per 100,000 d	44 fewer per 100,000 (84 fewer to 4 more)	follow-up a non-statistically si excess of all breast cancers wa the intervention arm of CNBSS
					1 Bala		(difference 2.6; 95%CI -0.8 to 5
Certainty of evidence (1) What is the overall certainty of	of the evidence of effects?						
JUDGEMENT	RESEARCH EVIDENCE						ADDITIONAL CONSIDERATIONS
O Very low	The everall certainty	i a quality) of the ov	idanca was considered	modorato as this way	s the lowest quality amo	a the critical outcomes	

The overall certainty (i.e. quality) of the evidence was considered moderate, as this was the lowest quality among the critical outcomes-

namely, breast cancer mortality and overdiagnosis.

⊖ High

Moderate

O Low

○ No included studies

Detailed judgements

Institute of Biostatistics and Analyses MUNI Institute of Diostatistic Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

Masaryk University GRADE

ADDITIONAL CONSIDERATIONS

Overdiagnosis and its magnitude are not greatly influenced by age at first screening.

Overdiagnosis estimates from both CNBSS1 and CNBSS2 may have been overestimated by subsequent screening in the population (both organised and opportunistic) after screening ceased in the CNBSS in 1988. Thus, while at 25 years of follow-up a non-statistically significant excess of all breast cancers was observed in the intervention arm of CNBSS trials (difference 2.6; 95%CI -0.8 to 5.9), the

JUDGEMENT

○ Varies

O B 1.1

RESEARCH EVIDENCE

ADDITIONAL CONSIDERATIONS

 Important uncertainty or variability Possibly important uncertainty or variability Probably no important uncertainty or variability No important uncertainty or variability No known undesirable outcomes Detailed judgements 	A systematic review shows that participants place a low value on the psychosocial and physical effects of false-positive results and overdiagnosis (JRC Technical Report PICO 10-11, contract FWC443094012015; available upon request). Women generally consider these undesirable effects acceptable (low confidence in evidence). However, these findings are of limited value mainly given the significant concerns regarding the adequacy of the information provided to women, in order to make an informed decision about participation. Also, acceptability of false positive results is based on studies of participants who have already received a false positive result. Their preferences may differ from the general population. Another finding is that breast cancer screening represents a significant burden for some participants due to the associated psychological distress and inconvenience (moderate confidence in evidence). Regarding breast cancer diagnosis, very limited data is available addressing people's views. One of the main themes identified in the literature is that people disvalue highly the anxiety caused by delays in receiving diagnostic results, or by a lack of understanding of the tests due to suboptimal communication with physicians (moderate confidence in evidence). (JRC Technical Report PICO 10-11, contract FWC443094012015; available upon request)
6 Balance of effects Does the balance between desiration	able and undesirable effects favor the intervention or the comparison?
JUDGEMENT	RESEARCH EVIDENCE
 Favors the comparison Probably favors the comparison 	
O Does not favor either the intervention or the comparison	
 Probably favors the intervention 	
• Eavors the intervention	

ADDITIONAL CONSIDERATIONS

GDG members agreed that first screening at age 45 had moderate desirable health effects and moderate undesirable health effects; however, consensus was not reached regarding the balance between these two.

Sixteen members voted that the balance probably favours the intervention; five members voted that the balance does not favour either the intervention or the comparison; and one voting member abstained.

Resources required ① How large are the resource requirements (costs)?

