Physics, Foundation Programme – Problem Solving Exercises 6

Trigonometric Functions

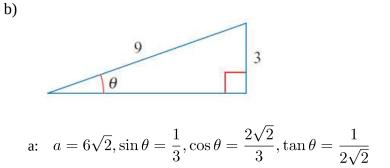
1. *Find the measure of (if possible) of the complement and the supplement of each angle:

a)
$$15^{\circ}$$
 a: $cpl=75^{\circ}$ $spl=165^{\circ}$
b) $70^{\circ}15'$ a: $cpl=19^{\circ}45'$ $spl=109^{\circ}45'$
c) $56^{\circ}33'15''$ a: $cpl=33^{\circ}26'45''$ $spl=123^{\circ}26'45''$
d) $\frac{\pi}{3}$ a: $cpl=\frac{\pi}{6}$ $spl:\frac{2\pi}{3}$

2. Determine measure of the positive angle with measure less than 360° that is coterminal angle with given angle and the classify the angle by quadrant. Assume the angles are in the standard position.

a) $\alpha = 610^{\circ}$ a: $\alpha' = 250^{\circ}$ Q=III

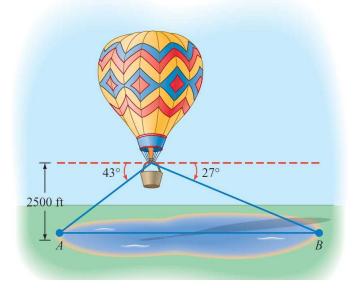
- b) $\alpha = 765^{\circ}$ a: $\alpha' = 45^{\circ}$ Q=I
- c) $\alpha = 872^{\circ}$ a: $\alpha' = 152^{\circ}$ Q=II
- 3. Use a calculator to convert each DMS measure to its equivalent decimal degree measure.
 - a) 211°46′48″ a: 211.78°
 - b) $25^{\circ}25'12''$ a: 25.42°
- 4. Convert each decimal degree measure to its equivalent DMS measure
 - a) 24.56° a: $24^{\circ}33'36''$
 - b) 211.78° a: 211°46′48″


5. Convert the degree measure to the exact radian measure

a)
$$30^{\circ}$$
 a: $\frac{\pi}{6}$

b)
$$315^{\circ}$$
 a: $\frac{7\pi}{4}$

- 6. Find the length of an arc that subtends a central angle with the given measure in a circle with the given radius. Round the answers to the nearest hundredth.
 - a) $r = 8 \text{ cm}, \theta = \frac{\pi}{4}$ a: 6.28 cm
 - b) $r = 5 \,\mathrm{m}, \theta = 144^{\circ}$ a: 12.57 m
- 7. * Each tire of a bicycle has a radius of 0.31 meters. The tires are rotating 4 revolutions per second. Find the speed of the bicycle to the nearest tenth of meters per second.
 - A: 7.8 m/s
- 8. Find the values of the functions sin, \cos , and $\tan of \theta$ for the right triangle:
 - a)


7
a:
$$r = 58$$
, $\sin \theta = \frac{7}{\sqrt{58}}$, $\cos \theta = \frac{3}{\sqrt{58}}$, $\tan \theta = \frac{7}{3}$

9. The angle of elevation from a point 116 meters from the base of the Eiffel Tower to the top of the tower is 68.9°. Find the approximate height of the tower in meters.

a: 301 m

10. The angle of depression to one side of a lake, measured from a balloon 2500 feet above the lake as shown in the accompanying figure, is 43°. The angle of depression to the opposite side of the lake is 27. Find the width of the lake.

a: 7587 ft ≈ 2313 m

11. Find the value of each of the trigonometric functions sin, cos, and tan for the angle, in standard position, whose terminal side passes through the given point.

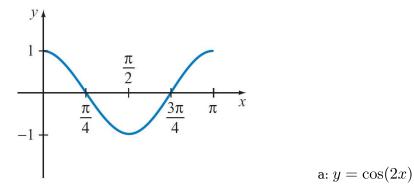
a) P(2,3) a:
$$\sin \theta = \frac{3}{\sqrt{13}}, \cos \theta = \frac{2}{\sqrt{13}}, \tan \theta = \frac{3}{2}$$

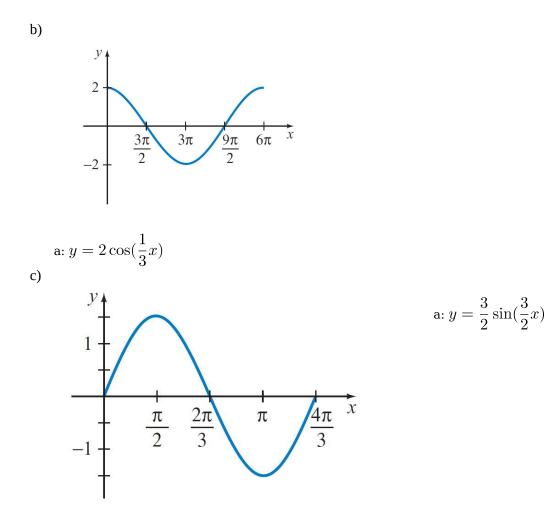
c) P(-6,-9) a:
$$r = 3\sqrt{13}$$
, $\sin \theta = -\frac{3}{\sqrt{13}}$, $\cos \theta = -\frac{2}{\sqrt{13}}$, $\tan \theta = \frac{3}{2}$

