

LF aVLMB031 Imaging and Analytical Methods

(Autumn 2024): Methods for nucleic Acid Analysis

Ioanna Papatheodorou

PLAN OF THE LECTURE

- Introduction
- Isolation of nucleic acids
 - Isolation with high salt concentrations
 - Isolation with phenol chloroform

- Techniques for nucleic acid analysis
 - o DNA analysis
 - o RNA analysis

"Omics" technologies and nucleic acids

- Understand why it is useful to be able to analyze nucleic acids
- ✓ How nucleic acid analysis can be used in research and clinical practice
- ✓ What the most common methods for nucleic acid analysis are
- ✓ How the "omics" technologies contribute to nucleic acid analysis

The central dogma of molecular biology

What are the nucleic acids? Let's revise!

T G A G T G G A A G T A C T C A C C T T C A

✓ double stranded

- \checkmark more stable \rightarrow can be preserved for thousands of years in fossils
- ✓ contains all genetic information and regulatory elements
- ✓ genes are only a small part of the DNA regions
- ✓ coding <u>and</u> non-coding regions can offer valuable information

What are the nucleic acids? Let's revise!

- ✓ single stranded
- ✓ U instead of T
- ✓ less stable
- ✓ more "flexible"
- \checkmark can be transported
- ✓ create secondary structures
- $\checkmark~$ can provide information about the coding regions of DNA
- \checkmark can have regulatory roles itself (!) \rightarrow rRNA, tRNA, miRs

secondary structure with loops

Usage of nucleic acid analysis in research and clinic

Genotyping \rightarrow telling apart wild type (WT – "healthy") animals from animals that are genetically modified

Species DNA Barcode

Barcoding \rightarrow determining the origin of products and the presence of foreign / dangerous elements in them

Determination of the expression levels of biomarkers in patients \rightarrow prediction of risk / severity of disease (prognostics / diagnostics)

 C C T G G G A A T C

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 C C T G G G G C A T C

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 C C T G G G G C A T C

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Determination of the presence / absence of specific gene or SNP \rightarrow determination of risk of genetic (or other! E.g. cardiovascular) disease

Diagnostics – detection of virus nucleic acid e.g. COVID

- SARS-Cov2 → RNA virus → RNA production is part of the viral infection cycle
- Detection of viral RNA → more sensitive increased accuracy

Review > J Drug Target. 2024 Oct 11:1-24. doi: 10.1080/1061186X.2024.2416241. Online ahead of print.

Development of Non-Viral Targeted RNA Delivery Vehicles - A Key Factor in Success of Therapeutic RNA

Muhammad Waqas Choudry ¹, Rabia Riaz ¹, Muhammad Hassan Raza ¹, Pashma Nawaz ¹, Bilal Ahmad ¹, Neelam Jahan ¹, Shazia Rafique ¹, Samia Afza ¹, Iram Amin ¹, Muhammad Shahid ¹

Affiliations + expand

PMID: 39392510 DOI: 10.1080/1061186X.2024.2416241

> J Virol Methods. 2024 Jun:327:114918. doi: 10.1016/j.jviromet.2024.114918. Epub 2024 Mar 29.

Improved SARS-CoV-2 RNA recovery in wastewater matrices using a CTAB-based extraction method

María Julia Ousset ¹, Luis Alfredo Pianciola ², Melina Mazzeo ², Juan Martín Oteiza ³, María Soledad Jaureguiberry ⁴, Andrés Venturino ⁴, Patricia Angélica Barril ³

Affiliations + expand PMID: 38556176 DOI: 10.1016/j.jviromet.2024.114918

Diagnostics – detection of miRs or free DNA as a sign of good or bad prognosis

Sepsis

> Biomedicines. 2024 Apr 23;12(5):933. doi: 10.3390/biomedicines12050933.