<u> </u>		
JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
 Large costs Moderate costs Negligible costs and savings Moderate savings Large savings Varies Don't know Detailed judgements	 Differences in required resources for mammography screening versus no screening in women aged 40 to 49 in the studies analysed may be related to the inclusion or not of costs related to the screening process, diagnostic techniques, treatment and follow-up of diagnosed women (Madan, 2010 and Sankatsing, 2015). Screening costs for a cohort of 10 000 women have been estimated to be £420 000 in the UK. The cost of diagnosis for positive results would be £70 000, and screening would lead to a saving of £17 000 in treatment costs (£480 per screen-detected cancer, calculated from the difference in treatment costs for the trial control and intervention arms), giving a net screening cost of £473 000 per 10 000 screened (using a 3.5% discount rate) (Madan et al. 2010) Based on the results of Sankatsing et al. (2015), the total cost of breast cancer diagnosis, treatment and death in the absence of screening were estimated at €1 161 008 per 1 000 women, followed over their lifetime. The total cost of extended biennial screening in women aged 40 to 49 would increase to €306 590 per 1 000 women (using a 3.5% discount rate). 	 Varies by screening interval and by country and by the presence of opportunistic screening. GDG members judged the cost to be at least moderate. However, substantial differences could be observed in European countries without population-based screening programmes or in those programmes with different screening policies.
8 Certainty of evidence of requi What is the certainty of the evider	red resources ① nce of resource requirements (costs)?	
8 Certainty of evidence of requi What is the certainty of the evider	red resources ① nce of resource requirements (costs)? RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

Cost effectiveness 🛈

Does the cost-effectiveness of the intervention favor the intervention or the comparison?

4

JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
 Favors the comparison Probably favors the comparison Does not favor either the intervention or the comparison Probably favors the intervention Eavors the intervention 	Based on the evidence provided by Sankatsing et al. (2015), the extension of biennial mammography screening starting at age 40 appears to be cost-effective at a 'willingness-to-pay' of €20 000 per life year gained (LYG) with an incremental cost-effectiveness ratio (ICER) of €10 826 per LYG starting at age 40 instead of age 45. On the contrary, based on the evidence provided by Madan et al. (2010), the extension of triennial mammography screening in women aged 47 to 49 does not appear to be cost-effective at a 'willingness-to-pay' of £20 000 per Quality Adjusted Life Years (QALY). The probability of being cost-effective at this threshold was low (29%). The ICER per QALY gained for triennial screening was £27 400.	Differences in the cost-effectiveness results could be explained by the differences in setting, policy of the screening programmes, outcomes measures and type of technology used. Whereas Sankatsing et al. (Sankatsing 2015) reported the ICER per LYG in the
 Pavors the Intervention Varies No included studies 		Netherlands, (Madan et al. 2010) reported the ICER per QALY in the UK. The negative effects of false-positive results in the UK significantly reduced QALYs.

Equity 🛈 What would be the impact on health equity? **RESEARCH EVIDENCE** ADDITIONAL CONSIDERATIONS JUDGEMENT O Reduced A systematic review on this topic was not carried out. However, the utilisation of O Probably reduced cancer screening services may largely O Probably no impact depend on the availability of national public O Probably increased screening programmes; although European findings highlight that inequalities are Increased larger in countries without population-based screening programmes (Palència, 2010). Varies Don't know Detailed judgements

 No Probably no Probably yes Probably yes Yes Varies A systematic review (IRC Technical Report PICO 16-17, contract FWC443094032016; available upon request) found the following barriers associated with breast cancer screening: (a) lack of knowledge and misperceptions regarding preventive medicine and breast health (high confidence in evidence), (b) poor communication skills of healthcare providers (high confidence in evidence), (c) poor accessibility to breast screening, especially among women with disabilities (high confidence in evidence), (d) fear and stress related to the procedure and the possibility of cancer diagnosis (high confidence in evidence), (e) pain and discomfort during the procedure (moderate confidence in evidence), (f) embarrassment and shyness during the procedure (moderate confidence in evidence), (h) lack of support and encouragement from family members, caregivers and social network (moderate confidence in evidence), (h) lack of information regarding the available resources (low confidence in evidence) and (h low prioritisation of breast career screening (low confidence in evidence).	JUDGEMENT	RESEARCH EVIDENCE	ADDITIONAL CONSIDERATIONS
Detailed judgements	 No Probably no Probably yes Yes Yaries Don't know Detailed judgements 	A systematic review (JRC Technical Report PICO 16-17, contract FWC443094032016; available upon request) found the following barriers associated with breast cancer screening: (<i>a</i>) lack of knowledge and misperceptions regarding preventive medicine and breast health (high confidence in evidence), (<i>b</i>) poor communication skills of healthcare providers (high confidence in evidence), (<i>c</i>) poor accessibility to breast screening, especially among women with disabilities (high confidence in evidence), (<i>d</i>) fear and stress related to the procedure and the possibility of cancer diagnosis (high confidence in evidence), (<i>e</i>) pain and discomfort during the procedure (moderate confidence in evidence), (<i>f</i>) embarrassment and shyness during the procedure (moderate confidence in evidence), (<i>g</i>) lack of support and encouragement from family members, caregivers and social network (moderate confidence in evidence), (<i>h</i>) lack of information regarding the available resources (low confidence in evidence) and (<i>i</i>) low prioritisation of breast cancer screening (low confidence in evidence).	Some GDG members described that some professional groups may find a screening programme not acceptable due to their financial interests.

