MUNI MED

Pulmonary perfusion and diffusion disorders

Respiration process (pumonary gas exchange)
• Ventilation ary gas exchange)
Partial pressures
iální tlaky

- Ventilation
- Diffusion
- Perfusion

Differences between pulmonary and systemic
circulation
Pulmonary circulation **Pulmonary of Conservation**
Pulmonary circulation **Pulmonary of Conservation** circulation

- Pulmonary circulation
- Low pressure
- Distribution into different segments is regulated uniquely by local metabolic factors (hypoxic vasoconstriction)
- Total CO is determined by the kidneys and left ventricle (which react primarily to systemic circulation parameters), only resistance is regulated in the lungs egulated uniquely by local metabolic factors

by positive variables and left

or to is determined by the kidneys and left

or the strem of mental system. And the system of resistance,

intricle (which react primarily to sy
- Low pressure gradient between pulmonary veins and arteries (sufficient \uparrow BP in left atrium is mirrored in the pulmonary trunk)
- Systemic circulation
- High pressure
- Distribution into different segments is regulated metabolically (hypoxic vasodilation) as well as centrally (nervous system, hormones)
- Simultaneous regulation of resistance, mechanic function of the heart and circulating volume
- Difference between arterial and venous pressures is approx. 100 mmHg, ↑ BP in right atrium does not have a direct impact on MAP
-

Perfusion assessment - total
• Right ventricular cardiac output:
• (EDV-ESV) × HR (estimate – e.g. echocardiography)

- -
- Perfusion assessment total
• Right ventricular cardiac output:
• (EDV-ESV) × HR (estimate e.g. echocardiography)
• termodilution (invasive) rapid removal of cold marker in high f erfusion assessment - total

endight ventricular cardiac output:

• (EDV-ESV) × HR (estimate – e.g. echocardiography)

• termodilution (invasive) – rapid removal of cold marker in high flow

area under curve)

Perfusion assessment - local

- Scintigraphy
	- Perfusion scintigraphy (e.g. $99m_{43}Tc$)
- Prfusion assessment local

eintigraphy

 Perfusion scintigraphy (e.g. ^{99m}₄₃Tc)

 Ventilation-perfusion scan: combination of perfusion and inhare

scintigraphy **example 12**

extragancy and the computer of the contrigraphy

• Perfusion scintigraphy (e.g. $\frac{99m}{43}$ Tc)

• Ventilation-perfusion scan: combination of perfusion and inhalation

scintigraphy

regiography scintigraphy erfusion assessment - local

eintigraphy

• Perfusion scintigraphy (e.g. ^{99m}₄₃Tc)

• Ventilation-perfusion scan: combination of perfusion and

scintigraphy

• Digital subtraction angiography

• CT angiography
- Angiography
	-
	- CT angiography

Pulmonary perfusion and V-P scan

Stark 2. Métení ascendentní aorty a plicrice.

A Métení ascendentní aorty a plicrice.

A Métení ascendentní aorty a plicrice.

A Métení ascendentní aorty a plicrice.

www.iakardiologie.cz

Findings

- Right-to-left shunt
• Percentage of blood, which passed from right • Percentage of blood, which passed from right ventricle into left atrium without a change in blood gases (physiologically up to 0.10)
	- anatomical
	- functional (alveoli with low V_A/Q ratio)
	- pathological

R-L shunt - methods

• Total shunt

• Can be estimated from the ratio of pulmo

-
- $R-L$ shunt methods

 Total shunt

 Can be estimated from the ratio of
 O_2 fraction in the inspired air (FiO₂) $R-L$ shunt - methods

• Total shunt

• Can be estimated from the ratio of
 O_2 fraction in the inspired air (FiO₂)

and O_2 partial pressure in the

arteries (PaQ) O_2 fraction in the inspired air (FiO₂) and O_2 partial pressure in the **Shunt** - methods

al shunt

he estimated from the ratio of

fraction in the inspired air (FiO₂)

d O₂ partial pressure in the

eries (PaO₂)

d O₂ partial pressure in the

eries (PaO₂)

d O₂ macroaggregated -L shunt - methods

Total shunt

Can be estimated from the ratio of
 O_2 fraction in the inspired air (FiO₂)

and O_2 partial pressure in the

arteries (PaO₂)

In severe shunts, \uparrow FiO₂ does not
 \downarrow pulmon -L Shunt - methods
Total shunt
Can be estimated from the ratio of
O₂ fraction in the inspired air (FiO₂)
and O₂ partial pressure in the
arteries (PaO₂)
In severe shunts, \wedge FiO₂ does not
lead to \wedge PaO₂!) • Iotal shunt - methods

• Total shunt

• Can be estimated from the ratio of
 O_2 fraction in the inspired air (FiO₂)

and O_2 partial pressure in the

arteries (PaO₂)

• In severe shunts, ↑FiO₂ does not

lead -L shunt - methods

Total shunt

Can be estimated from the ratio of

O₂ fraction in the inspired air (FiO₂)

and O₂ partial pressure in the

arteries (PaO₂)

In severe shunts, \wedge FiO₂ does not

lead to \wedge
- lead to 个PaO₂!

