MUNI MED

Funded by the European Union NextGenerationEU

Basics of statistics in clinical trials

Lenka Součková

Applied and clinical pharmacology (aVLKF091)

Learning outcomes

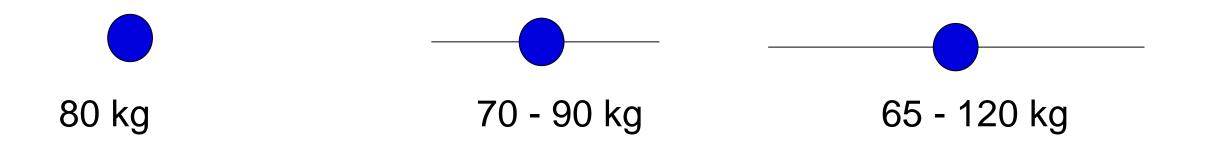
- The student explains the null hypothesis.
- The student identifies error I. and II. type.
- The student interprets the magnitude of the p value and the confidence interval.
- The student recognizes the valid results of clinical studies.

Content of the lecture

- Confidence interval
- Null hypothesis
- P-value

Confidence interval

- Population
- Sample
- Variation due to samplingError of sampling

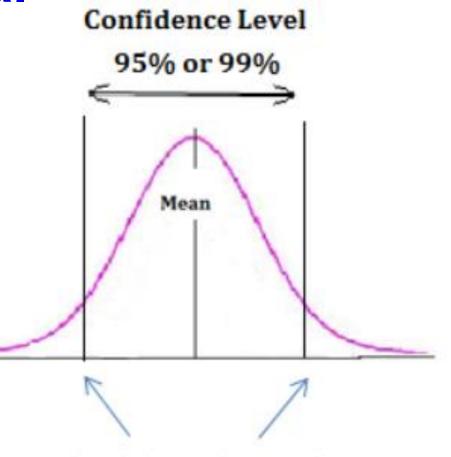


 $M \vdash D$

 Confidence interval - range, in which the true value of the mean of the quantity for the entire population is found with a predetermined (high) probability.

Interval estimate of the mean

– Point mean Interval estimate of the mean

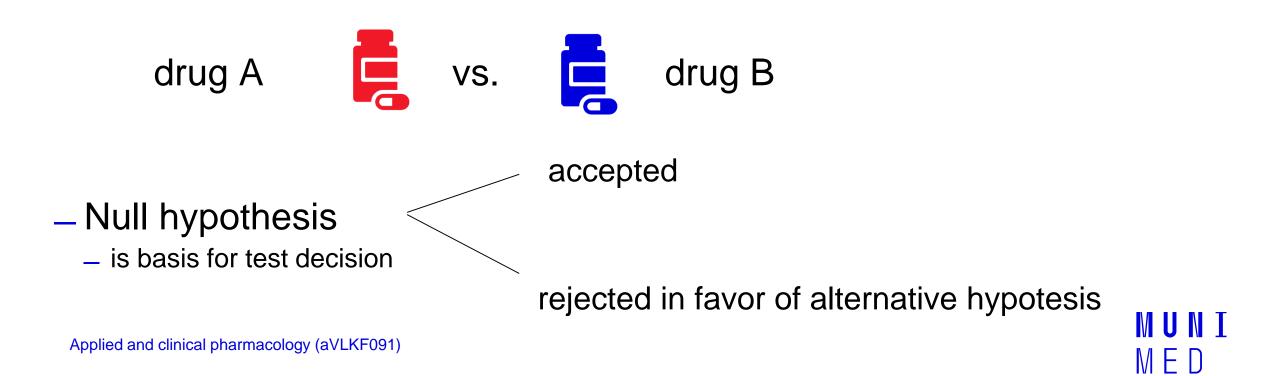

The higher the confidence coefficient, the longer and less accurate the resulting interval.

A trade-off between the required reliability and accuracy of the estimate - the length of the interval.

Width of confidence interval

relies on:

- size of selected population
- variability of selected parametr in tested population
- confidence level


Difference between Confidence Level and Confidence Interval (whatissixsigma.net)

Confidence Intervals

 $M \vdash D$

Null hypothesis

Comparison: study drug vs. comparator (e.g. another drug, placebo)
Direct question or open question

Null hypothesis

Results of our test	Reality		
(test decision)	Null hypotesis is true	Alternative hypotesis is true	
We accept the null hypothesis	Correct decision	Error of II. type – beta - FN	
We reject the null hypothesis	Error I. type – alpha - FP	Correct decision	