12 Feasibility ¹ Is the intervention feasible to implement?

JUDGEMENT	RESEARCH EVIDENCE		ADDITIONAL CONSIDERATIONS
 No Probably no Probably yes 			A systematic review on this topic was not carried out. Some countries do not have screening programmes mainly due to lack of
○ Yes			resources and also infrastructure.
O Varies			Given that this recommendation would be additive to screening in older age groups (50 to 69), it was judged as being probably
○ Don't know			feasible to implement.
NUNI Czech Natio	nal Centre	JBI Centre for Evidence-Based Healthcare	GRADE

Ś

CRITERIA				SUI	MMARY OF JUDGEMENTS				IMPORTANCE FOR DECISION
PROBLEM	No	Probably no		I	Probably yes	Yes	Varies		
DESIRABLE EFFECTS	Trivial	Small			Moderate	Large			
UNDESIRABLE EFFECTS	Large	Moderate			Small	Trivial			
CERTAINTY OF EVIDENCE	Very low	Low			Moderate	High			
VALUES	Important uncertainty or variability	Possibly important uncertai	nty or variability	Probably no	important uncertainty or variability	No important uncertainty or variability			
BALANCE OF EFFECTS	Favors the comparison	Probably favors the comparison	Does not favor intervention or the	either the e comparison	Probably favors the intervention	Favors the intervention			
RESOURCES REQUIRED	Large costs	Moderate costs	Negligible costs	and savings	Moderate savings	Large savings			
ERTAINTY OF EVIDENCE OF REQUIRED RESOURCES	Very low	Low			Moderate	High			
COST EFFECTIVENESS	Favors the comparison	Probably favors the comparison	Does not favor intervention or the	either the e comparison	Probably favors the intervention	Favors the intervention	Varies		
EQUITY	Reduced	Probably reduced	Probably no	impact	Probably increased	Increased		Don't know	
ACCEPTABILITY	No	Probably no		F	Probably yes	Yes	Varies		
FEASIBILITY	No	Probably no		ſ	Probably yes	Yes	Varies		

ſ

GRAI	DEpro GDT VIRC European Breast Guidelines	\$ °	ļ	?	schuneh@mcmaster.ca	•
¦¦	Should organised mammography screening vs. no mammography screening be used for early detection of breast cancer in	vomen aged 4	45 to [,]			•
⊸- [1]	Presentation for Clinicians					
2						
¢	RECOMMENDATION					
M						
*	WE SUGGEST THE INTERVENTION					
T	For asymptomatic women aged 45 to 49 with an average risk of breast cancer, the ECIBC's Guideline Development Group (GDG) suggests mammod	raphy screening	over no	mammog	raphy screening, in the	
®	context of an organised screening programme (conditional recommendation, moderate certainty in the evidence).					
			Curr			
~ [‡] ~	Background Subgroup considerations Justification Detailed Justification		Sum	imary of i	nnaings	
	Background					
	Although mammography screening has both potential benefits and harms many countries have organised programmes for women aged 50 or older. recommendations for mammography screening, generally (Jorgensen 2009, Arie 2014), and particularly for women aged 40 to 49 (Petitti 2010).	However, there o	:ontinue:	s to be de	bate about	