- Anatomical shunt (bypassing
pulmonary capillaries) can be
estimated using perfusion Anatomical shunt (bypassing
pulmonary capillaries) can be
estimated using perfusion
scintigraphy estimated using perfusion scintigraphy atomical shunt (bypassing
monary capillaries) can be
imated using perfusion
ntigraphy
Quantification of ^{99m}₄₃Tc-labeled
macroaggregated albumin uptake in
pulmonary and systemic circulation
shunt[%] = (systemic aggregat) \overline{c}
	- Quantification of $^{99m}{}_{43}$ Tc-labeled pulmonary and systemic circulation
	- shunt $[\%]$ = (systemic aggregates pulmonary aggregates)/systemic aggregates

Dead space
• Volume with no gas exchange

- Volume with no gas exchange
- can be estimated from the difference between PaCO₂ and pCO₂ in exhaled air at the end of expiration (end-tidal CO₂; EtCO₂) - capnometry $aCO₂$ and $pCO₂$ in exhaled
) - capnometry 1 no gas exchange

imated from the difference between PaCO₂ and

end of expiration (end-tidal CO₂; EtCO₂) - capnon

– EtCO₂) $\leftrightarrow \uparrow$ dead space

Ily around 1/3 of tidal volume
	- \uparrow (PaCO₂ EtCO₂) $\leftrightarrow \uparrow$ dead space
- Physiologically around 1/3 of tidal volume
	- anatomical
	- functional (alveoli with high V_A/Q ratio) $\begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}$
	- pathological

V_A / Q equilibrium

- \uparrow V_A/Q dead space
- $\sqrt{V_A/Q}$ shunt
- $V_A/Q \sim 1$ no shunt or dead
space, or combined shunt and degree, standard)

- for measuring pulmonary capillary wedge pressure (PCWP)
- Pressure in pulmonary trunk
- Pulmonary wedge pressure
	- A balloon-tipped catheter is carried by the blood flow into a branch of pulmonary artery, which is occluded this way (
	, wedge")
	- Pressure measured by the tip of a catheter thus reflects the left atrium pressure and not pulmonary arterial pressure

Noninvasive estimation of pulmonary pressures **• pulmonary pressures**

• Lower reliability than direct measurement,

• ather orientational (± 5 mmHg)

• 2D USG – estimation of right atrial pressure (P_{ra})

• diameter of inferior vena cava (normal 1,5 – 2,5

• chan

-
- -
	-
-
- **PUIMONATY PIFESSUFES**

 Lower reliability than direct measurement,

rather orientational (± 5 mmHg)

 2D USG estimation of right atrial pressure (P_{ra})

 diameter of inferior vena cava (normal 1,5 2,5

 change Systolic pressure in pulmonary trunk: $4(TRV_{end})^2 + P_{ra}$, where TRV_{end} is a flow velocity of tricuspid regurgitation at the end of the diastole
	- **pulmonary pressures**

	Lower reliability than direct measurement,

	rather orientational (± 5 mmHg)

	2D USG estimation of right atrial pressure (P_{ra})

	 diameter of inferior vena cava (normal 1,5 2,5

	cm)

	 change **IMONATY PFESSUFES**

	er reliability than direct measurement,

	er orientational (± 5 mmHg)

	JSG – estimation of right atrial pressure (P_{ra})

	diameter of inferior vena cava (normal 1,5 – 2,5

	cm)

	change of inferior vena **ITTITUTION THAT Y**

	PTESSUTES

	Ferreliability than direct measurement,

	Ferreliability than direct measurement,

	ISG – estimation of right atrial pressure (P_{ra})

	Commenter of inferior vena cava (normal 1,5 – 2,5

	Comm **• Propertion** \bullet **• • • Properties in the control of right atrial pressure (** P_{ra} **)** \bullet **diameter of inferior vena cava (normal 1,5 – 2,5 cm)

	• change of inferior vena cava (normal 1,5 – 2,5 cm)

	• change of inf** + er reliability than direct measurement,
er orientational (\pm 5 mmHg)

	JSG – estimation of right atrial pressure (P_{ra})

	diameter of inferior vena cava (normal 1,5 – 2,5

	cm)

	change of inferior vena cava diameter duri er reliability than direct measurement,
er orientational (\pm 5 mmHg)
JSG – estimation of right atrial pressure (P_{ra})
diameter of inferior vena cava (normal 1,5 – 2,5
cm)
change of inferior vena cava (normal 1,5 – 2,5 wer reliability than direct measurement,
ther orientational (± 5 mmHg)
 $0 \cup SG$ – estimation of right atrial pressure (P_{ra})

	• diameter of inferior vena cava (normal 1,5 – 2,5

	cm)

	• change of inferior vena cava diame Er renability than three triessurement,
er orientational (± 5 mmHg)
ISG – estimation of right atrial pressure (P_{ra})
diameter of inferior vena cava (normal 1,5 – 2,5
cm)
change of inferior vena cava diameter during
resp er orientational (± 5 mmHg)

	ISG – estimation of right atrial pressure (P_{ra})

	diameter of inferior vena cava (normal 1,5 – 2,5

	cm)

	change of inferior vena cava diameter during

	respiration (normal ≥ 50%)

	pler USG – t • USG – estimation of right atrial pressure (P_{ra})

