Téma 2 Přehled mikrobiologických vyšetřovacích metod 2.1 Cíle a základní rozdělení mikrobiologických metod. Pojmy kmen a vzorek 2.1.1 Cíle mikrobiologické diagnostiky 2.1.1.1 Odhalení původce nemoci Mikrobiologická diagnostika (tedy práce laboratoře klinické mikrobiologie) směřuje k odhalení původce nemoci. Skutečného původce je přitom často potřeba odlišit od běžné flóry – tedy mikrobů (hlavně baktérií), které se v některých tělních dutinách vyskytují normálně, od náhodného nálezu, který se např. do úst zatoulal s potravou, a také od kontaminace, tedy od mikrobů, které se do vzorku připletly omylem cestou. Toto odlišení probíhá částečně v laboratoři a částečně na klinickém pracovišti. 2.1.1.2 Určení citlivosti na antimikrobiální látky V některých případech (u většiny baktérií a kvasinek, ne však u ostatních mikrobů) existuje vedle určení původce další úkol – určení "in vitro" citlivosti na antimikrobiální látky. "In vitro" citlivost (doslova „ve skle“, tedy určená v laboratoři) ovšem o skutečné "in vivo" citlivosti v organismu pacienta vypovídá jen částečně. Je to dáno mimo jiné tím, že v laboratoři se mikroby chovají poněkud jinak než ve tkáních. 2.1.1.3 Určení faktorů virulence Do třetice – jsou případy, kdy je nutné určení faktorů virulence, neboť samotný nález mikroba je nevýznamný, ale důležitý je např. nález jeho toxinu, nebo důkaz, že jde o opouzdřený kmen. Příkladem je například Clostridium difficile, bakterie, která je přítomna ve střevě i zdravých lidí. Mnohem důležitější než nález samotné bakterie jej tedy nález významného množství jejího toxinu. V řadě případů je také důležité určit velmi významnou schopnost mikroba, a to schopnost tvořit biofilm. 2.1.2 Pojmy vzorek a kmen 2.1.2.1 Vzorek Vzorek je (v klinické mikrobiologii) to, co je odebráno pacientovi a přichází k vyšetření do laboratoře. Nejčastěji se do laboratoře posílá · kusový či tekutý materiál ve zkumavce či jiné nádobce (krev, sérum, moč, mozkomíšní mok, sputum, šupiny, odštěpek kosti, stolice, kousek nehtu…) · stěr či výtěr (z nejrůznějších tělních povrchů a otvorů) na vatovém tamponu, obvykle zanořeném do transportního média. Odběrům vzorků (někdy se také používá pojem „vzorkování“) se věnuje kapitola 11. 2.1.2.2 Kmen Kmen je čistá kultura („výpěstek“) jednoho druhu mikroba (obvykle baktérie nebo mikroskopické houby). Je to soubor jedinců, kteří mají stejné vlastnosti a zřejmě pocházejí z jediné buňky. Mikrobiolog prakticky nemá možnost pracovat s jedincem jak jako zoolog či botanik: jedinec (jednotlivá bakterie či kvasinka) je příliš malý. Práce s kmenem mikrobiologům práci s jedincem nahrazuje. Zjišťovat například biochemické vlastnosti či tvorbu pigmentu u jedné buňky by bylo extrémně náročné. Použije-li se místo toho kmen, je to mnohem jednodušší Kmen získáme ze vzorku kultivací na pevné půdě (s podmínkou správného rozočkování) – proto má tato metoda výsadní postavení zejména v diagnostice bakterií. 2.1.3 Přehled metod Metody, kterými určujeme mikroby, si můžeme rozdělit na: 2.1.3.1 Metody přímé Pomocí těchto metod hledáme mikroba jako takového, jeho součást nebo jeho produkt ve vzorku pacienta. Můžeme si je dále rozdělit: 2.1.3.1.1 Přímý průkaz ve vzorku. V tomto případě pracujeme s celým vzorkem. Je potřeba vzít v úvahu, že vzorek zpravidla obsahuje buňky makroorganismu a že předem nevíme, kolik různých druhů mikrobů je ve vzorku obsaženo – nemusí tam být žádné, ale může jich být v extrémních případech i několik desítek. Taková situace samozřejmě znemožňuje použití některých diagnostických metod. Můžeme to přirovnat k tomu, že dveře od posluchárny také těžko může využít kriminalista k hledání otisku prstů jednoho studenta. 2.1.3.1.2 Práce s kmenem. V řadě případů nelze pracovat s celým vzorkem – potřebujeme získat kmen. Pokud máme k dispozici kmen a určujeme jeho vlastnosti, hovoříme o identifikaci kmene mikroba. Některé metody identifikace jsou tytéž, které se používají i k přímému průkazu ve vzorku (např. mikroskopovat se dá jak celý vzorek, tak i kmen). Jiné metody se naopak používají pouze k identifikaci, avšak nikoli k přímé práci se vzorkem (příkladem je biochemická identifikace, která se dá uplatnit pouze máme-li k dispozici čistou kulturu mikroba, tedy kmen). 