UT ✓ UT → Uzech National Centre

 \bigcirc

Centre for Evidence-Based Healthcare

Activity 7 and Activity 8

• Consult your handbook

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

For further information

RESEARCH METHODS AND REPORTING

GRADE Evidence to Decision (EtD) frameworks: a systematic and transparent approach to making well informed healthcare choices, 1: Introduction

Pablo Alonso-Coello,12 Holger J Schünemann,23 Jenny Moberg,4 Romina Brignardello-Petersen,25 Elie A Akl, 26 Marina Davoli,7 Shaun Treweek,8 Reem A Mustafa, 29 Gabriel Rada, 10,11,12 Sarah Rosenbaum,⁴ Angela Morelli,⁴ Gordon H Guyatt,^{2,3} Andrew D Oxman⁴ the GRADE Working Group

For numbered affiliations see Introduction

end of article. Correspondence to: A D Oxman oxman@online.no Additional material is nublished online only. To view please visit the journal online. Cite this as: BMJ 2016;353:12016 http://dx.doi.org/10.1136/bmj.i2016

> for those effects (also referred to as quality of evidence or ally, including the World Health Organization, the confidence in effect estimates), and the costs and feasibility of the options. Decision makers must make judg Health and Care Excellence (NICE) now use or have ments about each relevant factor, informed by the best adopted the principles of the GRADE system. Recently, evidence that is available to them. teria that they consider and the evidence that they use to and Practice Based on Evidence) project (http://www. reach their judgments are unclear.54 They may omit decide-collaboration.eu), & funded by the European important criteria, give undue weight to some criteria, or Union, the GRADE Working Group has developed the not use the best available evidence. Systematic and Evidence to Decision (EtD) frameworks to support the transparent systems for decision making can help to process of moving from evidence to decisions. We have ensure that all important criteria are considered and that developed EtD frameworks for making clinical recomthe best available research evidence informs decisions. mendations, coverage decisions, and health system or orously developed guidelines synthesise the available frameworks build on the GRADE approach to assessing relevant research, facilitating the translation of evi- the strength of recommendations.17-19 dence into recommendations for clinical practice.? We developed EtD frameworks using an iterative However, the quality of guidelines is often suboptimal.^{10 II}

SUMMARY POINTS

 Clinicians, guideline developers, and policymakers sometimes neglect important criteria, give undue weight to criteria, and do not use the best available evidence to inform their judgments

- Explicit and transparent systems for decision making can help to ensure that all important criteria are considered and that decisions are informed by the best available research evidence
- The purpose of Evidence to Decision (EtD) frameworks is to help people use evidence in a structured and transparent way to inform decisions in the context of clinical recommendations, coverage decisions, and health system or public health recommendations and decisions
- EtD frameworks have a common structure that includes formulation of the question, an assessment of the evidence, and drawing conclusions, though there are some differences between frameworks for each type of decision
- EtD frameworks inform users about the judgments that were made and the evidence supporting those judgments by making the basis for decisions transparent to target audiences

EtD frameworks also facilitate dissemination of recommendations and enable decision makers in other jurisdictions to adopt recommendations or decisions. or adapt them to their context

If guidelines are not developed systematically and trans-Healthcare decision making is complex. Decision making parently, clinicians are not able to decide whether to rely ing processes and the factors (criteria) that decision mak- on them or to explore disagreements when faced with ers should consider vary for different types of decisions, conflicting recommendations,12

including clinical recommendations, coverage decisions, The GRADE (Grading of Recommendations Assessand health system or public health recommendations or ment, Development and Evaluation) Working Group decisions.¹⁴ However, some criteria are relevant for all of has previously developed and refined a system to assess these decisions, including the anticipated effects of the the certainty of evidence of effects and strength of recoptions being considered, the certainty of the evidence ommendations.¹³⁻¹⁵ More than 100 organisations globthrough the DECIDE (Developing and Evaluating Com-Often, the processes that decision makers use, the cri- munication Strategies to Support Informed Decisions Clinicians depend on clinical practice guidelines, Rig-public health recommendations and decisions. The

Cochrane

process that is described in the project protocol.16 The starting point for EtD frameworks was the GRADE Working Group's approach for moving from evidence to clinical recommendations.17-19 We iteratively developed the frameworks based on reviews of relevant literature,14 brainstorming, feedback from stakeholders,20 application of EtD frameworks to a variety of recommendations and decisions, and user testing. We strove for consistency across EtD frameworks for different types of decisions, but, because of differences in the nature of the decisions, there are some differences in the frameworks. In appendix 1, we have provided a glossary of terms used in EtD frameworks, including certainty of the evidence, decisions, recommendations, and strength of recommendations.