	• diameter of inferior vena cava (normal 1,5 – 2,5 cm)

	• change of inferior vena cava diameter during

	respiration (normal ≥ 50 %)

	pppler USG – tricuspid and pulmo by determined by the diatomology of the diatomology expected and diameter of inferior vena cava (normal 1,5 – 2,5 cm)
change of inferior vena cava diameter during
respiration (normal \geq 50 %)
pler USG – tricuspid and p
		-
		-

Pulmonary hypertension
• Mean pulmonary pressure> 25 mmHg at rest or > 30

- Pulmonary hypertension
• Mean pulmonary pressure> 25 mmHg at rest or > 30 mmHg during
• precapillary effort ¹
• hyportension
• hypoxic (e.g. COPD, esp. with chronic bronchitis predominance)
• hypoxic (e.g. COPD, esp. with chronic bronchitis predominance)
• vascular (e.g. ILD, pneumonectomy, severe emphysema)
• vascular (e.g. p **1**
• restrictive (e.g. Vippertension
• recapillary
• restrictive (e.g. COPD, esp. with chronic bronchitis predominance)
• restrictive (e.g. ILD, pneumonectomy, severe emphysema)
• vascular (e.g. pulmonary embolism, pulmon ||monary hypertension
|lean pulmonary pressure> 25 mmHg at rest or > 30 mmHg during
|fort
|recapillary
|• restrictive (e.g. COPD, esp. with chronic bronchitis predominance)
|• restrictive (e.g. ILD, pneumonectomy, severe • Mean pulmonary pressure> 25 mmHg at rest or > 30 mmHg during

• precapillary

• precapillary

• hypoxic (e.g. COPD, esp. with chronic bronchitis predominance)

• restrictive (e.g. ILD, pneumonectomy, severe emphysema)

• • Mean pulmonary pressure> 25 mmHg at rest or > 30 mmHg du

• fort

• precapillary

• hypoxic (e.g. COPD, esp. with chronic bronchitis predominance)

• restrictive (e.g. ILD, pneumonectomy, severe emphysema)

• vascular (e
- precapillary
	-
	-
	-
-
-

Pressures and CO in the right heart in pulmonary hypertension

- monary hypertension
• HFrEF: heart failure with
• Cardiac index: CO per body
• Cardiac index: CO per body
- Triangleright
The Harry Hypertension
The Harry Start Failure with
Triangleright Cardiac index: CO per body
The Surface area monary hypertension
• HFrEF: heart failure with
reduced EF
• Cardiac index: CO per body
surface area
• In hyperkinetic PH 个CO of
the right ventricle nonary hypertension
HFrEF: heart failure with
reduced EF
Cardiac index: CO per body
surface area
In hyperkinetic PH 个CO of
the right ventricle monary hypertension
• HFrEF: heart failure with
• duced EF
• Cardiac index: CO per body
surface area
• In hyperkinetic PH ↑CO of
the right ventricle nonary hypertension

HFrEF: heart failure with
reduced EF
Cardiac index: CO per body
surface area
In hyperkinetic PH 个CO of
the right ventricle
-

Pulmonary hypertension — right ventricle

Pulmonary hypertension — right ventricle

Prince and a served and the cardiac Part of the served and the served of the served of the served of the served of the Right ventricle — f

- right ventricle
• Right ventricle first concentric
• Right ventricle first concentric
• EF
• In advanced stage decreased RV EF Fight ventricle
hypertrophy, then dilation and ↓ RV
FF
the diverted stage decreased RV EF
during effort instead of the increase EF **Fight ventricle**
 Fight ventricle – first concentric
 pertrophy, then dilation and ↓ RV
 Figure 2
 **Constranced stage decreased RV EF

during effort instead of the increase

icuspid and pulmonary

regurgitation** ght ventricle
ht ventricle – first concentric
ertrophy, then dilation and \downarrow RV
In advanced stage decreased RV EF
during effort instead of the increase
uspid and pulmonary
urgitation - right ventricle

• Right ventricle – first concentric

• Night ventricle – first concentric

• In advanced stage decreased RV EF

• In advanced stage decreased RV EF

• Tricuspid and pulmonary

• regurgitation

• Pulmon
	-
- regurgitation
- ΓIgNT VeNTFICIe
• Right ventricle first concentric
• Nypertrophy, then dilation and ↓ RV
• F
• In advanced stage decreased RV EF
• during effort instead of the increase
• Tricuspid and pulmonary
• Pulmonary vessels Right ventricle – first concentric

hypertrophy, then dilation and \downarrow RV

EF

• In advanced stage decreased RV EF

during effort instead of the increase

Tricuspid and pulmonary

regurgitation

Pulmonary vessels – \uparrow Right ventricle – first concentric

hypertrophy, then dilation and \downarrow RV

EF

• In advanced stage decreased RV EF

during effort instead of the increase

Tricuspid and pulmonary

regurgitation

Pulmonary vessels – \uparrow Right ventricle – first concentric

hypertrophy, then dilation and \downarrow RV

EF

• In advanced stage decreased RV EF

during effort instead of the increase

Tricuspid and pulmonary

regurgitation

Pulmonary vessels – \uparrow hypertrophy, then dilation and \downarrow RV
EF

• In advanced stage decreased RV EF

during effort instead of the increase

Tricuspid and pulmonary

regurgitation

Pulmonary vessels – \uparrow wall

thickness (which prevents

pu

ECG in right ventricular hypertrophy

example of axis deviation

Example: Sided axis deviation

- $(+110°)$
- rophy
• Right-sided axis deviation
(+110°)
• Deep S in left-sided chest leads
(correspons with right-sided rophy
• Right-sided axis deviation
(+110°)
• Deep S in left-sided chest leads
(correspons with right-sided
axis orientation in transversal
plane) Ophy