2.1.3.2 Metody nepřímé Těmito metodami hledáme odezvu imunitního systému pacienta na mikroba. V naprosté většině případů hledáme protilátky. Rozdíl oproti přímému průkazu je v tom, že protilátka není součástí ani produktem mikroba – je produktem organismu pacienta. Protilátka ovšem vzniká pouze a jedině tehdy, když je imunitní systém „drážděn“ přítomností mikroba, přesněji – přítomností jeho určité struktury, které říkáme antigen. Má-li někdo v těle protilátky proti klíšťové encefalitidě, musel se setkat buď s celým virem, nebo alespoň s jeho antigenem (druhá možnost připadá reálně v úvahu jen při očkování). Nevýhodou nepřímých metod ale je, že nejsou důkazem toho, že je mikrob v těle právě přítomen – svědčí jen o tom, že se s ním (nebo s jeho antigenem) tělo někdy setkalo (mohlo to být před dvěma týdny, ale třeba i před deseti lety). Kromě průkazu protilátek patří do nepřímého průkazu také průkaz buněčné specifické imunity (např. u tuberkulózy). 2.2 Metody přímého průkazu mikrobů (přehled a charakteristika) Přehled metod přímého průkazu Název metody K průkazu ve vzorku K identifikaci kmene Mikroskopie ano ano Kultivace (pěstování na půdách) ano ano Biochemické a další identifikační metody ne ano Pokus na zvířeti ano lze použít, ale nedělá se to Průkaz antigenu/antigenní analýza ano ano Průkaz nukleové kyseliny ano lze použít, běžně se nedělá 2.2.1 Mikroskopie V mikrobiologii se používá téměř výhradně světelná mikroskopie. Pouze u virů se někdy využije elektronová mikroskopie (viry jsou příliš malé, v optickém mikroskopu nejsou viditelné). Reálně se ale ani u virů elektronová mikroskopie běžně nevyužívá, spíše jen ve výzkumu. Další text se tedy týká jednotlivých typů světelné mikroskopie 2.2.1.1 Nativní preparát Nejjednodušší druh mikroskopie: mikroby se pozorují neobarvené, jen rozmíchané v kapce fyziologického roztoku a přikryté krycím sklíčkem. Zůstávají živé a pokud jsou pohyblivé, můžeme pozorovat jejich pohyb. Pro bakterie, které jsou poměrně malé, je nativní preparát vhodný právě jen v případě, že jsou pohyblivé (lidské oko snáze pozoruje pohybující se objekty). Nativní preparát se také hodí pro houby a parazity, protože jejich buňky jsou dostatečně velké. 2.2.1.2 Mikroskopie v zástinu Je to zvláštní druh nativního preparátu, světlo na preparát dopadá zešikma a do oka dopadnou pouze ty paprsky, které se na preparátu zlomí. Hovoří se také o „mikroskopii v temném poli“. 2.2.1.3 Barvené preparáty Preparáty, které mají být nějak obarvené, musí být nejprve vysušeny a poté zfixovány. Poté se barví. Mikrobiologové provádějí nejčastěji Gramovo barvení. Rozliší baktérie podle typu buněčné stěny na tzv. grampozitivní a gramnegativní; špatně nebo vůbec se obarví bakterie, které buněčnou stěnu nemají nebo mají stěnu zvláštního typu. Pro ty se pak používají jiná barvení (na původce tuberkulózy například Ziehl-Neelsenovo). Zvláštní barvení se také používají u parazitů (Giemsovo barvení, barvení Gomoriho trichromem). Schéma nejběžnějšího, tedy Gramova barvení uvádí následující tabulka: Chemikálie Čas (s) Jak reaguje grampozitivní bakterie Jak reaguje gramnegativní bakterie Violeť 20–30 Obarví se na fialovo Obarví se na fialovo Lugolův r. 20–30 Upevní se vazba barviva na stěnu Vazba barviva na stěnu se neupevní Alkohol 15–20 Neodbarví se Odbarví se Safranin 60–120 Nanejvýš trochu změní odstín Obarví se na červeno Výsledkem tedy je, že grampozitivní bakterie jsou modrofialové, gramnegativní červené a Gramem se nebarvící bakterie se vůbec neobarví. Modrofialově se obarví také kvasinky. Pokud Gramovo barvení použijeme k obarvení vzorku, vidíme i leukocyty, epitelie a další útvary. Cytoplasma těchto buněk se zpravidla barví růžově, jádra červenofialově nebo fialově. Různá speciální barvení se používají např. na tuberkulózu, na plísně, některé parazity apod. Ke speciálním účelům se používá fluorescenční barvení. 2.2.1.4 Interpretace mikroskopie Jak již bylo řečeno, použijeme-li mikroskopii k barvení vzorku, nevidíme jenom mikroby samotné, ale také různé jiné věci, například epitelie a leukocyty makroorganismu. Jejich přítomnost není pro mikrobiologa na obtíž, naopak je využívá při hodnocení (například obsahuje-li vzorek velké množství tzv. polymorfonukleárních leukocytů, je velmi pravděpodobné, že jde o bakteriální zánět). Samozřejmě, je-li mikroskopie použita k identifikaci, vidíme už jenom buňky mikroba. 