Cell-Free Nuclear and Mitochondrial DNA Potential Biomarkers for Assessing Sepsis Severity

Felipe Silva de Miranda ¹ ² ³, Livia Maria A M Claudio ⁴, Dayanne Silva M de Almeida ¹ ³, Juliana Braga Nunes ¹ ³, Valério Garrone Barauna ⁵, Wilson Barros Luiz ¹ ² ³, Paula Frizzera Vassallo ⁶, Luciene Cristina Gastalho Campos ¹ ² ³

Affiliations + expand PMID: 38790895 PMCID: PMC11117867 DOI: 10.3390/biomedicines12050933

Cardiovascular disease

> J Cardiothorac Surg. 2024 Oct 1;19(1):572. doi: 10.1186/s13019-024-03079-x.

Predictive value of miR-636 in patients with acute myocardial infarction undergoing percutaneous coronary intervention and its bioinformatics analysis

Qi Wang $^{\rm 1},$ Qiang Tong $^{\rm 1},$ Zenan Jiang $^{\rm 1},$ Biao Tang $^{\rm 2}$

Affiliations + expand PMID: 39354590 PMCID: PMC11443705 DOI: 10.1186/s13019-024-03079-x

> BMC Cardiovasc Disord. 2024 Aug 13;24(1):423. doi: 10.1186/s12872-024-04088-3.

miR-223-5p serves as a diagnostic biomarker for acute coronary syndrome and its predictive value for the clinical outcome after PCI

Shaohua Zhang # 1, Guifen Yang # 1, Yuhua Chen 1, Weizhen Liu 2

Affiliations + expand PMID: 39138398 PMCID: PMC11321230 DOI: 10.1186/s12872-024-04088-3

Review > Eur J Med Res. 2024 Aug 23;29(1):432. doi: 10.1186/s40001-024-02029-6.

miR-210 in ischaemic stroke: biomarker potential, challenges and future perspectives

Nicholas Aderinto ¹², Gbolahan Olatunji ³, Emmanuel Kokori ³, Vivek Sanker ⁴, Ismaila Ajayi Yusuf ⁵, Temiloluwa Oluwakorede Adefusi ⁶, Emmanuel Egbunu ⁷, John Ehi Aboje ⁸, Oluwatobiloba Oluwatomisin Apampa ⁵, Ikponmwosa Jude Ogieuhi ⁹, Opabode Muntaqim Obasanjo ¹⁰, Wireko Andrew Awuah ¹¹

Affiliations + expand PMID: 39180099 PMCID: PMC11342498 DOI: 10.1186/s40001-024-02029-6

> Technol Health Care. 2024;32(5):2931-2939. doi: 10.3233/THC-231137.

Predictive value of miR-7110-5p and miR-223-3p as biomarkers for sepsis secondary to pneumonia

Xinliang Zhang ¹, Lin Wang ², Mei Li ¹, Shimin Dong ¹

Affiliations + expand PMID: 38759032 DOI: 10.3233/THC-231137

> BMC Infect Dis. 2024 Feb 12;24(1):187. doi: 10.1186/s12879-024-09043-3.

Metagenomic next-generation sequencing of plasma cell-free DNA improves the early diagnosis of suspected infections

Hui Zhang ^{# 1}, Ruobing Liang ^{# 2}, Yunzhu Zhu ^{# 1}, Lifen Hu ¹, Han Xia ³, Jiabin Li ^{4 5 6}, Ying Ye ⁷

Affiliations + expand PMID: 38347444 PMCID: PMC10863141 DOI: 10.1186/s12879-024-09043-3

email: 554123@muni.cz

Why is it useful to be able to analyze nucleic acids?

- Biomedical research: investigation of molecular mechanisms (that can lead to novel therapies)
- Translational research: determination of off-target effects of medicine
- *Basic research*: production of new knowledge \rightarrow deeper understanding of how the world works
- Forensics: DNA fingerprinting
- Agriculture: species barcoding \rightarrow detection of adulterated products

...and what about the clinical practice?

