Analytické stanovení enzymů M.Beňovská Množství enzymu v biologickém materiálu lze vyjádřit dvojím způsobem Nepřímé stanovení • katalytická koncentrace aktivity • μkat/l • stanoví se reakční rychlost (odpovídá koncentraci produktu enzymové reakce – stanovujeme koncentraci produktu či substrátu) • při 37 oC • většina klinicky významných enzymů Přímé stanovení • hmotnostní koncentrace • μg/l, ng/l • stanoví se molekula enzymu jako antigen (imunochemicky – existuje-li specifická protilátka proti stanovovanému enzymu) • např. tumorové markery - NSE, CKMB, ALP kostní Metody stanovení katalytické koncentrace aktivity enzymu Kinetické • Spektrofotometrické stanovení rychlosti enzymové reakce kontinuálním měřením absorbance v závislosti na čase (změna absorbance za časovou jednotku) • Průběžně se měří [S] nebo [P] • Řada měření Konstantního času -„end-point“ • Měří se [P] po proběhnutí reakce – reakci necháme doběhnout do konce • Jedno měření - zjistí se průměrná rychlost – méně přesné • nedoporučené, v klinických laboratořích se neprovádí Doporučené metody Enzym Referenční metoda Certifikovaný referenční materiál ALP IFCC metoda JC ERM 20327 AMS IFCC metoda ERM-AD456 (IRMM Geel); JC-ERM 2032 AST IFCC/IRMM metoda JC-ERM 20327 ALT IFCC/IRMM metoda ERM-AD454 (IRMM Geel); JC-ERM 20327 CK IFCC/IRMM metoda ERM-AD455 (IRMM Geel); JC-ERM 20327 GGT IFCC/IRMM metoda ERM-AD452 (IRMM Geel); JC-ERM 20327 LD IFCC metoda ERM-AD453 (IRMM Geel); JC-ERM 20327 LPS CHS PAMS IFCC metoda ERM-AD456 (IRMM Geel); JC-ERM 20327 IFCC - International Federation of Clinical Chemistry Optický test •Měříme změny absorbance v UV-oblasti (při 340 nm) způsobené změnami koncentrace redukovaných forem koenzymů NADH + H+ nebo NADPH + H+ •Využívá se například při stanovení ALT a AST Alaninaminotransferáza (ALT) L-alanin:2-oxoglutarátaminotransferáza, EC 2.6.1.2. V metabolismu katalyzuje transaminační reakci: L-alanin + 2-oxoglutarát --> pyruvát + L-glutamát ALT obsažena v cytoplasmě všech buněk, zvláště hepatocytů, buněk srdečního svalu, ledvin a kosterních svalů Klinický význam • onemocnění jater (infekční virová hepatitida, mononukleóza, chronické jaterní choroby,…) • onemocnění žlučových cest • dekompenzované srdeční vady ALT •Referenční rozmezí: • M 0,20 - 0,80 µkat/l • Ž 0,20 - 0,60 µkat/l • • •Interference: •Výsledky ovlivňuje silná hemolýza - ALT 7x více v erytrocytech než v plasmě • Stanovení ALT – doporučená metoda Materiál : sérum, plasma Do reakční směsi se přidává pyridoxal-5-fosfát (PDP) jako koenzym (aktivuje Apo-ALT --> ALT*) PDP obsažen v séru, ale patologicky ho může být nedostatek L-alanin + 2-oxoglutarát <--> pyruvát + L-glutamát (ALT) pyruvát + NADH + H+ <--> L-laktát + NAD+ (LD) FOTOMETRICKY - pokles absorbance NADH při 340 nm • předinkubace při +37oC - při ní dojde k odstranění pyruvátu ze vzorku • start : 2-oxoglutarát ( 2 činidlová metoda) Aspartátaminotransferáza (AST) L-aspartát:2-oxoglutarátaminotransferáza, EC 2.6.1.1 V metabolismu katalyzuje transaminační reakci: L-aspartát + 2-oxoglutarát <--> oxalacetát + L-glutamát AST obsažena v cytoplasmě a v mitochondriích všech buněk - zvláště hepatocytů, buněk srdečního svalu, ledvin a kosterních svalů Klinický význam • onemocnění myokardu (nekróza, IM) • jaterní choroby • onemocnění kosterního svalstva AST •Referenční rozmezí: • M 0,17 - 0,85 µkat/l • Ž 0,17 - 0,60 µkat/l • • •Interference: •Výsledky ovlivňuje hemolýza - aktivita AST 40x vyšší v erytrocytech než v séru • Stanovení AST – doporučená metoda Materiál : sérum, plasma Do reakční směsi se přidává pyridoxal-5-fosfát (PDP) jako koenzym (aktivuje Apo-AST --> AST*) PDP obsažen v séru, ale patologicky ho může být nedostatek L-aspartát + 2-oxoglutarát <--> oxalacetát + L-glutamát (AST) oxalacetát + NADH + H+ <--> L-malát + NAD+ (MDH) FOTOMETRICKY - pokles absorbance NADH při 340 nm • předinkubace při +37oC - při ní dojde k odstranění pyruvátu ze vzorku (Ve vzorku enzym laktátdehydrogenáza - dochází k reakci, při které je pyruvát odstraňován, ale současně dochází k úbytku NADH - falešně vyšší rychlost úbytku NADH) • start : 2-oxoglutarát ( 2 činidlová metoda) Laktátdehydrogenáza (LD) L-laktát: NAD+oxidoreduktasa, EC 1.1.1.27. • Cytoplasmatický enzym - katalyzuje reakci anaerobní glykolýzy, je přítomen ve všech tkáních pyruvát + NADH + H+ <--> laktát + NAD+ • Zvýšení jeho aktivity v krvi není orgánově specifické - slouží spíše k vyloučení onemocnění LD Referenční rozmezí: < 4,2 µkat/l S-LD1 30,3 - 37,3 % S-LD2 37,7 - 43,9 % S-LD3 16,0 - 23,6 % S-LD4 0,9 - 3,1 % S-LD5 2,2 - 4,6 % Interference: Výsledky značně ovlivňuje hemolýza - LD až 160x více v erytrocytech než v séru Klinický význam: • onemocnění srdečního svalu (infarkt myokardu, myokarditida) • onemocnění svalů • hemolytická a perniciozní anémie • onemocnění jaterního parenchymu • maligní choroby (tumory, leukémie) Stanovení LD – doporučená metoda Materiál : sérum, plasma, (punktát) Substrát: L-laktát L-laktát + NAD+ ↔ pyruvát + NADH + H+ (LD) FOTOMETRICKY - nárůst absorbance NADH při 340 nm Stanovení izoenzymů: •Elektroforetické metody – vyjímečně Alkalická fosfatáza (ALP) orthofosfát: monoesterfosfohydroláza, alkalické optimum, EC 3.1.3.1. ALP katalyzuje reakci: monoester kyseliny o-fosforečné + H2O ↔ alkohol/fenol + fosforečnan (hydrolýza) R-OPO(OH)2 + R´-OH ↔ R-OH + R´-OPO(OH)2 (přenos fosfátové skupiny na jiný alkohol -transfosforylace) U dospělých zdravých osob převažují jaterní izoenzymy, u zdravých dětí kostní izoenzym, u těhotných žen placentární (až 50%), u osob s krevní skupinou 0 a B je dokazatelný i střevní izoenzym ALP •Referenční rozmezí: • • M (18-120r) 0,67 - 2,17 µkat/l Ž (18-120r) 0,58 - 1,75 µkat/l • (1-18r) 1,35-7,50 µkat/l • • • • • •Klinický význam: •• onemocnění jater •• onemocnění žlučových cest •• onemocnění kostí •• fyziologicky zvýšené hodnoty: rostoucí děti a těhotné