General Physics Foundation Course – Problem Solving Exercises 5

Exponential and Logarithmic Functions

- 1. Evaluate the exponential function for the given x-values.
 - a) $g(x) = 3^x$; x = 0 and x = 4 A: g(0)=1; g(4)=81
 - b) $g(x) = 10^x$; x = -2 and x = 3 a: g(-2)=0.01; g(3)=1000

c)
$$h(x) = \left(\frac{3}{2}\right)^x$$
; $x = 2$ and $x = -3$; a: h(2)=9/4; h(-3)=8/27

d)
$$j(x) = \left(\frac{1}{4}\right)^x$$
; $x = -1$ and $x = 5$ a: j(-1)=4; j(5)=1/1024

- 2. Use the calculator to evaluate the exponential function for the given x-values. Round to the nearest hundredth.
 - a) $g(x) = 2^x; x = 3.2$ A: g(3.2)=9.19
 - b) $h(x) = 0.5^x; x = \pi$ a: h(pi)=0.11
 - c) $g(x) = e^x$; x = 2, x = -2, x = 0 and x = 2.2a: g(2)=7.39, g(-2)=-0.14, g(0)=1, g(2.2)=9.03
- 3. For photo-chromatic eyeglass lenses their transparency changes depending on the intensity of the UV light. The intensity of UV rays is measured using a scale called UV index. On this scale, a value near 0 indicates a low UV intensity and a value near 10 indicates a high UV intensity. For a particular type of the photochromatic lenses their transparency P depends on the current UV index x as: $P(x) = 0.9^x$.
 - a) Find the transparency of the lenses, to the nearest tenth of a percent, when they are exposed to light rays with a UV index of 3.5.

a: P=0.692 <=> 69.2%

b) What is the UV index of light rays that cause these photo-chromatic lenses to have a transparency of 45%? Round to the nearest tenth.

A: use $\log(0.45)=x*\log(0.9) \rightarrow x=\log(0.45)/\log(0.9)=7.6$

4. A sample of 40.0 g of tritium, ³₁H, is produced. What will be the mass of the tritium remaining after 61.5 years? (³₁H half life is 12.3 years)

a: 40*(1/2)⁵..... m=1.25 g

5. The half-life of plutonium ³³⁶₉₄Pu is 2.9 years. How long does it take before 1 g of ³³⁶₉₄Pu out of the original amount of 8 g ?

a: $(1/8)=(1/2)^{n-half-lifes}$ n=3 => t=t_{half-life} * 3; t=8.7 years

- 6. Write each equation in its exponential form: a) $1 = \log 10$ b) $2 = \log_8 64$ c) $4 = \log 10,000$ d) $-4 = \log_3 \frac{1}{81}$ e) $\ln x = -3$ f) $\ln 1 = 0$ a: $10^1 = 10$ a: $8^2 = 64$ a: $10^4 = 10,000$ a: $3^{-4} = \frac{1}{81}$ a: $e^{-3} = x$ a: $e^0 = 1$
- 7. Write each equation in its logarithmic form: a) $3^2 = 9$
 - b) $4^{-2} = \frac{1}{16}$ a: $\log_4 \frac{1}{16} = -2$
 - c) $b^x = y$ a: $\log_b y = x$
 - d) $y = e^x$ a: $\ln y = x$
 - e) $10^0 = 1$ a: $\log 1 = 0$
 - f) $e^2 = x + 5$ a: $\ln(x + 5) = 2$

a: $\log_3 9 = 2$

8.	Evaluate, do not use a) $\log_4 16$	calculator: a: 2
	b) $\log_3 \frac{1}{243}$	a: -5
	c) $\log_b b$	a: 1
	d) $\log \frac{1}{100}$	a: -2
	e) $\log_{10} 10^6$	a: 6
	f) $\log_5 125^2$	a: 2*log_5(125)=6
	g) $\log_3 \sqrt[5]{9}$	a: 1/5*log_3(9)= 2/5
	h) $\log_6 \sqrt[3]{36}$	a: 2/3

9. Write each expression as a single logarithm with a coefficient 1: a) $\log (x + 5) + 2 \log x$ a: $\log (x + 5) \cdot x^2$

b)
$$\frac{1}{2}\log_8(x+5) + 3\log_8 y$$
 a: $\log_8(x+5)^{\frac{1}{2}}y^3$

c)
$$2\ln(x+4) - \ln x - \ln(x^2 - 3)$$
 a: $\ln\frac{(x+4)^2}{x(x^2 - 3)}$

10. Use the change-of-base formula to approximate the logarithm accurate to the nearest tenthousandth.

a)
$$\log_7 20$$
 A: 1.5395

b)
$$\log_{50} 22$$
 a: 0.7901

c)
$$\log_3 \frac{7}{8}$$
 a: -0.1215

11. What is decibel level (given by dB(I)=10 log(I/I0)) of a fire-alarm with sound intensity I=I0*10¹⁴, a hand-drill with sound intensity I=I0*10¹⁰, a typical conversation with sound intensity I=I0*10⁶?

A: 140, 100, and 60

12. What multiple of the base intensity is the intensity of a moderate rainfall with the decibel level of 50 and a quiet room with decibel level of 40.

a: 10^{5} *I0, 10^{4} *I0