General principles of endocrine functions

MUNI MED

Hormones

- Starling 1905 secretin
- Definition?

- Glandotropic hormones
- Aglandotropic hormones

How do cells communicate?

- Intracrine
- Autocrine
- Paracrine
- Neurocrine
- Endocrine

source

Neuroendocrine

environment

target cell

	source	environment	target cell
	gland	blood	
•	 synthesis/secretion no influence on specificity of effect 	 universal environment dilution and interactions 	 receptor = specificity cell response number of receptors signaling pathways other ligands
1			ligand/receptor
	cell	matrix/interstitial fluid	
	 synthesis/secretion main determinant of target cell (determined by localization) 	 diffusion binding proteins proteases components of extracellular matrix 	 specificity and sensitivity diffusion barrier determinants of gradient inhibition signaling pathways effect of other ligands binding proteins

۲. П ٦.

Chemical nature of hormones

DERIVED FROM AMINOACIDS

PEPTIDES AND PROTEINS -Hypothalamic hormones -Adenohypophyseal hormones -Insulin, glucagon, somatostatin -Gastrin, cholecystokinin, secretin -Natriuretic peptides -Erythropoietin, thrombopoietin -PTH, PHrP -etc

NH-

Chemical nature of hormones

Hormone – characteristics	Peptides – proteins	Catecholamines	Steroid hormones	Thyroid hormones
Ph-CH properties	hydrophilic	hydrophilic	lipophilic	lipophilic
synthesis	proteosynthesis	Tyr modification	CH precursors	Tyr modifications
storage	secretory granules	secretory granules	not present	colloid
secretion	controlled exocytosis	controlled exocytosis	diffusion	diffusion
transport	free	free/weakly bound	bound	bound
alimination half life	short	very short	moderate	long
	(4 – 40 – 170 min)	(2 – 3 min)	(up to 180 min)	(20 hours – 7 days)
receptors	membrane	membrane	cytosol	nuclear
effect	short-term	very short-term	long-term	long-term
cell response	quick	very quick	slow	slow

CHEMICAL STRUCTURE OF HORMONES DETERMINES THEIR BIOSYNTHESIS, STORAGE, RELEASE, TRANSPORTATION, ELIMINATION HALF-LIFE, WAY OF ELIMINATION AND THE MECHANISM OF EFFECT ON TARGET CELLS

Hormones

- Pleiotropic effects
- Multiplicity
- Permissive effect

adipose tissue

testosterone

growth hormone lipolysis

Endocrine organs

- specialised cells specialised organs ("endocrine")
- "secretory" cells organs with endocrine function
- cells without specialised secretory function
- cells converting hormone precursors

Clinical aspects

Production of hormones by tumors – PARANEOPLASTIC SYNDROMES

Lung tumors

- ADH (hyponatremia)
- ACTH (Cushing syndrome)
- PTHrP (hypercalcaemia)

Liver and kidney tumors – erythropoietin

(polycythemia)

GIT tumors

ACTH (Cushing syndrome)

Secretion of hormones and its regulation

- Neuronal control
 - hypothalamus
 - sympathetic/parasympathetic nervous system
- Hormonal control
- Regulation od secretion by ions or substrates (Glu, AA)

Hormone secretion is controlled by feedback system

Cyclic changes in hormone secretion

SCN:

Afferent – retina

Hormone transport

- Physico-chemical properties
- Transport protein(s)
 - Albumin
 - Globulins
 - Specific proteins TBG, SHBG, CBG
- Bond strength
- "Alternative" binding TBG versus transthyretin

- Protection
- •Reservoir
- •Ubiquitous distribution
- •Transport across plasmatic membrane (SHBG – megalin)

DYNAMIC BALANCE BETWEEN HORMONE AND TRANSPORT PROTEIN

Hormone elimination

- Different length of time in circulation
- Metabolisation by
 - Target cells
 - Enzymatic systems in blood
 - Organs mainly liver
- Elimination
 - Liver
 - Kidneys

PHASE I

- Hydroxylation, decarboxylation
- Oxidation, reduction

PHASE II

- Glucuronidation
- Sulphatation
- Methylation
- Conjugation with glutathione

Hormones and cell response

CELL RESPONSE IS MEDIATED BY RELEVANT RECEPTORS

Regulation of cell response at receptor level

Downregulation versus upregulation

Regulation of cell response at receptor

level

Homologous desensitization ("with ligand") X Heterologous desensitization ("without ligand")