ženy (max. 3 trimestr těhotenství) •• zánětlivé střevní choroby, karcinomy • •Nespecifický • • • Stanovení ALP – doporučená metoda Materiál : sérum, plasma ALP hydrolyticky štěpí 4-nitrofenylfosfát (substrát) v přítomnosti pufru AMP (2-amino-2-methyl-1-propanol) na 4-nitrofenol a fosforečnan 4-nitrofenylfosfát + H2O ↔ 4-nitrofenol + fosforečnan (ALP) FOTOMETRICKY: Zvýšení absorbance 4-NITROFENOLU při 410 nm Pozn.: V ČR dříve unifikována metoda s pufrem MEG (N-methyl-D-glukamin) – vyvinuta v Lachema Brno Stanovení izoenzymů ALP Provádí se výjimečně •Elektroforetické metody • •Imunoanalytické metody - pro stanovení koncentrace kostního izoenzymu - po reakci se specifickou protilátkou proti stanovovanému izoenzymu imunoanalyticky (hmotnostní koncentrace) GAMA GLUTAMYLTRANSFERÁZA (GGT) gama-glutamyl-peptid:aminolyselina gama-glutamyltransferasa, EC 2.3.2.2. •GGT katalyzuje přenos γ-glutamylového zbytku z γ -glutamylpeptidů na jiný akceptor (např. peptid nebo aminokyselinu) •GGT je vázána na cytoplasmatické membrány epitelu žlučových cest, ledvinných tubulů, jater, pankreatu, střeva, erytrocytů,…) •V krvi dokazatelný enzym je převážně jaterního původu GGT Referenční rozmezí: M 0,17 - 1,19 µkat/l Ž 0,10 - 0,70 µkat/l Klinický význam: • onemocnění jater • obstrukce žlučových cest • sekundární nádory jater • monitorování chronického alkoholismu (poškození jater alkoholem) Stanovení GGT – doporučená metoda Materiál : sérum, plasma Substrát: L-gama-glutamyl-3-karboxy-4-nitroanilid (Glucane) GGT přenáší gama-glutamylovou skupinu ze substrátu (Glucane) na glycylglycin (GlyGly), který v metodě funguje i jako pufr Glucane + Glygly ↔ 5-A-2NB + Glu-GlyGly (GGT) FOTOMETRICKY: Zvýšení absorbance žlutého 5-amino-2-nitrobenzoátu (5-A-2NB) α -amyláza (AMS) alfa-1,4-D-glukan-4-glukanohydrolasa, EC 3.2.1.1. AMS štěpí α -1,4 glykozidické vazby Polysacharidy + H2O → Oligosacharidy → Maltóza Štěpí glykozidické vazby uvnitř polysacharidového řetězce (endohydroláza) AMS je sekreční enzym vytvářený pankreatem a slinnými žlázami, vzniká částečně i v játrech Fyziologicky sérum obsahuje přibližně stejnou katalytickou koncentraci pankreatického a slinného izoenzymu AMS Referenční rozmezí: S,P <1,67 µkat/l U <7,67 µkat/l Klinický význam • onemocnění pankreatu (akutní pankreatitida) • onemocnění slinných žláz ( parotitis) • přítomnost makroamylasového komplexu • onemocnění jater • ledvinná nedostatečnost Stanovení AMS – doporučená metoda Materiál : sérum, plasma, moč (především jednorázová), punktát substrát : EPS-G7-PNP 4,6-ethyliden(G7)-4-nitrofenyl(G1)- α -(1,4)-D-maltoheptaosid EPS-G7-PNP + H2O ↔ 7 glukóza + 4-nitrofenol (AMS) FOTOMETRICKY: Zvýšení absorbance 4-NITROFENOLU při 405 nm Ethylidinová koncová skupina je vázána na koncovou molekulu glukózy(G7), která chrání substrát před účinkem jiných enzymů typu glukozidáz, na opačném konci je navázán 4-nitrofenol. AMS v substrátu hydrolyticky štěpí