- Identification of foreign DNA/RNA (e.g. virus DNA) or mutated genes (e.g. oncogenes, hereditary diseases)
- Paternity tests
- Karyotypes and prenatal testing
- Diagnostics: determination of biomarker levels / risk assessment

ISOLATION OF NUCLEIC ACIDS (I)

High salt concentration

High salt concentration \rightarrow makes the proteins and debris precipitate \rightarrow nucleic acids stay in the supernatant SDS, EDTA \rightarrow denature proteins and destroy membranes \rightarrow help precipitation of proteins / separation of nucleic acids Isopropanol \rightarrow organic solvent (nucleic acids can't be diluted in it) \rightarrow precipitation of nucleic acids

ISOLATION OF NUCLEIC ACIDS (II)

Phenol - Chloroform

Isopropanol

Protein

'uuuuu

► RNA

DNA

Protein

precipitates

washing

1. Assessment of quantity and purity

- ✓ Done with Nanodrop or Bioanalyzer instruments
- ✓ Produces ratios indicative of purity (260/280 & 260/230)
- $\checkmark~$ Determines RNA quantity (ng of RNA per $\mu l)$

2. Assessment of integrity

- \checkmark Done with electrophoresis
- $\checkmark\,$ Determines intact of degraded RNA
- ✓ Intact RNA shows two big bands that correspond to the two ribosomal subunits

SNP / chromosomal analysis – FISH (fluorescent in-situ hybridization)

Microarrays – detection of gene expression

Labeling of samples with fluorescent dyes

treated

hybridization to microarray

control

Lazer hits at specific wavelength

Red = "up-regulation" Green = "down-regulation" Black = constitutive expression

Calculation of intensity of each color

- ✓ Detection of SNPs
- Investigation of both
 - alleles (in case the
 - input material is DNA)
- ✓ Investigation of RNA transcripts or patient samples at once

ICRC INTERNATIONAL CLINICAL RESEARCH CENTER

Southern / Northen blot

qPCR

- ✓ Proper conditions: pH, co-factors
- ✓ Enzyme
- ✓ Random primers
- ✓ dNTPs

- ✓ Proper conditions: pH, co-factors
- ✓ Enzyme
- ✓ Specific primers / probes
- ✓ Fluorescent agent

qPCR

╋

- ✓ Practical, easy to use and optimize
- ✓ Realtively fast and reproducible results
- Extremely sensitive and more specific than serological /
 - antibody tests (e.g. COVID detection)
- ✓ Wide applicability

From a clinical perspective:

- Speed depends on laboratory so it may miss the relevant time frame
- Resources available in the clinic for urgent cases or (equipment, trained staff)
- Diagnosis of infectious disease false positives/false negatives

From a biomedical research perspective:

- -Primers: sequence must be known, primers must be well designed
- -Sensitivity/Contamination

"OMICS" TECHNOLOGIES AND NUCLEIC ACIDS (I)

ST. ANNE'S UNIVERSITY HOSPITAL

MUNI

MED

What are the "omics" technologies?

Investigation of the "totality"

Collective characterization of the DNA, RNA, proteins or metabolites of samples / patients

"OMICS" TECHNOLOGIES AND NUCLEIC ACIDS (II)

What is DNA / RNA sequencing?

- \checkmark Determination of the nucleotide sequence of the whole genome / transcriptome of a patient
- ✓ Detection of mutations in the genomic DNA or of alteration in the expression of all genes
- ✓ Production of the "genomic profile" or "transcriptomic profile" of the patient

- ✓ Nucleic acids can offer valuable information regarding:
 - \circ The expression of various genes
 - The presence / absence of polymorphisms connected to diseases
 - \circ The origin of products
- ✓ Research and clinical practice can benefit from nucleic acid analysis via:
 - ✓ Determination of the expression profile of genes
 - ✓ Construction of karyotypes
 - ✓ Hybridization of fragments in microarrays
- \checkmark Some common methods for nucleic acid analysis are
 - ✓ <u>DNA</u>: SNP determination through FISH, Genotyping, Genetic barcoding, qPCR
 - ✓ <u>RNA</u>: RT-PCR, microarrays, Northen blot
- $\checkmark~$ The "omics" technologies allow
 - ✓ Scaling-up of the analyses
 - $\checkmark~$ Production of the information much quicker
 - ✓ Multiple analysis of many DNA/RNA regions

Thank you for your attention!