Right-sided axis deviation

(+110°)

Deep S in left-sided chest leads

(correspons with right-sided

axis orientation in transversal

plane)

Dominant R in V1 (>0.7 mV) **OPhy**

Right-sided axis deviation

(+110°)

Deep S in left-sided chest leads

(correspons with right-sided

axis orientation in transversal

plane)

Dominant R in V1 (>0.7 mV)

RBBB (incomplete or complete) plane) • Right-sided axis deviation
• Deep S in left-sided chest leads
(correspons with right-sided
axis orientation in transversal
plane)
• Dominant R in V1 (>0.7 mV)
• RBBB (incomplete or complete)
• P pulmonale (>0.25 mV)
• ST
- Dominant R in V1 (>0.7 mV)
-
-
-

Other causes of right ventricular hypertrophy
• Inborn defects with left-to-right shunt

- Inborn defects with left-to-right shunt
-
- Other causes of right ventric
• Inborn defects with left-to-right shunt
• Valvular diseases
• Arrhythmogennic cardiomyopathy (ACM,
ventricular dysplasia ARVD) 9 Other causes of right ventricular hypertrophy
• Inborn defects with left-to-right shunt
• Valvular diseases
• Arrhythmogennic cardiomyopathy (ACM, syn. arrhythmogennic right
• reco correlate: ε-wave – postexcitation of Ventricular hype

ventricular diseases

Valvular diseases

Arrhythmogennic cardiomyopathy (ACM, syn. arrhythmo

ventricular dysplasia – ARVD)

• ECG correlate: E-wave – postexcitation of the right ventricle; \

LBBB **FREE CALCES OF FIGHT VENTICULAR HYPETTOPHY**
 born defects with left-to-right shunt
 alvular diseases
 expression of the right ventricle; VPC shaped as
 ECG correlate: ε-wave – postexcitation of the right ventricle
	- LBBB

Etiology of pulmonary hypertension
(classification) (classification) Etiology of pulmonary hypertension

(classification)
• Primary pulmonary hypertension
• Inborn cardiac defects
• Left-sided heart failure – pulmonary venous hyperter Etiology of pulmonary hyperten

(classification)
• Primary pulmonary hypertension
• Inborn cardiac defects
• Left-sided heart failure – pulmonary venous hyp
• Pulmonary diseases Etiology of pulmonary hypertension

(classification)

• Primary pulmonary hypertension

• Inborn cardiac defects

• Left-sided heart failure – pulmonary venous hypertension

• Pulmonary diseases

• Pulmonary embolism Etiology of pulmonary hyperte

(classification)
• Primary pulmonary hypertension
• Inborn cardiac defects
• Left-sided heart failure – pulmonary venous
• Pulmonary diseases
• Pulmonary embolism
• Other (e.g. sarcoidosis, d Etiology of pulmonary hyperte

(classification)

• Primary pulmonary hypertension

• Inborn cardiac defects

• Left-sided heart failure – pulmonary venous h

• Pulmonary diseases

• Pulmonary embolism

• Other (e.g. sarcoi • Primary pulmonary hypertension
• Inborn cardiac defects
• Left-sided heart failure – pulmonary venous hypertension
• Pulmonary diseases
• Pulmonary embolism
• Other (e.g. sarcoidosis, disorders of hematopoiesis, lymphati) ertension
pulmonary arterial hypertension
enous hypertension

-
-

-
-
-
-

Pulmonary arterial hypertension
• Includes idiopathic hypertension, PAH in inborn cardiac defects, drug-indue

- Includes idiopathic hypertension, PAH in inborn cardiac defects, drug-induced Particulary arterial hypertension
Patudes idiopathic hypertension, PAH in inborn cardiac defects, drug-induced
PAH (anorectics), persisting PH of newborns or PAH related to connective tissue
disorders
PAH (anorestics) or P disorders • Includes idiopathic hypertension, PAH in inborn cardiac defects, drug-induced

PAH (anorectics), persisting PH of newborns or PAH related to connective tissue

disorders

• Approx. 5 % of all the pulmonary hypertension
- Approx. 5 % of all the pulmonary hypertension cases (of which 50 % is idiopathic PAH)
- -
	- Low penetrance, BMPR2 mutations or ↓expression frequent also in other types of PAH

PAH pathogenesis **PAH** pathogenesis
 1) Vasoconstriction

• Endothelial

dysfunction

• thromboxane A2 >

- Endothelial dysfunction
- thromboxane A2 > prostacyclin (PGI2)
- remodelation
-
- (irreversible)

