

Antihistaminines

Department of Pharmacology

Histamine

- autacoid (local hormone)
- endogenous amine (hydrophilic)
- in tissues is formed from histidine

Location: in granules in mast cells, basophiles (histaminocytes) \rightarrow bound to heparan sulphate and acidic protein

in almost all tissues, highest levels in lungs, GIT, skin

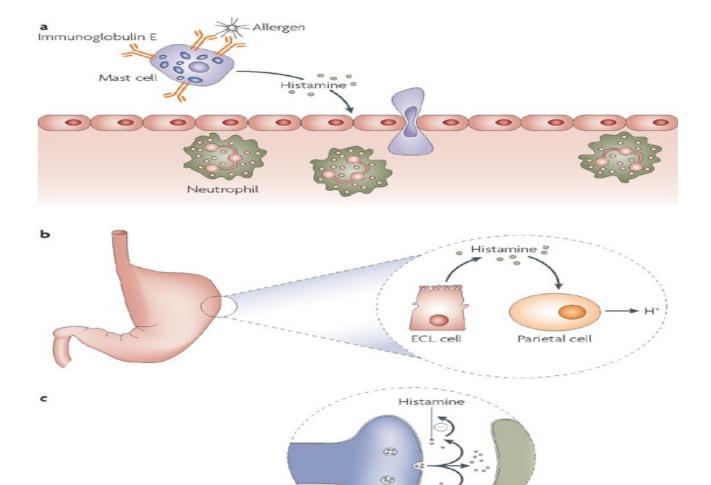
Main roles in the body:

neurotransmitter – **CNS** mediator of allergic/inflammatory reactions – **mast cells**, **basophilles**

regulation of gastric acid release (↑) - **stomach**

Histamine

MUNI MED

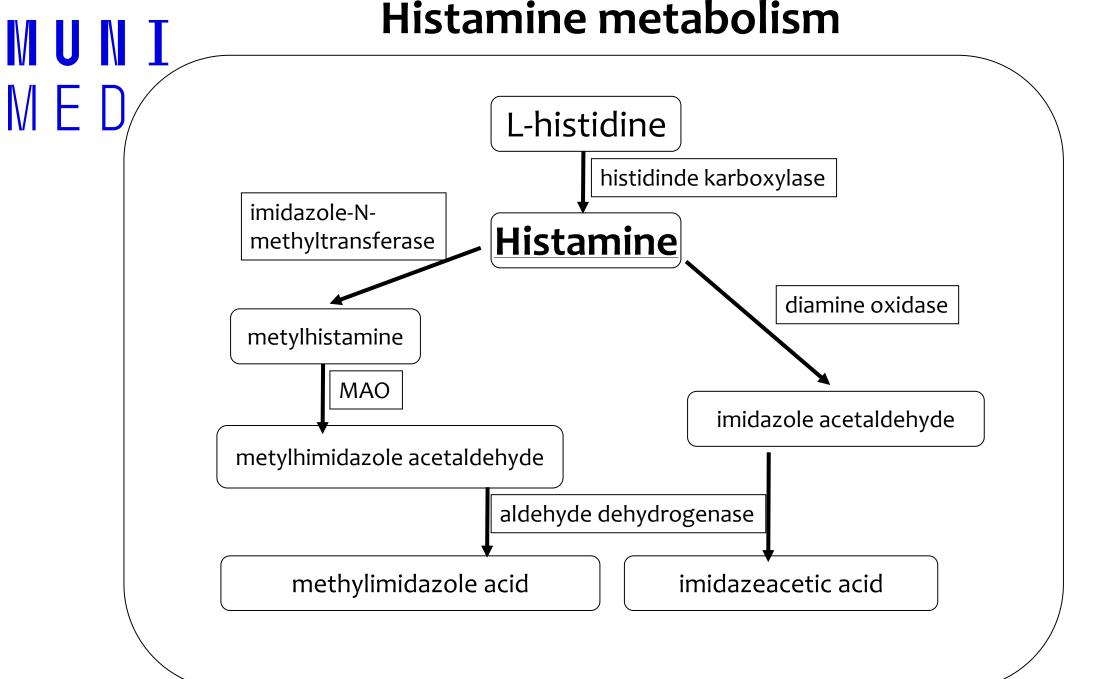

is released from mast cells granules by exocytosis (activation of phospholipase C a \uparrow Ca²⁺)

Stimuli:

imunological: antigen + IgE

physical, chemical or mechanical cell damage

drugs



Nature Reviews | Drug Discovery

doi:10.1038/nrd2465

0

Histamine metabolism

Histamine receptors

4 subtypes $(H_1 - H_4)$

G protein-coupled receptors

their stimulation results in increase in cellular concentration of Ca²⁺ ions

H₁ receptors

postsynaptic, G_q -protein \uparrow phospholipase C \rightarrow \uparrow IP3 and DAG \rightarrow \uparrow Ca²⁺

Location:

endothel, smooth muscles (vessels, bronchi, uterus, GIT), peripheral neuron ending, CNS (!!!)