vnitřní vazby, vznikají jednotlivé fragmenty (oligosacharidy). Zbytek řetězce rozštěpí α-glukozidáza a uvolní se-nitrofenol. V konečné fázi je může být substrát rozštěpen až na glukózu. Izoenzymy AMS • SLINNÝ • PANKREATICKÝ MAKROAMYLÁZOVÝ komplex = komplexy glykosylovaných izoenzymů s imunoglobulíny a jinými bílkovinami v séru (Mr = 400 000 až 2 000 000) -Způsobuje zvýšení hodnot AMS v krevním séru bez patologických příznaků Metody stanovení 1.Selektivní INHIBICE isoenzymů monoklonálními protilátkami - takto stanovení pankreatické AMS - referenční rozmezí: 0,22 – 0,88 µkat/l 2.ELEKTROFORÉZA (pankreatická + slinná) Lipáza (LPS) triacylglycertol-acylhydrolasa, EC 3.1.1.3. LPS katalyzuje reakci triacylglycerol + 3H2O → glycerol + 3 mastné kyseliny (LPS) postupně Výskyt: pankreatická lipáza, jaterní lipáza, lipoproteinová lipáza,… LPS Referenční rozmezí: 0,22 - 1,00 µkat/l (platí pro metodu Roche) do 3,3 µkat/l (turbidimetrie) Klinický význam: • detekce a vyloučení akutní pankreatitidy • chronická pankreatitida • obstrukce pankreatického traktu Stanovení LPS Materiál: sérum, plasma, punktát Referenční metoda: není k dispozici Rutinní metody: a) Fotometrie substrát : DGGR (1,2-o-DILAURYL-rac-GLYCERO-3-GLUTARIC ACID-(6´-METHYLRESORUFIN) ESTER - patent Roche DGGR↔ glutarová kyselina + 6´-methylresorufin (LPS) FOTOMETRICKY: Nárůst absorbance METHYLRESORUFINU při 580 nm substrát : 1,2-DIGLYCERID 1,2-diglycerid + H2O ↔ glycerol + mastná kyselina (LPS) glycerol + ATP → glycerol-3-fosfát + ADP (GK) glycerol-3-fosfát + O2 → dihydroxyacetonfosfát + H2O2 (GPO) H2O2 + 4-aminoantipyrin + fenol → chinonmonoiminové barvivo + H2O (peroxidáza) FOTOMETRICKY: Nárůst absorbance barevného produktu b) Turbidimetrické metody Kreatinkináza (CK) ATP-kreatin N-fosfotransferasa, EC 2.7.3.2. Kreatinkináza katalyzuje defosforylaci kreatinfosfátu v přítomnosti komplexu ADP-Mg2+ (a opačně) •Kreatinfosfát - důležitá rezerva energie ve svalu •Tvorbou ATP dodává energii pro svalovou práci Kreatinfosfát + ADP ↔ Kreatin + ATP (CK) CK přítomna v cytoplazmě a mitochondriích buněk kosterního svalstva, srdce, mozku a hladké svalovině, ne v erytrocytech Izoenzymy: v myokardu: 80% CK-MM a 20% CK-MB v kosterním svalstvu: 98% CK-MM a 2% CK-MB(!) CK Referenční rozmezí: M <3,12 µkat/l Ž <2,87 µkat/l Interference: Při hemolýze ruší adenylkináza z erytrocytů Klinický význam: • onemocnění kosterního svalstva • onemocnění srdečního svalu (infarkt myokardu – sledování dynamiky) • onemocnění centrální nervové soustavy (CNS) Stanovení CK – doporučená metoda Materiál : sérum, plasma Kreatinfosfát + ADP ↔ Kreatin + ATP (CK) ATP + D-Glukóza ↔ ADP + D-Glukózo-6-fosfát (Hexokináza) D-GLU-6-P + NADP+ ↔ D-Glukonát-6-P+NADPH+H+ (G6PD) FOTOMETRICKY - nárůst absorbance NADPH při 340 nm Po odběru krve - CK rychle inaktivována oxidací SH-skupin Reaktivace při stanovení: N-ACETYL CYSTEIN ( NAC) Izoenzymy CK •CK se skládá ze 2 podjednotek (dimer; Mr=40 000): M ( muscle) a B (brain) •Kombinací vznikají 3 izoenzymy: CK-MM, CK-MB, CK-BB • •Je možné detekovat i makroenzym: CK- makro • •Izoformy izoenzymů: vznikají odštěpením koncových lysinových molekul CK-MB1 (žádný lysin) a CK-MB2 (1 lysin) CK-MM1 (žádný lysin), CK-MM2 (1 lysin) a CK- MM3 (2 lysiny) Stanovení izoenzymů CK • •IMUNOCHEMICKY - CK-MB mass (hmotnostní koncentrace) •je kardiospecifická •vyšší analytická citlivost stanovení • • • •IMUNOINHIBIČNĚ - aktivita CK-MB (neprovádí se) •založeno na inhibici M-podjednotek protilátkou • Cholinesterázy (CHE) • •estery CHOLINU + H2O → CHOLIN + příslušná kyselina (CHE) • hydrolýza • •• Acetylcholinesterázy • acetylcholin + H2O → CHOLIN + CH3COOH (CHE) •- obsaženy v erytrocytech, mozku, plících; štěpí acetylcholin (nervová zakončení) • •• Pseudocholinesterázy (butyrylcholinesterázy) pocházejí z ribosomů jaterních buněk → krev → sérum, plazma - stanovuje se na biochemii • CHE • •Referenční rozmezí: • (40-110r, děti do 15r, M 16-39) 89-215 µkat/l • Ž 16-39 71-187 µkat/l • •Klinický význam: •otravy organofosfáty a karbamáty (nekompetetivní inhibitory cholinestráz) •poruchy proteosyntézy - těžké hepatopatie - hladovění organismu •vrozené chybění, atypické varianty •Patologické je především snížení aktivity • • Stanovení CHE •Materiál : sérum, plasma • •Chybí referenční metoda • •butyrylthiocholin + H2O → thiocholin + butyrát (CHE) •thiocholin + DTNB → 5-merkapto-2-nitrobenzoová kyselina • žluté zbarvení • •DTNB = kyselina 5,5´dithio-bis-nitrobenzoová Enzymy -Tumorové markery •NSE (neuronspecifická enoláza) cytoplazmatický, glykolytický izoenzym enolázy - katalyzuje přeměnu 2-fosfoglycerátu na fosfoenolpyruvát malobuněčný karcinom plic •TK (thymidinkináza) enzym podílející se na syntéze DNA ukazatel buněčné proliferace hematologické malignity Enzymy v medicíně •Ukazatele patologického stavu • např.: Při poškození buněk se jejich aktivita v • extracelulární tekutině zvyšuje • •Léčiva • •Analytická činidla v KB – enzym je využit ke stanovení koncentrace substrátu • např. stanovení močoviny (ureáza) • stanovení KM (urikáza) Enzymy - ukazatele patologického stavu •Specifické pro plasmu - pocházejí z orgánů (játra), aktivní v ní • - koagulační • - fibrinolytické (plazminogen) • - CHE • Snížené hodnoty patologické – důsledek poruchy sekreční aktivity orgánu • •Buněčné - membránové (ALP) • - cytosolové (ALT, LD) • - mitochondriální (CK) • •Secernované - AMS, lipáza, trypsinogen • Patologické zvýšení aktivity nebo koncentrace enzymů v plasmě • • •Uvolněním z buněk • •Sníženou rychlostí eliminace enzymu z oběhu ( dostatečně neodchází močí) • •Uvolněním enzymu z vazby, která ho v cirkulaci blokovala Interpretace biochemických nálezů: případy z klinické a laboratorní praxe •Kámen žlučníku •Chronická pankreatitida •Virová hepatitida •Alkoholismus •Otrava houbami •Makroamylazémie • • http://is.muni.cz/elportal/?id=2355499