

Blood types.

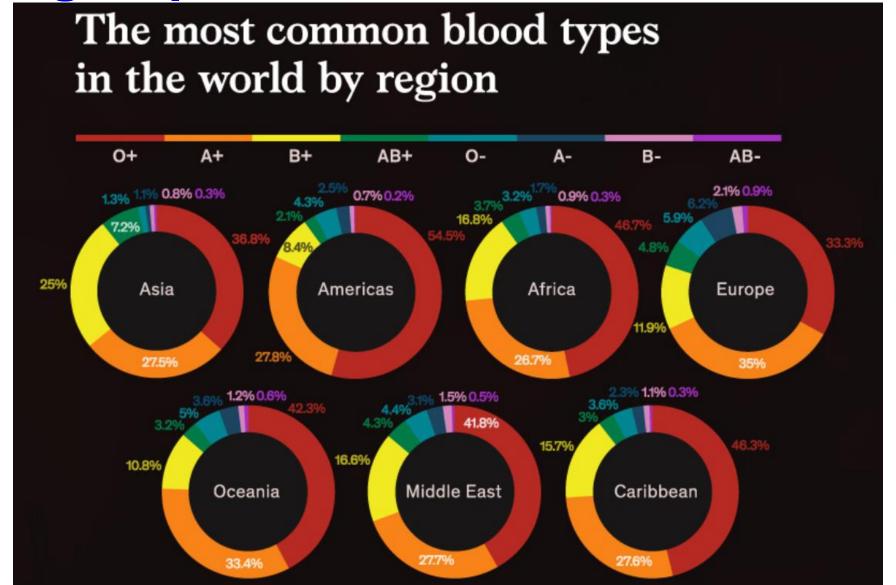
Budínská Xenie

Functions of the RBC

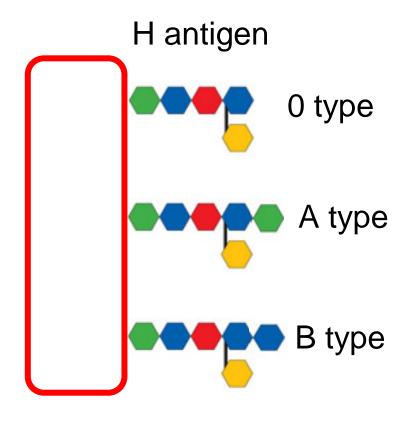
- Transport of respiratory gases
- Buffering system
- Maintaining blood viscosity
- Immune function

Blood groups

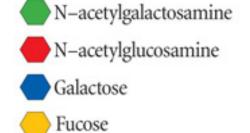
- Is a classification of blood, based on the presence and absence of antigenic substances on the surface of red blood cells.
- Antigens (depending on the blood group system):
 - proteins
 - carbohydrates
 - glycoproteins
 - glycolipids
- Some of these antigens are also present on the surface of other types of cells of various tissues.


Blood groups

- 45 human blood group systems are recognized by the International Society of Blood Transfusion:
 - ABO System (Antigens: A, B, O).
 - MNS System (Antigens: M, N, S, s, U).
 - Rh System (Antigens: D, C, c, E, e).
 - Lutheran System (Antigens: Lu_a, Lu_b).
 - Kell System (Antigens: K, k).
 - Lewis System (Antigens: Le_a, Le_b).
 - Duffy System (Antigens: Fya, Fyb).
 - Kidd System (Antigens: Jka, Jkb).
 - Landsteiner-Wiener (Antigens: LWa, LWb).
 - Chido/Rodgers System (Antigens: Ch, Rg).
 - H System (Antigens: H).

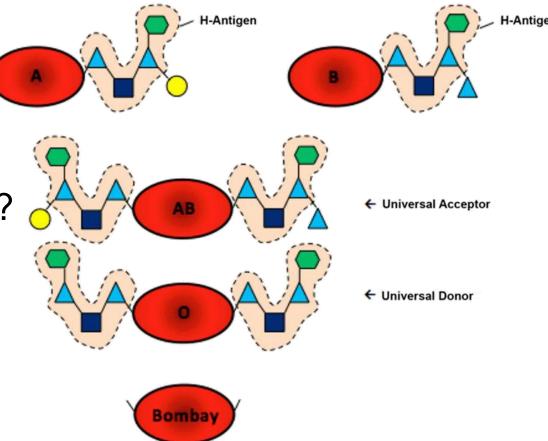


Blood groups



Agglutinogen

- The ABO gene is located on chromosome 9 and exists in three allelic forms:
 - The A allele encodes an enzyme that adds N-acetylgalactosamine to the H antigen.
 - The B allele encodes an enzyme that adds galactose to the H antigen.
 - The O allele does not produce a functional enzyme, so the H antigen remains unchanged.