Prognosis and treatment of PAH
Without treatment, the survival
median is 3 years

- Without treatment, the survival median is 3 years
- Anticoagulants
- Anticoagulants
• Vasodilators (prostacyclin, sildenafil)
• In some patients ("responders") PH
- In some patients ("responders") PH decrease by >20 % during vasodilation test
	- Administration of NO in the inhaled air

	/ i.v epoprostenol (synthetic

	prostacyclin) or adenosine
	- Good reaction to $Ca²⁺$ channel blockers, better prognosis
- Lung transplantation

Inborn cardiac defects born cardiac defects

yanotic

• transposition of the great

• left ventricular hypoplasia

• left ventricular hypoplasia

• tetralogy of Fallot

• tetralogy of Fallot

• patent foramen ovale **born cardiac defects**

vanotic

• transposition of the great

• left ventricular hypoplasia

• left ventricular hypoplasia

• tetralogy of Fallot

• tetralogy of Fallot

• patent foramen ov

• ventricular septal

• ventri

- Cyanotic
	- vessels
	-
	-

- Necyanotické
	-
	-
	-
- aortic stenosis
- becyanotické
• aortic stenosis
• aortic coarctation
• atrial septal defect
• patent foramen ovale
• ventricular septal defect
- |
| ecyanotické
| aortic stenosis
| aortic coarctation
| atrial septal defect
| patent foramen ovale
| ventricular septal defect
| persistent ductus arteriosus
- ⁵
• aortic stenosis
• aortic coarctation
• atrial septal defect
• patent foramen ovale
• ventricular septal defect
• persistent ductus arteriosus
• bicuspid aortic valve (rather a [•]
• aortic stenosis
• aortic coarctation
• atrial septal defect
• patent foramen ovale
• ventricular septal defect
• persistent ductus arteriosus
• bicuspid aortic valve (rather a
variant) • aortic stenosis
• aortic stenosis
• aortic coarctation
• atrial septal defect
• patent foramen ovale
• ventricular septal defect
• persistent ductus arteriosus
• bicuspid aortic valve (rather a
variant) ²
• aortic stenosis
• aortic coarctation
• atrial septal defect
• patent foramen ovale
• ventricular septal defect
• persistent ductus arteriosus
• bicuspid aortic valve (rather a
variant)
• monary by pertension in: variant) • Necyanotické
• aortic stenosis
• aortic coarctation
• atrial septal defect
• patent foramen ovale
• ventricular septal defect
• persistent ductus arteriosus
• bicuspid aortic valve (rather a
• variant)
• Pumonary hyperte • aortic stenosis
• aortic coarctation
• atrial septal defect
• persistent foramen ovale
• ventricular septal defect
• persistent ductus arteriosus
• bicuspid aortic valve (rather a
variant)
• monary hypertension in:
• per
- -
	-
	-

Pulmonary hypertension in cardiac defects

-
- 1 in cardiac defects
• Eisenmenger syndrome
• severe form of pulmonary
hypertension in left-to-right
shunts n cardiac defects

isenmenger syndrome

• severe form of pulmonary

• hypertension in left-to-right

• pulmonary pressures ~ MAP Cardiac defects

enmenger syndrome

severe form of pulmonary

hypertension in left-to-right

shunts

pulmonary pressures ~ MAP

irreversible remodelation of shunts • pulmonary pressures ~ MAP **n** Cardiac defects

is entire remodeling the severe form of pulmonary

by pertension in left-to-right

shunts

• pulmonary pressures ~ MAP

• irreversible remodelation of

pulmonary vessels Cardiac defects

enmenger syndrome

severe form of pulmonary

hypertension in left-to-right

shunts

pulmonary pressures ~ MAP

irreversible remodelation of

pulmonary vessels
 Example 1990
	-
	-

Pulmonary embolism
• 1 v_A/Q

- $\uparrow V_A/Q$
- Causes:
	- thromboembolism
- [|]
| monary embolism
|- V_A/Q
| auses:
|• fat embolism e.g. fractures) emboli can bass through bronchopulmonary
| junctions
|• tumour embolism junctions /Q
es:
romboembolism
t embolism e.g. fractures) – emboli can bass t
nctions
r embolism (e.g. venous catheterization)
imour embolism
omplications of pregnancy
• amniotic fluid
• mola hydatidosa
ptic embolism (e.g. cardiac v
	- air embolism (e.g. venous catheterization)
	- tumour embolism
	- complications of pregnancy
		- amniotic fluid
		-
	- septic embolism (e.g. cardiac valves)

