

COPD exacerabtion

Pavel Suk

Learning outcomes

- Student learns signs and symptoms of COPD exacerbation
- Student is oriented in differential diagnosis of acute dyspnoa
- Student knows main treatment of COPD exacerbation
- Student learns basics of ventilatory support

COPD Exacerbation

- exacerbation = acute worsening of respiratory symptoms
- -causes:
 - □70% infection
 - most often viral (rhinovirus)
 - -pollution, pulmonary embolism, ...
- **risk factors:**
 - GOLD 3 or 4
 - 2 or more exacerbations per year
 - -pulmonary hypertension
- -lasts usually 7 10 days
- **leads** to COPD deterioration

Pathophysiology

chronic bronchitis:

bronchospasm smooth muscle hypertrophy increased mucus production

emphysema:

destruction of alveolar membrane

https://www.open.edu/

Signs and symptoms

- **-**dyspnea
- -tachypnea
- -use of auxiliary respiratory muscles
- -auscultation:
 - prolonged expirium, wheezes, silent chest
- **unconsciousness**
- -right heart failure

Diagnostics

-pulse oximetry

lab studies:

-ABG

zdroj: wikimedia.org

ABG	admis.
рН	7,41
pCO2	8,4
pO2	8,8
HCO3	29,6
BE	12,8

compensated respiratory acidosis

ABG	2 h later
рН	7,23
pCO2	10,1
pO2	8,5
HCO3	29,6
BE	12,8

DEcompensated respiratory acidosis

Diagnostics

- opulse oximetry
- ab studies:
 - ABG
 - CBC, glucose, electrolytes, CRP/PCT
 - D-dimer, NT-proBNP, troponin
 - -sputum culture
 - PCR: COVID-19, influenza
- Chest X-ray: signs of hyperinflation
 - to exclude pneumonia, pneumothorax, pulmonary edema, pleural effusion
- **Hung ultrasound**
- Lung CT, CT pulmonary angiogram (CTPA)

Differential diagnosis

- pneumonia (X-ray, CRP, PCT)
- pneumothorax, pleural effusion (US, X-ray, CT)
- -pulmonary embolism (D-dimer, US, CTPA)
 - prevalence in COPD exacerbation is 16%
- eardiogenic pulmonary edema (TTE, ECG, NT-proBNP, troponin)

Initial management

- wital functions (ABCD) including SpO₂
- exygen therapy:
 - _target SpO₂ 88 92 %
 - \rightarrow excessive (SpO₂ > 94%):
 - impairs CO₂ elimination
 - increases mortality
- -pharmacotherapy:
 - based on short acting beta₂ agonists (formoterol, salbutamol)
 - effect lasts 4-6 hours
 - MDI 4-8 breaths or nebulizer, repeat hourly in the beginning
 - side effects: sinus. tachycardia, arrhythmia (tremor, hypokalemia)

Therapy

-pharmacotherapy

- short acting anticholinergics (ipratropium)
 - effect lasts 4-6 h
 - minimal side effects
 - supplement to beta₂ agonists, the same dosing intervals

-corticoids:

- prednisone dose 40 mg/day p.o., alternatively methylprednisolone i.v.
- duration 5 (max. 7) days, no indication for long-term use
- inhalation route (budesonide 4 8 mg/den) has comparable effect (Yong-Li G, J Clin Pharm Ther 2020)
- -antibiotic in case of increased sputum production, ↑ CRP/PCT, lung consolidation on X-ray
- -methylxanthines (theophylline) are not recommended

Non-invasive ventilation (NIV)

- indications: dyspnea, hypoxemia during O_2 , acidosis (pH < 7,35)
- face mask or helmet
- -modes:
 - **CPAP** simple
 - □PSV can decrease work of breathing, support of 7-10 cm H₂O
- FiO₂ to maintain SpO₂ 88 92 %
- edo not aim at normal pCO5 but normal pH (mild acidosis shoulb be tolerated)
- low PEEP (3-5 cm H_2O)

Mechanical ventilation

indication for intubation and MV:

- significant hypoxemia (SaO2 < 88%) or acidosis (pH < 7,25)
- intolerance of NIV
- unconsciousness
- exhaustion, insufficient airway clearance
- -hemodynamic instability

-ventilator setting:

- FiO₂ to maintain SpO₂ 88-92 %
- How respiratory rate, short inspirium
- —low PEEP (↓ work of breathing during spontaneous breaths)

Dynamic hyperinflation

Take home message

- exygen therapy for all hypoxemic pacients but only as much as necessary
- earterial blood gases are mandatory
- short acting beta₂ agonist and corticoids are the mainstay of therapy
- -NIV is the preferred type of ventilation