"Bombay phenotype"

- in 1 of 10,000 individuals in India

— 1 in a million people in Europe

H antigen deficiency

– Hemolytic disease of the newborn???

Agglutinin

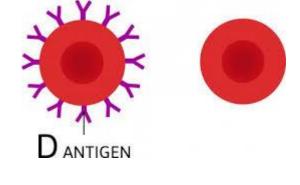
- γ-globulin (IgM)
- after births almost zero concentration in blood
- production of agglutinins begins 2-8 months after birth:
 - stimulation by antigens similar to agglutinogens in food, in GIT bacteria
- maximal concentration of antibodies is reached in 8-10 years, decreases gradually with age

AB0 system

- Antigens on the surface of RBCs (agglutinogens): A, B
- Antibodies in the blood (agglutinins): anti-A, anti-B (IgM)

Blood groups	Group A	Group B	Group AB	Group 0
Prevalence in CZ	41%	18%	9%	32%
RBCs	•	•	•	-
Antigens on RBCs	A P	B †	AaB ↑ ↑	none
Antibodies in the blood	anti-B	anti-A	none	anti-A + anti-B

Immunization against A and B happens during the first months of life (these antigens are also in the diet) – agglutinins are then in the blood for the rest of the life


AB0 system

		0 (-, anti AB)	A (A, anti B)	B (B, anti A)	AB (AB,-)
RBC	0 (-)	V	V	V	V
	A (A)	-	V	-	V
	B (B)	-	-	V	V
	AB (AB)	-	_	-	V
Plasma	0(anti AB)	V	-	-	-
	A(anti B)	V	V	-	-
	B(anti A)	V	-	V	-
	AB(-)	V	V	V	V

Rh factor

- Antigens D, d (also C,c, E, e, which are weaker) are only on RBCs
 - The strongest one is an antigen D if present → Rh+ blood group
 - In recessive homozygotes (dd) → blood group Rh- (17% in Europe, <1% elsewhere)</p>
- in Rh- blood, antibodies (anti-D, IgG) develop only after immunization
 - The first reaction is weaker, the next encounter with Rh+ blood will trigger a stronger immune response → hemolysis
 Rh +

Blood products for transfusion

- Whole blood contains red cells, white cells, and platelets suspended in blood plasma:
 - Trauma, Surgery

- RBCs

Anemia, Any blood loss, Blood disorders, such as sickle cell

Platelets

Cancer treatments, Organ transplants, Surgery

– Plasma

- Burn patients, Shock, Bleeding disorders
- Cryoprecipitated Antihemophilic Factor (Cryo)
 - Hemophilia, Coagulation abnormality

Tests conducted before a transfusion:

- Blood Typing (ABO and Rh Typing).
- Antibody Screen (Indirect Coombs Test).
- Crossmatching:
 - Immediate Spin Crossmatch.
 - Full/Extended Crossmatch.
- Complete Blood Count (CBC)
- Coagulation Tests.
- Infectious Disease Screening (Usually performed on donor blood):
 - HIV
 - Hepatitis B & C
 - Syphilis
- Direct Coombs Test (Direct Antiglobulin Test DAT)

Blood transfusion. Early Complications.

- Hemolytic reactions (immediate and delayed)
- Non-hemolytic febrile reactions
- Allergic reactions
- Reactions secondary to bacterial contamination
- Circulatory overload
- Air embolism
- Thrombophlebitis
- Hyperkalemia
- Hypothermia
- Clotting abnormalities (after massive transfusions)

Blood transfusion. Late complications.

- Transmission of infection
- Viral (hepatitis A, B, C, HIV, CMV)
- Bacterial (Salmonella)
- Parasites (malaria, toxoplasma)
- Graft-vs-host disease
- Iron overload (after chronic transfusions)
- Immune sensitization (D antigen)

