Numerický experiment Robert Mařík 27. července 2006 ©Lenka Přibylová, 2006 Q Příklad. Odhadneme hodnotu limity lim siní perimentu. Budeme hledat hodnoty funkce které konvergují k nule zprava. Dostáváme x^0+ X sin x pomocí numerického ex- x na posloupnosti hodnot x, X 0.5 0.2 0.1 0.01 0.005 0.00001 sin x X 0.95885 0.99334 0.99833 0.999983 0.9999958 1 Odtud se zdá být rozumné domnívat se, že t siní lim - = 1. x^0+ X Nicméně, tato domněnka může býti zavádějící. • Kalkulátor zaokrouhluje. Z tabulky se zdá, že hodnota funkce je přesně jedna, pro x dost blízké nule. Bohužel, není tomu tak. Ve skutečnosti ©Lenka Přibylová, 2006 Q hodnota funkce sm(x)/x není rovna jedné nikde. Rovnice - = 1 x nemá řešení. • Z tabulky je pravděpodobné, že sin(x)/x se přibližuje číslu 1 pokud se x přibližuje k číslu 0. Avšak tímto faktem si nemůže být zcela jisti. Žádné množství konkrétních dat neukazuje, že hodnoty nemohou být zcela jiné, pokud jsou hodnoty x ještě blíže k nule, než je zachyceno v tabulce. Numerický experiment dává dobrou představu, jaká by mohla hodnota limity být, nemůže však být použit pro důkaz existence limity. Je nutno odvodit přesnou teorii pro výpočet limit, jak bude provedeno níže. ©Lenka Přibylová, 2006 Q