12. Evaluate the trigonometric functions of the indicated angles, or state that the function is undefined.

θ	0°	90°	$\frac{3\pi}{2}$	180°	$\frac{\pi}{3}$	$\frac{7\pi}{6}$
sin(θ)	0	1	-1	0	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
cos(θ)	1	0	0	-1	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$
tan(θ)	0	undef.	undef.	0	$\sqrt{3}$	$\sqrt{3}$

13. State the amplitude, and period of the function defined by each equation

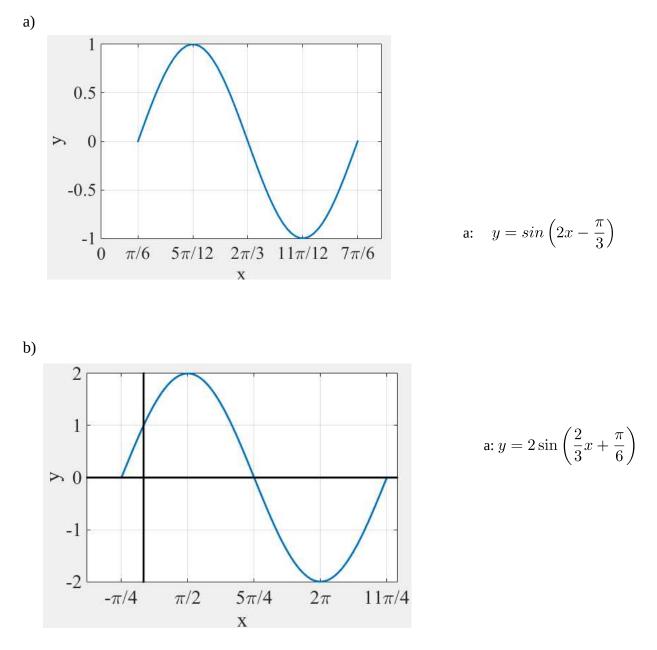

a)
$$y = 2\sin x$$
 a: $a = 2, p = 2\pi$

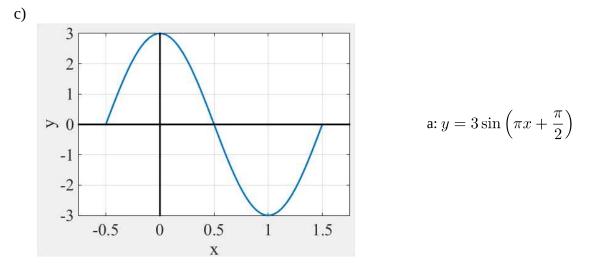

b)
$$y = \frac{1}{2}\sin(2\pi x)$$
 a: $a = 1/2, p = 1$

c)
$$y = -\frac{1}{2}\sin(\frac{\pi x}{3})$$
 a: $a = \frac{1}{2}, p = 6$

d)
$$y = 4.7 \cos(0.8\pi t)$$
 a: $a = 4.7, p = \frac{5}{2} = 2.5$

14. *One cycle of the graph of a sine or cosine function is show. Find an equation of each of graph.a)


15. Find the amplitude, phase shift and period for the graph of each function.


a)
$$y = 2\sin\left(x - \frac{\pi}{2}\right)$$
 a: $a = 2, p = 2\pi, s = \frac{\pi}{2}$

b)
$$y = \cos\left(2x - \frac{\pi}{4}\right)$$
 a: $a = 1, p = \pi, s = \frac{\pi}{8}$

c)
$$y = -4\sin\left(\frac{2}{3}x + \frac{\pi}{6}\right)$$
 a: $a = 4, p = 3\pi, s = -\frac{\pi}{4}$

16. * Each graph displays one cycle of the graph of a trigonometric function. Find an equation of each graph.

17. The function

$$bp(t) = 32cos\left(\frac{10\pi}{3}t - \frac{\pi}{3}\right) + 112, 0 \le t \le 20,$$

gives the blood pressure in millimeters of mercury (mm Hg), of a patient during a 20-second interval. Here, *t* is time in seconds.

a. Find the phase shift and the period of

a:
$$p = \frac{3}{5}$$
 s, $s = \frac{1}{10}$ s

b. What are the patient's maximum (systolic) and minimum (diastolic) blood pressure readings during the given time interval?

a: M=144 mmHg, m=80 mmHg

c. What is the patient's pulse rate in beats per minute?

pr = 60/p = 100 bpm

- 18. Find exact radian value:
 - a) $\arcsin 1$ a: $\pi/2$
 - b) $\arccos\left(-\frac{1}{2}\right)$ a: $\frac{2\pi}{3}$
 - c) $\arctan \sqrt{3}$ a: $\frac{\pi}{3}$
 - d) $\arctan{-1}$ $a:-\frac{\pi}{4}\iff \frac{7}{4}\pi$
- 19. Use a calculator to approximate each function accurate to four decimal placesa) arcsin(0.8422)a: 57.37°, 1.001 radian
 - b) $\arccos(-.0356)$ a: 92.04°, 1.606 radian
 - c) $\arctan(3.7555)$ a: 75.09°, 1.3106 radian