2.2.2 Kultivace Je to vlastně pěstování mikrobů. U virů se používá pro tuto metodu pojem izolace. 2.2.2.1 Základní pojmy Kultivace se v praxi zpravidla provádí na umělých půdách. Většinou se při kultivaci mikroby rozmnoží. Mikroskopie je sice nejklasičtější mikrobiologickou metodou, avšak kultivace je zdaleka nejdůležitější (alespoň v případě bakterií a kvasinkovitých hub). Její význam spočívá především v tom, že umožňuje ze vzorku (obsahujícího často směs mikrobů a téměř vždy buňky pacienta) izolovat čistý kmen ve formě tzv. kolonií. To ovšem platí jen pro tzv. pevné půdy. Důležité jsou ale i půdy tekuté, sloužící zejména k pomnožení mikrobů tam, kde jich bylo získáno málo. Kmen, jak již bylo řečeno, je populace mikrobů, vzešlá z jedné buňky, bez ohledu na momentální konkrétní formu. Všichni jedinci v rámci kmene mají stejné vlastnosti. Kolonie je označení konkrétního útvaru, který bakterie a kvasinky vytvářejí při kultivaci na pevných půdách. Teoreticky (a někdy i prakticky) je to potomstvo jedné jediné buňky, uchycené na povrchu pevné půdy. U většiny mikrobů vyroste za den. Pokud odtud mikroba přemístíme, přestává být kolonií, zůstává však kmenem. Kultivační podmínky zahrnují teplotu, vlhkost, složení atmosféry a podobně. Zpravidla se laboratoř snaží vytvořit mikrobům podmínky blízké těm, které jsou v organismu. 2.2.2.2 Tekuté půdy jsou půdy sloužící především k pomnožení bakterií z málo početných vzorků. Nejdůležitější je: Peptonová voda – obsahuje bílkovinný hydrolyzát (to jest: produkt rozkladu bílkoviny na aminokyseliny a polypeptidy). Samotná se používá zřídka, je však mezistupněm k další: Bujón (masopeptonový bujón) je peptonová voda s vývarem. Je to základní pomnožovací půda, běžně používaná v laboratoři hlavně tam, kde předpokládáme malé množství mikrobů, jež chceme namnožit (před vyočkováním na pevné půdy). VL-bujón je bujón s přídavkem kvasnic (francouzsky viande-levure = maso-kvasnice). Hodí se pro anaeroby. Aby se mikroby při kultivaci nedostaly do styku se vzdušným kyslíkem, přelévá se VL-bujón při kultivaci vrstvou parafinového oleje. Selenitový bujón je příkladem půdy selektivně pomnožovací. Taková pomnoží jen některé mikroby – v případě selenitového bujónu salmonely (a několik dalších rodů). 2.2.2.3 Pevné (většinou agarové) půdy Jsou to půdy, jejichž základem je zpravidla živný agar – to je bujón, do kterého je přidán výtažek agarové řasy. Tím se stane, že z tekutiny se stane hmota připomínající puding nebo želatinu. Fyzikálně vzato je to ovšem pořád tekutina: jakákoli chemická látka, kterou umístíme na povrch agarové půdy, začne touto půdou poměrně rychle pronikat (difundovat). Na agarových půdách je báječná jedna věc: baktérie (a také kvasinky) na nich tvoří kopečky, kterým říkáme kolonie. Každý druh bakterie tvoří na konkrétní půdě specifické kolonie charakteristické velikosti, barvy, tvaru apod., což velmi usnadňuje diagnostiku. Jedna kolonie zpravidla vyrůstá z jedné baktérie, nanejvýš z jedné dvojice, jednoho řetízku, jednoho shluku. (Používá se tu anglický termín CFU = colony forming unit = jednotka tvořící kolonii). Z toho také logicky vyplývá, že pokud na agarovou půdu naočkujeme směs dvou baktérií, a pokud tato směs není příliš hustá, vytvoří každý z těchto druhů své vlastní charakteristické kolonie. Ty pak můžeme přeočkovat (= odebrat a nechat znovu kultivovat) a různými metodami identifikovat. Samotný živný agar se v praxi většinou nepoužívá. Když už se totiž v laboratoři vaří agarová půda, vždycky se do ní přidává něco, co usnadňuje rozpoznání jednotlivých druhů. U kolonií se dají popisovat různé znaky – velikost, barva, tvar, zápach a podobně. 2.2.2.4 Rozdělení pevných půd podle účelu Diagnostické půdy jsou takové, na kterých "roste kdeco, ale každé jinak". Jinak řečeno – určitá vlastnost baktérie se projeví na vzhledu kolonie. Do této skupiny patří i půda, která je mezi klinickomikrobiologickými půdami úplně nejdůležitější: Příklad: Krevní agar je živný agar s přídavkem ovčích červených krvinek. Využívá se toho, že patogenní druhy bakterií většinou rozkládají červené krvinky (úplná nebo neúplná beta-hemolýza) nebo aspoň mění červený hemoglobin na zelené barvivo (viridace, někdy také alfa-hemolýza). Méně patogenní druhy krvinky nemění (žádná hemolýza, také "gama-hemolýza"). Zvláštní podtyp: Chromogenní agary jsou moderní