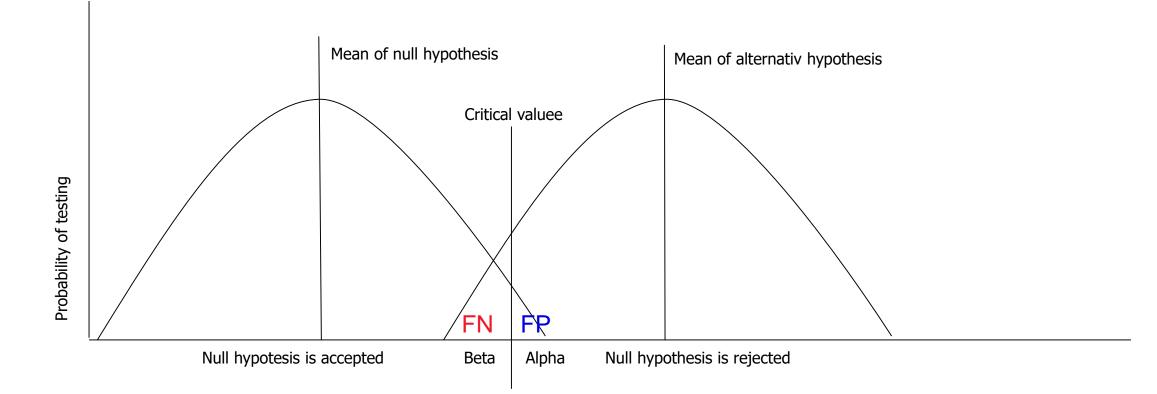
- Predefining of errors I. type alfa a significance level (usually 5 %)
- Comparing with p-value:
- P-value > alpha null hypothesis is not rejected, is accepted
- P-value ≤ alpha null hypotesis is rejected in favor of an alternative hypothesis
- 3 % < 5 % the test was in favor of the alternative hypothesis, the null hypothesis rejected Statistically significant result BUT clinical relevance must be evaluated separately

Null hypothesis and power of test

Results of our test	Reality	
(test decision)	Null hypotesis is true	Alternative hypotesis is true
We accept the null hypothesis	Correct decision	Error of II. type – beta - FN
We reject the null hypothesis	Error I. type – alpha - FP	Correct decision

– Power of test

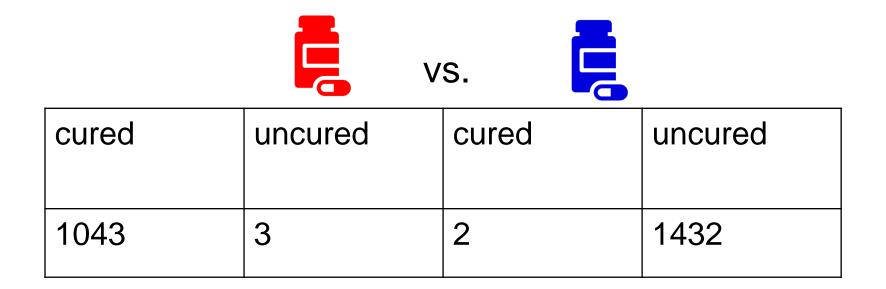
- 100 % power = error II. type (beta)
- 100 % <mark>95 %</mark> = 5 %


90 % - 95 % - 99 %

= Probability of receiving true positive test results

Applied and clinical pharmacology (aVLKF091)

MUNI MED


Null hypothesis and p-value

– P-value is only a measure for the null hypothesis

– P-value doesn't show the probability of the null hypothesis being true

Case 1: Efficacy of tested drugs

99,7 % cured 0,1 % cured p = 0,05

MUNT

MED

Case 2: Efficacy of tested drugs

cured	uncured	cured	uncured
73	125	71	127

36,8 % cured 35,8 % uncured

P = 0,9

Applied and clinical pharmacology (aVLKF091)

MUNI Med

Case 3: Efficacy of tested drug

False positivity

MUNI

MED

cured	uncured	cured	uncured
30	70	45	55

30 % cured 45 % cured

$$P = 0,01$$

Case 4: Efficacy of tested drugs

Sample size in the relation to the p-value

cured	uncured	cured	uncured
41	59	47	53

47 % cured

$$P = 0,25$$

cured	uncured	cured	uncured
4093	5805	4204	5278
41 % c	ured	42 % cured	
P = 0,04			

P-value

- Defines the probability of wrongly rejecting the null hypothesis

– Cannot distinguish:

- The null hypothesis is actually true, but the random sample was not representative.

The null hypothesis is wrong.

- Doesn't reflect the error I. type - false positivity - case 3

Alpha doesn't change, independent of p-value

 Low p-value helps decide, if drug A is different from drug B, but it doesn't say how different they are - case 4

Take home message

- A null hypothesis is set up to test a certain statement, it can be confirmed or, on the contrary, rejected in favor of an alternative hypothesis.
- The p-value defines the probability of falsely rejecting the null hypothesis that is actually correct.
- A confidence interval is a range in which a given parameter lies with a given (high) degree of probability.

MUNI MED

Faculty of Medicine Masaryk University 2023