PE consequences

-
- PE consequences
• ↑ dead space
• ↑ shunt (anatomic blood flow through bro
• Hyperventilation (stimulation of juxtacapilla
• Partially companents respiratory insufficiancy 『
• ↑ dead space
• ↑ shunt (anatomic – blood flow through bronchopulmonary juctions, PFO)
• Hyperventilation (stimulation of juxtacapillary J-receptors – subj. dyspnea)
• Partially compensates respiratory insufficiency
 • A dead space
• ↑ dead space
• ↑ shunt (anatomic – blood flow through bronchopulmonary juctions, PFO)
• Hyperventilation (stimulation of juxtacapillary J-receptors – subj. dyspnea)
• Partially compensates respiratory in • CONSEQUENCES
• dead space
• shunt (anatomic – blood flow through bronchopulmonary juction
• perventilation (stimulation of juxtacapillary J-receptors – subj. dy
• Partially compensates respiratory insufficiency
• In mild
- -
	-
	-
- CONSEQUENCES
• dead space
• shunt (anatomic blood flow through bronchopulmonary juctions, PFO)
yperventilation (stimulation of juxtacapillary J-receptors subj. dyspnea)
• Partially compensates respiratory insufficien • CONSequences
• dead space
• shunt (anatomic – blood flow through bronchopulmonary juctions, PFO)
• perventilation (stimulation of juxtacapillary J-receptors – subj. dyspnea)
• Partially compensates respiratory insufficie • Pulmonary hypertension in >50 % obstruction (the same as in pumonary resections)
- PE CONSequences
• ↑ dead space
• ↑ shunt (anatomic blood flow through bronchopulmonary juctions, PFO)
• Hyperventilation (stimulation of juxtacapillary J-receptors subj. dyspnea)
• Partially compensates respiratory in • The Corning acutum RV dilation, right-sided regugitation, perophenomic acuty of the Hyperventilation (stimulation of juxtacapillary J-receptors – subj. dyspnea)

• Hyperventilation (stimulation of juxtacapillary J-rec • \uparrow dead space

• \uparrow shunt (anatomic – blood flow through bronchopulmonary juctions, PFC

• Hyperventilation (stimulation of juxtacapillary J-receptors – subj. dyspnea

• Partially compensates respiratory insuffici • \uparrow shunt (anatomic – blood flow through bronchopulmonary juctions, PFO)
• Hyperventilation (stimulation of juxtacapillary J-receptors – subj. dyspnea)
• Partially compensates respiratory insufficiency
• In milder for Hyperventilation (stimulation of juxtacapillary J-receptors – s

• Partially compensates respiratory insufficiency

• In milder forms of PE it leads into hyperkapnia and respiratory alkald

• In severe form hypoxia and hy • Partially compensates respiratory insufficiency
• In milder forms of PE it leads into hyperkapnia and respiratory alkalosis
• In severe form hypoxia and hyperkapnia – global resp. insufficiency
• Pulmonary hypertension • In milder torms of PE it leads into hyperkapnia and respiratory alkalosis
• In severe form hypoxia and hyperkapnia – global resp. insufficiency
• Pulmonary hypertension in >50 % obstruction (the same as in pumonary
rese
-
-
-
-

Pulmonary embolism and CTEPH
Chronic thrombembolic pulmonary hypertension

-
- Pulmonary embolism and CTEPH
• Chronic thrombembolic pulmonary hypertension
• follows approx. 1-4 % of pulmonary embolisms, but 25 % CTEPH is
without PE history Pulmonary embolism and CTEPH
• Chronic thrombembolic pulmonary hypertension
• follows approx. 1-4 % of pulmonary embolisms, but 25 % CTEPH is
• Consequence of pulmonary embolism Pulmonary embolism and (
Chronic thrombembolic pulmonary hyper
follows approx. 1-4 % of pulmonary embo
without PE history
Consequence of pulmonary embolism
• bstruction of pulmonary circulation by unrec Pulmonary embolism and CTEPH

• Chronic thrombembolic pulmonary hypertension

• follows approx. 1-4 % of pulmonary embolisms, but 25 % CTEP

• without PE history

• Consequence of pulmonary embolism

• hyperperfusion in u ulmonary embolism and CTEPH

hronic thrombembolic pulmonary hypertension

illows approx. 1-4 % of pulmonary embolisms, but 25 % CTEPH is

ithout PE history

• bstruction of pulmonary circulation by unrecanalized thrombi

• Ulmonary embolism and CTEPH

hronic thrombembolic pulmonary hypertension

Illows approx. 1-4 % of pulmonary embolisms, but 25 % CTEPH is

ithout PE history

• bstruction of pulmonary circulation by unrecanalized thrombi
 • Chronic thrombembolic pulmonary hypertension
• follows approx. 1-4 % of pulmonary embolisms, but 25 % CTEPH is
without PE history
• Consequence of pulmonary embolism
• bstruction of pulmonary circulation by unrecanalized
- -
	- resistence (as in PAH)
-

$\mathsf{Diffusion} - \mathsf{residual}$ volume measurement
• Unlike other static parameters, residual volume and related parameters
(functional residual cancity and total lung cancity) cannot be directly measured

- **Figure 11 The Sidual volume measurement
• Unlike other static parameters, residual volume and related parameters
• (functional residual capacity and total lung capacity) cannot be directly measured
• Options:** (functional residual volume measurement

Unlike other static parameters, residual volume and related parameters

(functional residual capacity and total lung capacity) cannot be directly measured

Options:

• Dilition meth
- Options:
	-
	-
	-

- Diffusion assessment
Transfer factor for CO (TLCO) or diffusing • Transfer factor for CO (TLCO) or diffusing capacity (DLCO)
	- Can be calculated from decrease of CO concentration (high affinity to Hb) and inert gas concentration (e.g. He – see dilution methods), **iffusion assessment**

	iffusion assessment

	method (TLCO) or diffusing

	acity (DLCO)