půdy, které obsahují tzv. chromofory. Chromofor je látka, která by byla barevná, kdyby na ni nebyl navázán specifický substrát. Pokud bakterie či kvasinka substrát odštěpí, chromofor přestává být bezbarvý a kolonie se intenzivně zbarví. Chromofory mohou mít po odštěpení různé barvy a v půdě jich může být několik, s různými navázanými substráty. Tak lze chromogenní půdou rozlišit i přes deset různých bakterií či kvasinek, použijeme-li substráty dostatečně specifické pro dané druhy. Selektivní půdy jsou takové, na kterých "roste jenom něco". (Podobně jako u tekutých, selektivně pomnožovacích půd). Patří sem např.: Příklad: Krevní agar s 10 % NaCl – je selektivní pro stafylokoky. Ostatní klinicky významné baktérie tak vysokou koncentraci NaCl nesnášejí. Je to logické – stafylokoky žijí na (zpocené) kůži. Poznámka: I když tato půda obsahuje krev, není diagnostická, nelze na ní sledovat hemolýzu. Je tomu tak proto, že je hyperosmolární a tudíž krvinky jsou na ní částečně rozložené i bez přispění bakterie. Selektivně diagnostické půdy v sobě spojují vlastnosti obou předchozích. Jinak řečeno, jedny baktérie na nich nerostou, druhé baktérie rostou v určitých koloniích a další zase v koloniích jiného vzhledu. Příklad: Endova půda má svoji selektivní vlastnost. Ta spočívá v tom, že na ní rostou pouze gramnegativní (G-) růstově nenáročné baktérie. Má ale také diagnostickou vlastnost. Baktérie, které štěpí laktózu, na ní mají tmavočervené kolonie a tmavočervená je i půda v okolí kolonií. Laktózu neštěpící baktérie tvoří kolonie bledé. Půda samozřejmě obsahuje laktózu, a také – což je příčinou popsaného jevu – obsahuje indikátor (Schiffovo činidlo). Obohacené půdy jsou bohaté na živiny. Jsou určeny k pěstování náročných baktérií, které hned tak na něčem nevyrostou – například hemofily nebo původce kapavky. Příklad: Čokoládový agar je vlastně krevní agar zahřátý asi na 80 °C. Přestože se do něj oproti krevnímu agaru nic nepřidává, je obohacený tím, že různé látky z krvinek v něm volně plavou a jsou tedy pro baktérie mnohem lépe dostupné. Speciální půdy mají své zvláštní určení. Příklad: Müllerův-Hintonové agar je určen k testování citlivosti baktérií in vitro na antibiotika. 2.2.2.5 Jak se kultivuje na pevných půdách Na povrch půdy naneseme část vzorku nebo několik kolonií z předchozí kultivace. Bakteriologickou kličkou toto místo "roztaháme" (rozředíme) po celé misce. Nyní misku umístíme do termostatu, většinou při 37 °C (lékařsky významným bakteriím tato teplota zpravidla vyhovuje). Většinou kultivujeme 16–28 hodin (tedy do druhého dne), někdy ale déle (dva, tři i více dní). Výjimečně i několik týdnů (u původce tuberkulózy). Po vyjmutí vidíme na misce kolonie, které můžeme popisovat nebo s nimi provádět další identifikační pokusy. 2.2.3 Biochemická identifikace je založena na skutečnosti, že každý druh baktérie produkuje jinou sestavu enzymů. Především tu jde o enzymy určené ke štěpení různých substrátů (nejčastěji cukrů). A tak třeba máme baktérii, která třeba umí rozštěpit (pomocí příslušných enzymů) maltózu a sacharózu, ale ne trehalózu, a jinou, která umí štěpit sacharózu a trehalózu, ale ne maltózu. Kombinace vhodného počtu znaků může určit baktérii nejen na úroveň rodu, ale často i druhu. 2.2.3.1 Princip biochemických identifikačních testů je tedy takový, že bakteriím je předložen substrát (substráty). Pokud bakterie produkují enzym (enzymy), dojde k přeměně substrátu (substrátů) na produkt (produkty). V případě, že se produkt(y) liší od substrátu(-ů) barvou, skupenstvím apod., můžeme změnu přímo pozorovat. Pokud změna není viditelná, musí být v reakci přítomen indikátor. Nelze-li indikátor mít v reakci od začátku (třeba proto, že by v jeho přítomnosti proběhla špatně nebo neproběhla vůbec), přidává se až po proběhlé reakci ve formě činidla. 2.2.3.2 Katalázová reakce je velmi jednoduchá biochemická reakce, založená na průkazu enzymu katalázy (štěpí peroxid vodíku). Používá se k rozlišování rodů baktérií, např. stafylokoky jsou kataláza pozitivní, streptokoky kataláza negativní. Provedení: kolonie bakterie je smíchána s kapkou peroxidu vodíku. V případě pozitivity kapka šumí – vznikají bublinky kyslíku. Výhodou je, že výsledek je viditelný během několika vteřin. Indikátor není třeba (bublinky jsou viditelné). 