This series of two articles describing the EtD frameworks is targeted at guideline developers and users of guidelines. This first article introduces the frameworks. It describes their purpose, development, and structure. It also describes how different organisations can adapt the frameworks to their own contexts and decision-making processes. The second article presents the framework for clinical recommendations.21

1

GRADEpro GDT ✓ test EtDF Should Tight glycemic control vs. placebo be used in hospital? 0

☑ SETTINGS	✓ Question							Ľ
TASKS	Should Tight glyd	emic control vs. p	placebo be used in hos	pital?				
🙉 TEAM	Population:	hospital			Background:			
	Intervention:	Tight glycemic co	ntrol					
	Comparison: Main outcomes:	placebo Mortality; Mortali	ty - Nondiabetic patients;	Mortality - Diabetic patients; Atrial fibrillation;				
主 COMPARISONS	Setting:	Stroke; Acute rena	al failure; Deep sternal inf	ection; Length of stay;				
EVIDENCE TABLE	Perspective:							
RECOMMENDATIONS								
PRESENTATIONS							Recommendati	ons preview
DOCUMENT SECTIONS	Assessment							
DISSEMINATION	Us the problem a	a priority?	JUDGEMENT No Probably no Probably yes Varies Don't know Detailed judgements		RESEARCH EVIDENCE		ADDITIONAL CONSIDERATIONS	
	How substantia	(i) are the	⊖ Trivial					

🖈 Explanations ? Help 💿 🗗

Conclusion

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

Other resources/ Information

- Diagnostic test accuracy SoF tables
- Qualitative evidence synthesis GRADE Approach CerQual
- GRADE Handbook

(http://www.guidelinedevelopment.org/handbook/)

- GIN-McMaster Guidelines checklist (<u>http://cebgrade.mcmaster.ca/guidecheck.html</u>)
- MAGIC App
- Refer to workbook for additional resources

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare

GRADE project groups

1. Environmental and Occupational Health	19. Complex interventions
2. Prognosis	20. GRADE Dispute
3. Outcomes valuation	21. NRS Risk of bias
4. Technology	22. Certainty in evidence
5. GRADE-CERQual	23. Philosophy of GRADE
6. Diagnosis	24. Modelling
7. Network Meta-analysis	25. Genetic Epidemiology
9. Training and Credentialing	26. Performance measurement/quality improvement (QI)
10. Public Health	27. Standardised wording of results and interpretation
21. Rare diseases	28. Overview of rerviews
12. Communication	29. Implementation of guidelines
13. Evidence to Decisions	30. Time-to-event outcomes
14. Equity	31. Stakeholders involvment
15. Algorithms and pathways	32. Rapid guidelines
17. Biosimilars	
18. GRADE for animal studies	

DE

Final questions?

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

Summing up: So why GRADE?

- 1. Transparent approach to rating certainty
- 2. Separation between certainty of evidence and strength of recommendation
- 3. Considers issues other than study design
- 4. Focuses on outcomes, not studies
- 5. Clear guidance for developing and establishing recommendations
- 6. Supported and endorsed by the international systematic review and guideline development community

Get involved!

GRADE WORKING GROUP NEWSLETTER SIGNUP

Please sign up to receive news on activities of the GRADE working group

email address

Subscribe

GET IN TOUCH

For inquiries, feel free to contact us through your preferred social media channel or through email.

CONTACT

mail@gradeworkinggroup.org

About Us

© 2004-2017 - The GRADE working group -

MUNI Institute of Biostatistics and Analyses Czech National Centre for Evidence-Based Healthcare

The Czech Republic (Middle European) Centre for Evidence-Based Healthcare Masaryk University

g+

FOLLOW US