	Can be calculated from decrease of CO

	concentration (high affinity to Hb) and inert gas

	concentration (e.g. He – see dilution methods which accounts for residual volume
	- concentrations of CO and He in the inhaled air and after holding breath, the time of breath holding is other factor in the calculus
	- Mixture: He 14 %; CO 0,3 %; O₂ 21 %; N₂ rest
	- Attention for:
		- Valsalva or Müller manoeuvre
		- Slow inspiration
		- Gas leak

TLCO and DLCO assessment TLCO and DLCO assessment

• DLCO: ml . min⁻¹ . mmHg⁻¹

• TLCO: mmol . min⁻¹ . kPa⁻¹

• DLCO = TLCO × 2,987 TLCO and DLCO assessment

• DLCO: ml . min⁻¹ . mmHg⁻¹

• TLCO: mmol . min⁻¹ . kPa⁻¹

• DLCO = TLCO × 2,987

• Va... volume exposed to helium (~TLC)

- DLCO: ml . min^{-1} . $mmHg^{-1}$
-
-

kco = ln(COo /COe)/t $CO_o = CO_i(He_e/He_i)$ Kco = kco / Pb

breath **CO**, and the initial alveolar concentration

Computer of the and CO

Cool, and The initial and ending point of

CO₀, and the initial and ending point of

the initial alveolar concentration

Region and CO₀, and The in 1 m⁻¹ . kPa^{-1}

Wa... volume exposed to helium (~TLC)

He_{lie}, CO_{1e}... concentrations of He and CO

at the initial and ending point of

ECO_c... initial and ending point of

RCO_c... initial and ending point of

R Ph…dry air pressure (barometric – water vapor pressure at 37°C)

He_{lev} CO_{Le}... concentrations of He and CO

at the initial and ending point of

breath

Row... trate constant for CO removal (i.e. elimination constant)
 RPA^{-1}

Folloween exposed to helium (~TLC)

CO<sub>l_{ie}.... concentrations of He and CO

at the initial and ending point of

breath

initial alveolar concentration

rate constant for CO removal (i.e. elimination constant)

</sub> Kco… CO transfer coefficient DLCO = Va × Kco kco... rate constant for CO removal (i.e. elimination constant)
Pb...dry air pressure (barometric – water vapor pressure at 37°C)

Pulmonary capacity and diffusion in various
diseases
Abnormal pattern of DLCO,KCO and VA in various disease states: diseases rious
Dey et al., 2020
Dey et al., 2020

- TLCO/DLCO generally Dey et al., 2020
TLCO/DLCO generally
assess the area and
permeability of
alveocapillary barrier
Kco/kco also much permeability of **allet a**
veolved all the peak of the series of the series of the series of the series and permeability of
alveocapillary barrier
• Kco/kco also much depends on pulmonary perfusion Dey et al., 2020
TLCO/DLCO generally
assess the area and
permeability of
alveocapillary barrier
Kco/kco also much
depends on pulmonary
perfusion
- perfusion

pulmonary diffusion changes 2016)

Lung volumes and diffusion parmeters in restrictive
diseases diseases extra interstitial lung disease (ILD), there is

• In interstitial lung disease (ILD), there is

parallel lowering of vital capacity and

residual volume × high in extrapulmonary

• Generally, TLCO/DLCO is lower in

pulmon • Generally, TLCO/DLCO is lower in the alveolar

• Generally, TLCO/DLCO is lower in pulmonary

• Generally, TLCO/DLCO is lower in

• Generally, TLCO/DLCO is lower in

• Generally, TLCO/DLCO is lower in

• Kis high in high

- causes of restriction • In interstitial lung disease (ILD), there is
parallel lowering of vital capacity and
residual volume \times high in extrapulmonary
causes of restriction
• Generally, TLCO/DLCO is lower in
pulmonary restriction or emphysem
- - It is high in high TLC value because of stretching and thinning of the alveolar membrane
-
-
-

Interstitial lung disease
• Concommitant disorder of ventilation (restriction) and denotion **Interstitial lung disease**
• Concommitant disorder of ventilation (restriction) and diffusion, later
perfusion perfusion

Classification of ILD
1) From known causes
• silicosis Classification of ILD

1) From known causes

• silicosis

• coal miner lung

• coal miner lung assification of ILD

From known causes

• silicosis

• silicosis

• coal miner lung

• farmer's lung – allergy

• drug-induced / postradiation ILD

Idiopathic assification of ILD

From known causes

• silicosis

• asbestosis

• coal miner lung

• farmer's lung – allergy

• drug-induced / postradiation ILD

Idiopathic

• Idiopathic pulmonary fibrosis (IPF) assification of ILD

From known causes

• silicosis

• coal miner lung

• carmer's lung-allergy

• drug-induced / postradiation ILD

Idiopathic

• drug-induced / postradiation ILD

• Cryptogennic fibrotizing alveolitis

• Classification of ILD

1) From known causes

• silicosis

• asbestosis

• coal miner lung

• farmer's lung – allergy

• drug-induced / postradiation ILD

2) Idiopathic

• Idiopathic pulmonary fibrosis (IPF)