2.2.3.3 Reakce na diagnostických proužcích (stripech). Tyto reakce se také dají odečíst velmi rychle – během vteřin či nejpozději minut. Používá se plastových diagnostických proužků, jejichž reakční ploška se zvlhčí a přitiskne na kolonie testované bakterie. Po určité době (a někdy ještě po přikápnutí činidla) se pak sleduje, jestli na reakční plošce dojde k vývoji typického zbarvení (např. modrého, modrozeleného, červeného). 2.2.3.4 Testy ve zkumavkách Jednoduché testy obsahují substrát (např. cukr) a indikátor. Do substrátu se vmíchá suspenze bakterie a inkubuje se přes noc. Když je reakce pozitivní, dojde k barevné změně; když je negativní, ke změně nedojde. Složené testy využívají vícesubstrátových směsí. Barevná změna pak může být např. jiná u hladiny (prstenec určité barvy) a jiná v hloubce. 2.2.3.5 Testy v plastové mikrotitrační destičce („panelu“) V podstatě jde o sérii miniaturizovaných jednoduchých zkumavkových testů. Bez ohledu na konkrétní podobu jednotlivých destičkových testů (liší se podle výrobce, nové výrobky od starších apod.) je princip prakticky vždy stejný: na dně důlků jsou sušené substráty (případně substráty s indikátorem), do důlků se přikápne suspenze baktérie a destička se nechá inkubovat (obvykle přes noc). Poté se hodnotí, u kterých testů došlo ke změně barvy. Hodnotí se to pouhým okem nebo automaticky – čtecím zařízením na principu spektrofotometru. Hodnotí se zpravidla najednou 7–30 různých biochemických reakcí. 2.2.4 Pokus na zvířeti Pokus na zvířeti býval důležitou součástí diagnostiky v začátcích mikrobiologie. Šlo tehdy i o to, prokázat, zda příslušný mikrob vůbec je původcem nemoci – naočkoval se tedy pokusnému zvířeti a čekalo se, zda také u zvířete propuknou příznaky podobné těm u pacienta. V některých případech se podobně postupuje dodnes. Nejčastěji se používají myši, morčata, potkani, králíci. Význam pokusu na zvířeti klesá s rozvojem modernějších metod i s tím, jak si lidé stále více uvědomují, jak je jeho využívání eticky problematické. Zvířata (hlavně hospodářská) se ovšem v mikrobiologické diagnostice uplatňují i jinak, např. jejich séra jsou zdrojem protilátek, z jejich krvinek se připravují krevní agary (nejčastěji s ovčími, ale i např. s hovězími či koňskými erytrocyty) apod. 2.2.5 Průkaz antigenu Jedná se o metodu přímého průkazu, avšak způsob provedení je až na technické detaily v podstatě shodný s nepřímým průkazem (průkazem protilátek) – v obou případech se hovoří o tzv. sérologických reakcích. Ty budou proto probrány v další části diagnostiky. 2.2.6 Průkaz nukleové kyseliny Průkaz nukleové kyseliny (většinou průkaz DNA, občas i RNA) je moderní metoda, která umožňuje identifikovat i malá množství mikrobů, mikroby usmrcené, nebo dokonce mikroby, u kterých se nezachovala kompletní buňka či virová částice. Někdy je ovšem tento zvýšený záchyt spíše na škodu. Navíc je to metoda pořád ještě hodně drahá a náročná. Používá se proto jen u mikrobů, u kterých klasické metody nelze použít, nebo jsou příliš pomalé. Průkaz NA se dělí na metody bez amplifikace (klasické genové sondy) a metody s amplifikací (namnožením) určité sekvence nukleové kyseliny. Nejpoužívanější je dnes polymerázová řetězová reakce (PCR). Podrobnější popis zde neuvádíme, neboť metoda se široce využívá i mimo mikrobiologii a naleznete ji tedy v jiných předmětech. Je však alespoň potřeba říci, že metoda není ani „všelékem“ ani „moderní zbytečnosti“ – oba názory se občas vyskytují. Má své místo mezi ostatními metodami. Využívá se především u mikrobů, které nelze snadno diagnostikovat jinými metodami. Příliš se nehodí u mikrobů, které se běžně vyskytují v prostředí, takže by amplifikovaná DNA kontaminanty mohla vést k falešně pozitivním výsledkům. 