Physics, Foundation Programme – Problem Solving Exercises 2 Algebraic Experessions 1. Write the exponential expression in the simplest form so that all exponents are positive: a) a: , b) a: , c) a: d) a: e) a: f) a: g) a: h) a: i) a: j) a: k) a: 2. Evaluate each expression. Express the result in scientific notation. Round using the multiplication/division/addition/subraction rules for significant digits. a) A: FP Physics - Problem Solving Exercises 2WA 1/7 Masaryk University b) a: c) a: d) a: e) a: f) a: g) a: h) a: 3. For each polynomial determine its a) standard form, b) degree, c) coefficients, d) leading coefficient, e) number of terms a) a: a) ; b) 3; c) 1, 0, 0, -1; d) 1; e) 2 b) a: a) ;b) 4; c) -12,0,-3,0,-11; d) -12; e) 3 c) a: a) ; b) 3; c) -5,3,7,-1; d) -5; e) 4 4. Perform indicated operations and simplify if possible by combining like terms. Write the result in standard form. a) A: b) a: FP Physics - Problem Solving Exercises 2WA 2/7 Masaryk University c) * a: d) * a: 5. Use the FOIL method to find the indicated product and simplify if possible. Write the result in standard form. a) A: b) a: c) a: d) a: e) a: 6. Use special product formulas to perform indicated operation. a) A: b) a: c) a: d) a: x 2 +10 x+25− y 2 FP Physics - Problem Solving Exercises 2WA 3/7 Masaryk University 7. Evaluate the given polynomial for the indicated value of the variable: a) , for a: 29 b) , for x=5 a: -46 c) , for x=-1 a: -1 8. The number of committees consisting of exactly 3 people that can be formed from a group of n people is given by the polynomial . Find the number of committees consisting of exactly 3 people that can be formed from a group of 6 people. Ans.: 20 9. Factor out the greatest common factor (GCF) for each polynomial: a) a: -3x(5x+4) b) a: c) (use grouping) a: 10. Factor each difference of squares: a) a: b) a: ( y 2 −9)( y 2 +9)=( y−3)( y+3)( y 2 +9) c) a: (x+7)(x+3) FP Physics - Problem Solving Exercises 2WA 4/7 Masaryk University 11. Factor each perfect square trinomial: a) a: b) a: c) a: 12. Factor each sum or difference of cubes: a) a: b) a: 13. Factor each trinomial by the trial and error method: a) a: b) a: c) a: (x+5)(x+7) d) a: (x-3)(x-6) 14. Simplify each rational expression: a) a: FP Physics - Problem Solving Exercises 2WA 5/7 Masaryk University b) a 2 −ab ab−b 2 a: a b ,b≠0,b≠a c) a: 3z-2, z≠ 2 3 d) a: p−2 q−1 ,q≠1, p≠−2 15. Perform the indicated operation(s). State the result in the simplest form: a) a: , r≠0 b) a: 2, t≠0 c) a: 2x x−1 (x−5)(x+3) , x≠5,x≠−3 d) a: , y≠−4 e) a: , x≠±3,x≠−4 FP Physics - Problem Solving Exercises 2WA 6/7 Masaryk University f) a: , v≠0 g) a: , m≠±1 h) a: , x≠0,a≠−x, x≠1 FP Physics - Problem Solving Exercises 2WA 7/7 Masaryk University