• Cryptogennic assification of ILD

From known causes

• siblicosis

• coal miner lung

• farmer's lung – allergy

• drug-induced / postradiation ILD

Idiopathic

• Idiopathic pulmonary fibrosis (IPF)

• Cryptogennic fibrotizing alveolit assification of ILD

From known causes

• silicosis

• coal miner lung

• farmer's lung – allergy

• drug-induced / postradiation ILD

Idiopathic

• Idiopathic

• Idiopathic pulmonary fibrosis (IPF)

• Cryptogennic fibroti URISSITICALION OT ILD

1) From known causes

• silicosis

• asbestosis

• coal miner lung

• farmer's lung – allergy

• drug-induced / postradiation ILD

2) Idiopathic

• Idiopathic

• Idiopathic pulmonary fibrosis (IPF)

- - silicosis
	- asbestosis
	-
	-
	-
- -
- 1) From Known causes

 silicosis

 asbestosis

 coal miner lung

 farmer's lung allergy

 drug-induced / postradiation ILD

2) Idiopathic

 Idiopathic liopathic pulmonary fibrosis (IPF)

 Cryptogennic fibrotizin
- - sarcoidosis
-

Anorganic dust

Consequences of interstitial lung disease Consequences of interstitial lung disease
• Impaired diffusion – combination of shunt and dead space
• Pulmonary restriction
• Pulmonary hypertension Consequences of interstitial lu
• Impaired diffusion – combination of shunt ar
• Pulmonary restriction
• Pulmonary hypertension
• Hypoxemia leading to respiratory alkalosis (h

-
-
-
- Consequences of interstitial It
• Impaired diffusion combination of shunt ar
• Pulmonary restriction
• Hypoxemia leading to respiratory alkalosis (h
• Shunt and J-receptor stimulation), later hype Consequences of interstitial lung disease
• Impaired diffusion – combination of shunt and dead space
• Pulmonary restriction
• Hypoxemia leading to respiratory alkalosis (hypoxia in right-to-left
• Hypoxemia leading to re Shunt and J-receptor shunterstian and dead space
Impaired diffusion – combination of shunt and dead space
Pulmonary restriction
Pulmonary hypertension
Hypoxemia leading to respiratory alkalosis (hypoxia in right-to-left
s space • Impaired diffusion – combination of shunt and dead space
• Pulmonary restriction
• Hypoxemia leading to respiratory alkalosis (hypoxia in right-to-left
shunt and J-receptor stimulation), later hyperkapnia with \uparrow dea Impaired diffusion – combination of sha
Pulmonary restriction
Pulmonary hypertension
Hypoxemia leading to respiratory alkalo
shunt and J-receptor stimulation), later
space
Prognosis is the worst in IPF (survival m
other ca
-

- Pulmonary edema
• Disorder of diffusion, perfusion, later ventilation • Disorder of diffusion, perfusion, later ventilation (restriction)
-
- **Pulmonary edema**
• Disorder of diffusion, perfusion, later ventilation (restriction
• F = A . K . [(P_c P_i) σ(π_c π_i)]
• Most often a result of "backward" left-sided heart failure or
hypervolemia (↑P_c) • Most often a result of "backward" left-sided heart failure or hypervolemia ($\uparrow P_c$)) • Disorder of diffusion, perfusion, later ventilation (restriction

• F = A . K . [(P_c − P_i) − σ(π_c − π_i)]

• Most often a result of "backward" left-sided heart failure or

hypervolemia (↑P_c)

• Pulmonary infl
- Pulmonary inflammation (↑K and \downarrow σ)
-)
	- \uparrow of interstitial fluid leads into \uparrow lymph flow and \downarrow interstitial protein concentration
	- This maintains the low oncotic pressure gradient

Pumonary edema and the main parameters of ventilation,
diffusion + perfusion Pumonary edema and the main param
diffusion + perfusion

Times and the main param

Types of pulmonary edema

- Interstitial
- Alveolar
- effusion
- <table>\n<tbody>\n<tr>\n<td>Types of pulmonary edema</td>\n</tr>\n<tr>\n<td>• Interstitial</td>\n<td>• Similarly as in pl or ascites, exud: transudate can I
transudate can I
effusion</td>\n</tr>\n<tr>\n<td>• Pulmonary edema × pleural</td>\n<td>• distinguished
• But the diagno
more difficult</td>\n</tr>\n</tbody>\n</table> ma
• Similarly as in pleural effusion
• Similarly as in pleural effusion
or ascites, exudate and
transudate can be a
Similarly as in pleural effusion
or ascites, exudate and
transudate can be
distinguished 1
1
Similarly as in pleural effusion
or ascites, exudate and
transudate can be
distinguished
• But the diagnostic proces is
more difficult distinguished • But the diagnostic proces is **Francish Solution**
 Francish pulmonary edemand
 Francish Solution
 Francish Solution
 Francish Solution
 Francish Solution
 Franciscal Solution
 Franciscal Solution
 Franciscal Solution
 Franciscal Soluti
	- more difficult
	- transsudates
	- Exception: ARDS

- drowning
- pneumocytes
- II pneumocytes
- inflammation, \downarrow edema,

Thank you for attention