2.3 Metody nepřímého průkazu mikrobů (přehled a charakteristika) 2.3.1 Základní pojmy Poznámka: Kromě metod nepřímého průkazu v tomto textu naleznete z praktických důvodů i jednu z přímých metod – průkaz antigenu, respektive antigenní analýzu. Tyto takzvané sérologické metody jsou metody pracující s reakcí antigen – protilátka (za vzniku komplexu). V užším slova smyslu se někdy za sérologické považují pouze ty reakce, kde se jako vzorek používá sérum, popřípadě reakce, kde se hledá protilátka. Jednotlivé sérologické metody se od sebe liší pouze způsobem, jak je detekován komplex antigenu s protilátkou. Všechny se však dají použít ke všem účelům, dále uvedeným: 2.3.1.1 Průkaz antigenu pomocí protilátky Použije se laboratorní protilátka (ze séra pokusného zvířete) a smíchá se * buďto se vzorkem pacienta, ve kterém hledáme antigen – jde o přímý průkaz antigenu * nebo s kmenem, vypěstovaným z pacientova vzorku – jde o identifikaci kmene (antigenní analýzu kmene) – většinou k určení antigenního typu (serotypu) bakterie 2.3.1.2 Průkaz protilátky pomocí antigenu Použije se laboratorní antigen a smíchá se s pacientovým sérem (protilátky hledáme v séru) 2.3.1.3 Ve všech případech platí, že: * pokud vznikl komplex antigen-protilátka, je reakce pozitivní * pokud komplex nevznikl, je reakce negativní (něco v ní chybí; to, co dodala laboratoř, určitě nechybí, chybí tedy to, co „měl dodat pacientův vzorek“) 2.3.2 Přehled sérologických metod 2.3.2.1 Klasické serologické metody * Precipitace * Aglutinace a aglutinace na nosičích * Komplementfixační reakce (KFR) * Neutralizace 2.3.2.2 Moderní serologické metody – reakce se značenými složkami: * Imunofluorescence (IMF) * Radioimunoanalýza (RIA) * Enzymová imunoanalýza (EIA, ELISA) * Chemiluminiscenční analýza (CLIA, CMIA) * Imunobloty * Imunochromatografické testy (mimo mikrobiologii např. těhotenský test) Pokud se použijí k průkazu protilátek, není mezi nimi velký rozdíl. Při průkazu protilátek je ale velký rozdíl v tom, že klasické metody neumějí rozlišovat mezi jednotlivými třídami protilátek, zatímco moderní serologické metody to umějí. 2.3.3 Nespecifické antigeny a heterofilní protilátky. U většiny serologických reakcí se pracuje se specifickými antigeny – například s antigenem spalniček u protilátek proti spalničkám, se stafylokokovým antigenem u protilátek proti stafylokokům apod. Někdy je ale výhodné při nepřímém průkazu použít místo skutečného mikrobiálního antigenu nějakou levnější a bezpečnější látku, o které je známo, že je také schopna vázat příslušnou protilátku: používají se např. červené krvinky všelijakých zvířat při průkazu infekční mononukleózy (Paul-Bunnellova reakce). Hovoří se pak o nespecifickém antigenu. Tyto reakce ale většinou bývají méně specifické a je potřeba je ještě potvrdit. Někdy se také prokazují protilátky, které nejsou namířeny přímo proti mikrobu, ale proti nějaké molekule, která se uvolňuje z tkání změněných infekcí. Takovou látkou může být například kardiolipin – extrakt z hovězích srdcí při průkazu syfilis. Protilátky, které se s takovým nemikrobiálním antigenem spojují, se označují jako heterofilní protilátky. V obou jmenovaných případech se tedy dvojice antigen – protilátka neshoduje s „normální“ dvojicí (mikrobiální antigen – protilátka proti mikrobiálnímu antigenu), i když z různých důvodů. 2.3.4 Jak zjistit u nepřímého průkazu, jestli se jedná o probíhající infekci, nebo o infekci, které proběhla dříve? Zatímco přímý průkaz (včetně průkazu antigenu a antigenní analýzy!) vždy dokazuje přítomnost mikroba, u nepřímého průkazu tomu tak není. Přítomnost protilátek pouze svědčí o tom, že se organismus někdy s mikrobem setkal. Přesto je možné aspoň s určitou pravděpodobností říci, jestli se o čerstvou infekci jedná, nebo jestli jsou protilátky nalezené v séru pacienta jen následkem infekce překonané dříve. Je potřeba využít některého z následujících tří způsobů: Zjišťujeme, jaké je množství protilátek v séru a jestli se mění. Tento způsob se používá u klasických serologických metod. Využívá se toho, že v akutní fázi infekce množství protilátek prudce stoupá, pak zase klesá, a nakonec se udržuje na stálé, nízké hladině. Je ovšem těžké zjistit množství protilátek v séru absolutně (v gramech, v molech). Logicky ale - pokud je v séru hodně protilátek, můžeme takové sérum mnohonásobně zředit a pořád ještě bude reagovat s antigenem. Pokud je protilátek málo, bude reagovat jenom neředěné či málo ředěné sérum. Proto se připravují různá ředění séra (většinou geometrickou řadou: 1 : 10, 1 : 20, 1 : 40, 1 : 80 atd.) a všechna se míchají s antigenem. Tím získáme číslo zvané titr, které udává, kolikrát se dá sérum zředit, aby ještě reagovalo s antigenem. Důležitý ale nebývá samotný titr, ale jeho změna během dvou či tří týdnů. Pokud během se během této doby titr zvýší aspoň čtyřikrát (= o dvě ředění, například z 20 na 80), jde velmi pravděpodobně o akutní infekci. Pouhé dvojnásobné zvýšení (= o jedno ředění) může být náhodné. Zjišťujeme, k jaké třídě patří nalezené protilátky – to ovšem umožňují pouze moderní reakce se značenými složkami (u kterých se zase většinou nepoužívá předchozí způsob). Nález protilátek IgM (samotných, nebo dohromady s IgG) svědčí pro probíhající infekci (akutní, případně aktivní chronickou). Nalezneme-li pouze IgG, jde většinou o dříve prodělanou nemoc („paměťové“ protilátky). Vyšetřovaný jedinec tedy momentálně není nemocen, jen nemoc prodělal. Zjišťujeme tzv. aviditu, to je síla vazby protilátky na antigen. Čerstvé protilátky (u akutní infekce) bývají nízkoavidní, „ještě se neumějí vázat na antigen příliš silně“. Zjišťování avidity se používá jen v některých případech. Poznámka: U chronických infekcí může být průběh protilátkové odpovědi i komplikovanější, nad možnosti výkladu v tomto textu. 2.3.5 Precipitace a aglutinace 2.3.5.1 Princip precipitace a aglutinace Precipitace a aglutinace jsou nejjednodušší metody, protože kromě antigenu a protilátky už v systému nemusí být nic jiného. Bývají ale méně přesné a dají se použít jen v některých případech. Komplex se projeví sám jako sraženina (precipitát nebo aglutinát). Rozdíl mezi precipitací a aglutinací spočívá v tom, že u precipitace je antigen povahy koloidní (jako antigen vystupují jednotlivé makromolekuly, tedy skutečně jednotlivé antigenní determinanty), kdežto u aglutinace je antigen povahy částicové – korpuskulární (jako antigen vystupují větší částečky, například celé baktérie – jde tedy o antigenní determinanty vázané na povrch větší částice). 2.3.5.2 Aglutinace na nosičích je zvláštní případ, vlastně precipitace převedená na aglutinaci. Používá se tam, kde máme koloidní antigen, ale potřebovali bychom korpuskulární. Řeší se to tak, že antigen navážeme na vhodnou částici. Jako částice se používají latexové částice - pak se jedná o latexaglutinaci nebo červené krvinky – pak se jedná o hemaglutinaci (např. TPHA na syfilis). 2.3.6 Komplementfixační reakce (KFR) je mnohem složitější než precipitace a aglutinace. Používá se při ní komplement, což je přirozená složka humorální nespecifické, ale vlastně i specifické imunitní reakci. Každé sérum obsahuje komplement. Pro komplementfixační reakci se ovšem nedá použít vlastní komplement pacienta, protože jeho množství je nejisté. Proto se vlastní pacientův komplement před reakcí inaktivuje (teplem při 56 °C/ 30 min), a do reakce se přidává komplement morčecí. Kompletní princip reakce zde neuvádíme, je příliš složitý. Kromě morčecího komplementu zahrnuje i přidání beraních erytrocytů a králičích protilátek proti nim. Ty tvoří tzv. indikátorový systém. V podstatě jde o to, že pokud se komplement nevyváže na testovaném komplexu (protože hledaná složka chybí), vyváže se na indikátorovém systému a beraní erytrocyty jsou rozrušeny (říkáme, že dojde k hemolýze). V případě pozitivity reakce se komplement vyváže na testované reakci a nezbude žádný pro reakci indikátorovou. K hemolýze tedy nedojde. KFR je běžně používaná zejména ve virologii, případě též v diagnostice hub a parazitů, méně často i baktérií. Ve virologii je to jedna z nejběžnějších metod u většiny běžných virů. 2.3.7 Neutralizační reakce. 2.3.7.1 Princip neutralizační reakce V případě virů, které jsou malé, protilátka kromě různých dalších mechanismů účinku působí i přímo: virus má zálusk na nějakou buňku či krvinku, které by rád provedl nějakou „neplechu“ (u krvinky např. hemolýzu nebo hemaglutinaci), ale protilátka mu v tom zabrání. Bakterie jsou příliš velké na to, aby je mohla protilátka přímo inaktivovat. Co však protilátka nezmůže s bakteriemi, zmůže s jejich toxiny. Neutralizační reakce se tedy používají nejčastěji ve virologii. Dají se použít také v bakteriologii, ale většinou jenom v případě, že bakterie produkuje nějaký toxin; neutralizováno je působení toxinu, nikoli působení samotné bakterie. Výjimkou může být např. neutralizace pohyblivosti bakterie (u jedné ze starších diagnostických reakcí u syfilis). Antigenem v neutralizační reakci je tedy zpravidla virus nebo bakteriální toxin. 