Hormones – proteins and peptids

G protein-coupled receptors (GPCR)

Example – G-protein coupled receptors and smooth muscle

Receptor tyrosinkinases

Receptors associated with cytosolic TK

- GH
- Prolactin
- Leptin
- erythropoietin

signal transducers and activators of transcription

Receptor serine/threonine protein kinases

- Anti-Müllerian hormone
- inhibitin
- SMAD = "latent transcription factors"

Receptor guanylate cyclase

- Natriuretic peptides:
 - ANP, BNP, CNP

Signal transduction – system of second messengers

HORMONE = FIRST MESSENGER

INTRACELLULAR SIGNALING MOLECULE GENERATED AFTER HORMONE-RECEPTOR BONDING = SECOND MESSENGER

• cAMP

- TSH, glucagon, ACTH, hypothalamic hormones, ADH etc.
- Proteinkinase A
- Modulation of signaling pathways by compartmentalization (A-kinase anchoring proteins (AKAPs))

cGMP

- ANP, BNP, CNP
- NO (sGC)
- Proteinkinase G

• DAG and IP₃

 PIP₂ – phospholipase C system

EXTRACELLULAR SIGNAL MUST BE CONVERTED TO INTRACELLULAR RESPONSE

AC – cAMP system

PLC - DAG and IP₃ system

Ca²⁺ - calmodulin system

NO as a signalling molecule - cGMP

Clinical aspects

• Syndromes of resistance to hormones (i.e. IR, IGF-1, TR β)

Syndromes caused by CPCRs and G proteins mutations

- ADH nephrogenic diabetes insipidus
- ACTH familiar ACTH resistance
- GnRH hypogonadotrophic hypogonadism
- FSH hypergonadotrophic ovarial dysgenesis
- LH male pseudohermaphroditism
- Melanocortin 4 obesity
- PTH/PTHrP Blomstrand lethal chondrodysplasia

Hormones acting through nuclear receptors

General mechanism of effect of hormones acting through nuclear receptors

-High affinity of ligand bond = due to R structure
-Recognition of specific promotor region
-Dimerisation of receptors (homodimers, heterodimers)
-Remodelation of chromatin for gene expression (HDAC)
-Gene expression at the end decreased or increased

WHY ONLY NUCLEAR RECEPTORS?

- -Synthesis in cytoplasm
- -Stay until ligand binding or until transport to nucleus

-Regulation mechanism – modification, count of receptors
-Important parameter – selectivity of target cells
-Tissue-specific factors, coactivators and corepressors

Nuclear receptors

-Coregulatory proteins binding(independent on ligand)- Phosphorylation sites

-DNA binding (zinc fingers)-Dimerisation-ERE, PRE, GRE, MRE, ARE

-Ligand binding (agonist, antagonist)
-Coregulatory proteins binding
(dependent on ligand)
-Dimerisation
-Nuclear translocation
-Chaperone association (HSP)

Example – steroid hormones X thyroid hormones

Termination of hormone action

Receptor-mediated endocytosis and subsequent lysosome degradation

Phosphorylation/ dephosphorylation of receptor or proteins of signaling pathway

Ubiquitination and proteosomal degradation

Binding of regulatory factor on corresponding protein (enzyme)

Inner enzymatic activity and its regulation

Clinical aspects

- Hormone overproduction
- Hormone underproduction
- Changes in sensitivity of target tissues and/or change in cell response
- Higher rate of inactivation or degradation of hormones
- Insufficient production or higher degradation of transport proteins
- Changes of transport hormones production during physiological conditions (pregnancy)

Clinical aspects

Source: Molina PE: Endocrine Physiology, 4th Edition: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved. Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

- Decreased number of receptors
- Decreased concentration of hormone-activating enzyme(s)
- Increased concentration of non-competitive inhibitor
- Decreased number of target cells

- Decreased affinity of hormone to receptor
- Decreased number of receptors
- Increased rate of hormone degradation
- Increased concentration of antagonists/competitive inhibitors