

8

Auditory and vestibular system

Auditory system

- Transduction of sound waves to the receptor and the action potential
- Transmission to CNS
- Signal processing
 - Sound decoding
 - Interpretation

Auditory system

- Transduction of sound waves to the receptor and the action potential generation
- Transmission to CNS
- Signal processing
 - Sound decoding

Sound is audible mechanical vibration of an elastic medium such as air

http://www.slideshare.net/drpsdeb/presentations

Auditory system

- Air/water vibration caused by solid object
- Sound characteristics
 - Frequency pitch
 - Amplitude intensity
 - Timbre given by representation of harmonic frequencies of the oscillation
- Pure tone
- Complex sound

http://www.slideshare.net/drpsdeb/presentations

Sound

- Pure tone
 - Determined by frequency
- Complex sound
 - Sum of pure tones
 - ➤ Harmonic (musical)
 - periodic
 - Disharmonic (noise)
 - aperiodic

online/ch03/chapter-3-2.html

http://www.slideshare.net/drpsdeb/presentations

Audible spectrum

HUMAN 20-20,000Hz

ELEPHANT 5-12,000Hz

DOG 50-45,000Hz

CAT 45-65,000Hz

MOUSE 1,000-100,000Hz

BAT 2,000-120,000Hz

BELUGA WHALE 1,000-120,000Hz

DOLPHIN 75-150,000Hz

The intensity and volume of sound

- Intensity of sound
 - Amplitude
 - ➤ Whisper 20 dB
 - > Speaking 65 dB
 - ➤ Jet engine 100 dB
 - ➤ Pain treshold 120 dB

The intensity and volume of sound

- Intensity of sound
 - Amplitude
 - ➤ Whisper 20 dB
 - > Speaking 65 dB
 - ➤ Jet engine 100 dB
 - ➤ Pain treshold 120 dB
- Volume
 - Subjectively perceived intensity

External ear

✓ Transmission of acoustic signal from environment to the tympanic membrane

Middle ear

✓ Transmission of acoustic signal from the tympanic membrane to the oval window and endolymph/basilar membrane –ossicular vs bone conduction

Middle ear

- A significant difference in acoustic impedance between air and endolymph
- Signal amplification
 - Tympanic membrane area/oval window area
 - Ossicles
- Protective function
 - m.stapedius and tensor tympani
 - Eustachian tube

http://slideplayer.com/slide/3433153/

Inner ear

✓ Transduction of endolymph/basilar membrane vibrations to receptor and action potential

Tonotopic arrangement

- Proximal parthigh frequency
- Distal part
 - low frequency

http://www.slideshare.net/drpsdeb/presentations

Basilar membrane

- Basal part
 - Narrow and tight High frquencies
- Apical part
 - Wide and loose Low frequencies

http://lh6.ggpht.com/_RIjx_Mg4ZVM/TNeYbcwJOYI/AAAAAAAACmA/9S_7HaZu5DI/s1600-h/image%5B62%5D.png

Organ of Corti

- >Inner hair cells > aprox. 3 500
- ➤ Outer hair cells > aprox. 12 000
- >Tectorial membrane

http://www.slideshare.net/drpsdeb/presentations

Inner hair cells

Sensory function

Outer hair cells

- Modulation of the signal
 - ✓ Amplification of required frequencies
- The number increases towards apex (low frequencies)

http://www.slideshare.net/drpsdeb/presentations

Inervation of the organ of Corti

Sound processing

- Nucleus spiralis cochleae
- Nucleus cochlearis ventralis
 - Information about intensity
 - Time delay the sound direction
- Nucleus cochlearis dorsalis
 - Information about frequency
- Olivary nuclei
 - Analysis of direction
 - Modulation (increase) of the outer hair cells sensitivity
- Colliculi inferiores
 - Integration of information from the lower structures
 - Centre of acoustic reflexes
- N. corporis geniculati medialis
 - Thalamus
- Auditory cortex

Nucleus olivaris superior medialis

✓ Time delay based sound localization Bellow 1-3 kHz Loudspeaker Sound reaches left ear first 3 Sound reaches right ear a little Longer path to neuron E 4 Action potential from right ear Cochlea and begins traveling cochlear nucleus toward MSO Right ear leading neuron leading neuron Right ear 2 Action potential begins traveling toward MSO MSO Shorter path to neuron E 5 Action potentials converge Cochlea and on an MSO neuron that cochlear nucleus responds most strongly if their arrival is coincident

Nucleus olivaris superior lateralis

✓ Intensity analysis based sound localization

Colliculi inferiores in various animal species

Auditory cortex

http://www.slideshare.net/drpsdeb/presentations

Vestibular system

- Associated with auditory system
 - Anatomic localization
 - Hair cells
- Information about
 - Position
 - Acceleration
 - ✓ Linear
 - ✓ Angular

http://www.slideshare.net/CsillaEgri/presentations

Vestibular system

- Associated with auditory system
 - Anatomic localization
 - Hair cells
- Information about
 - Position
 - Acceleration
 - ✓ Linear
 - ✓ Angular

http://www.slideshare.net/CsillaEgri/presentations

Maintenance of the balance Muscle tone modification

"Maintenance of the balance" of the sight Vestibuloocular reflexes (VOR)

Information about position and linear acceleration

- Macula
 - CaCO₃ crystals
- Utriculus
 - Horizontal macula
- Sacculus
 - Vertical macula

utricle

macula

saccule

Mechanism of reception

- Flexion towards stereocilia
 - Mechanically activated K+ channels are opened –depolarization
- Flexion away from stereocilia
 - The channels are clsed hyperpolariztion

Information about angular acceleration

- Ampulla
- Semicircular canals
 - Upper
 - Horizontal
 - Posterior

Vestibular nuclei

- ✓ Integration of vestibular, visual and somatosensoric information
- ✓ Projections
- Cerebellum
- Oculomotoric nuclei
- Nucleus of n. Accessorius –
 the muscles of the neck
- Spinal nuclei
- Thalamus cortex

MUNI MED

76. The basic physiology of auditory and vestibular system – brief characterization of the modality, basic information about signal detection and processing

- The auditory and vestibular systems are interconnected by similar mechanisms of reception ("hair cells" activated by mechanical stimuli)
- Auditory system
 - Brief characteristic of sound
 - Overview of ear anatomy and physiology
 - Middle ear more in details
 - Inner ear in details (anatomy, hair cells categorization and function...)

- Main structures involved in signal processing and source localization
- Vestibular system
 - Overview of anatomy with respect to fucnction (detection of position, linear and angular acceleration)
 - Main projections from vestibular nuclei
- Nystagmus (presentation Vision II)

#