2.3.7.2 Některé příklady neutralizací ASLO – antistreptolyzin O. Prokazujeme protilátku proti streptokokovému toxinu. V tomto výjimečném případě nám nejde ani tak o toxin, ale o protilátku jako takovou – ona totiž často nespecificky reaguje s endokardem či ledvinnými glomeruly, vedouc tak k revmatické horečce či glomerulonefritidě. Antistreptolyzin O neutralizuje lýzu červených krvinek, kterou by normálně provedl streptolyzin O: to znamená, že v případě pozitivity (protilátka JE přítomna) nedojde k hemolýze, v případě negativity (protilátka NENÍ přítomna) k hemolýze dojde. Hemaglutinačně inhibiční test a virusneutralizační test se používají ve virologii, i když jejich význam klesá s rozvojem jiných metod. 2.3.8 Reakce se značenými složkami 2.3.8.1 Princip reakcí se značenými složkami Principem těchto reakcí je nepřerušený řetězec, jehož články jsou antigeny a protilátky; ne vždy je to jen jeden antigen a jedna protilátka. Řetězec začíná nějakým pevným povrchem (sklíčko, dno důlku) na který se naváže některá složka reakce, a končí – v pozitivním případě – nějakým "značidlem", které pak může být detekováno. Poslední složka, na kterou je "značidlo" navázáno (nakonjugováno – bývá to obvykle protilátka), se zpravidla označuje jako konjugát. V případě negativním jeden článek řetízku chybí, a proto všechny další, nejsouce pevně svázány s povrchem, mohou být – a také jsou – vyplaveny při takzvaném "promývání". Promývání se dělá po každém novém kroku. Tímto způsobem nakonec skončí ve výlevce i to "značidlo". Jako „značidla“ se používají: Fluorescenční barvivo. V takovém případě je povrchem zpravidla podložní sklíčko a výsledný efekt je detekován prostřednictvím fluorescenčního mikroskopu. Výhodou je, že vidíme např. tvar baktérie. Hovoříme o imunofluorescenci. Radioizotop. V tom případě se efekt pozoruje pomocí vhodného přístroje k detekci radioaktivity. Metoda je náročná, vyžaduje laboratoř vybavenou pro práci s radioaktivním materiálem. Používá se dnes poměrně málo. Metoda se nazývá radioimunoassay či radioimunoesej, zkráceně RIA Chemiluminofor. Používá se látka emitující světlo. Jde o reakce CLIA a CMIA. Enzym. V tom případě musí následovat ještě další fáze, ve které se přidá substrát reakce. Pokud je "značidlo" v podobě enzymu přítomno, dojde k rozštěpení substrátu na produkt, který se buďto liší barvou, nebo jej lze identifikovat s využitím indikátoru. Povrchem tu bývá dno důlku v panelu a celá reakce se dá snadno automatizovat: čím silněji reakce proběhla, tím intenzivnější je barevná změna, a tato intenzita barevné změny je měřitelná jako absorbance ve spektrofotometru. Nejběžnější variantou této reakce je reakce ELISA – je to zkratka a znamená enzym linked immuno sorbent assay. ELISy se postupně staly standardními vyšetřovacími metodami u velkého množství mikrobů, nahradily starší a méně přesné metody. 2.3.8.2 Imunobloty jsou vlastně speciálním případem enzymové imunoeseje. Od klasické ELISy se výrazně liší metodou přípravy antigenu. U klasické ELISy se prostě použije celý mikrob, a s ním pak mají možnost reagovat všechny protilátky, které jsou kompatibilní s kterýmkoli z antigenů, který se na povrchu mikroba nalézá. Takových antigenů tam může být mnoho. Někdy je ale výhodné pracovat se skutečnými jednotlivými antigeny. Je to především tehdy, kdy máme několik příbuzných mikrobů, které mají některé antigeny shodné a jiné odlišné. Imunoblotová technika nám umožní antigeny navzájem oddělit a dopídit se zjištění, který z nich vlastně reagoval. Antigeny jsou uvolněny z povrchu mikroba, rozděleny elektroforézou podle své hmotnosti a pak, opět elektroforeticky, přeneseny na speciální fólii. V tu chvíli pak začnou fungovat jako "běžný" antigen v reakci ELISA, dále už je to tedy všechno stejné. Metoda se používá například u borrelií – existuje jich několik druhů, které jsou antigenně příbuzné, ale ne totožné. 2.3.8.3 Imunochromatografické reakce se od ostatních reakcí se značenými složkami liší tím, že neobsahují promytí. Místo toho jednotlivé složky a jejich komplexy putují porézní vrstvou, a v cílovém místě se navážou (nebo nenavážou) na specifickou protilátku. Používají se i mimo mikrobiologii, např. v těhotenských testech. Klasický výsledek jsou dva proužky v pozitivním a jeden proužek v negativním výsledku. 2.3.9 Automatizace u serologických metod. Velkou výhodou zejména moderních metod, jako jsou ELISy a Western blotty, je možnost automatizace. Dnes již existují automaty, které jsou schopny celou reakci provést samy – hlídají potřebné časy reakcí, přidávají činidla, promývají apod.