Effects:

smooth muscle contraction (bronchi, uterus, ileum) vasodilatation of minor vessels (↓BP, reddening of skin) increase in vessel permeability (swelling) irritation of peripheral neuron endings (itching, even pain) excitation of CNS

H₂ receptors

postsynaptic, G_s -protein \uparrow activity of adenylate cyclase \rightarrow \uparrow cAMP

Location:

stomach mucosa, heart, vessels, immune system

Effect:

in stomach: gastric acid, pepsine, intrinsic factor secretion

slower and longer vasodilatation

+ inotropic, + chronotropic effect

H₃ receptors

presynaptic, G_i protein \rightarrow inhibition of N-type Ca²⁺ channels $\rightarrow \downarrow$ cellular Ca²⁺ feedback inhibition of histamine release

heteroreceptors, \downarrow release of other neurotransmitters

Location:

mainly in CNS (but in PNS tissues as well)

Effects:

sedation negative chronotropic effect bronchoconstriction

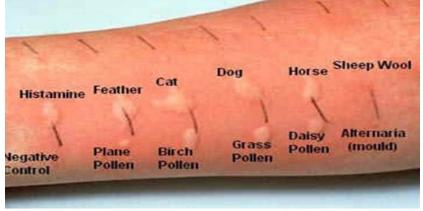
H₄ receptors

possibly isoform of H₃

Location:

eosinophiles, basophiles, bone marrow, thymus, intestine, spleen

Effects:


influencing activity of immune system important for chemotaxis

Histamine in clinical practise

limited use (ineffective when given orally) diagnostics in allergology

Skin Allergy Test

histamine analogue \rightarrow **betahistine**

Lewis reaction

MED

typical response to intradermal histamine administration:

skin reddening (vasodilatation of arterioles)

wheal (capillary permeability)

flare (redness in the surrounding area due to arteriolar dilatation mediated by axon reflex)

used in allergy testing – positive control

it is used to evaluate the potential antiallergic effect of H1 antihistamines

How to antagonize effects of histamine?

Treat the symptom

vasoconstrictiors, sedatives, antacides, tocolytics etc.

Treat the cause

inhibition of synthesis (glucocorticoids)

inhibition of release (cromoglycate, nedokromil, β_2 -SM,

glucocorticoids)

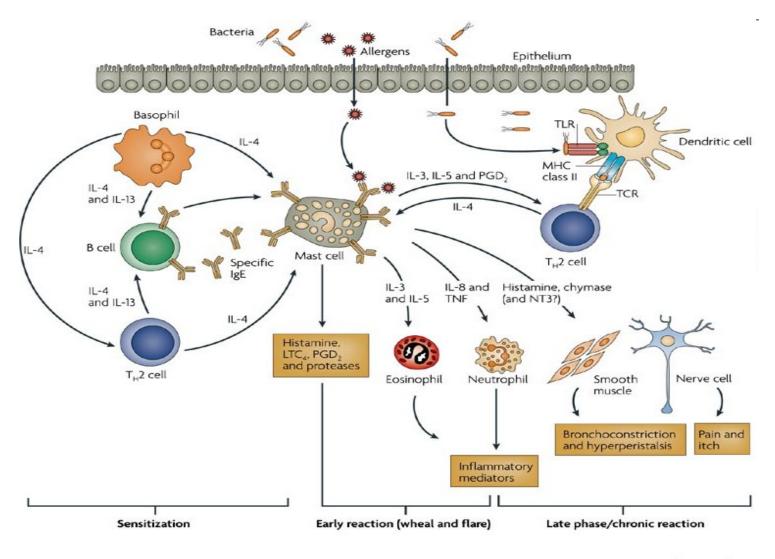
receptor antagonism:

- non-specifically, indirectly (epinephrine)

- specifically, directly (H1, H2, H3 - antihistaminines)

Allergy

has a high incidence, 10-30% (and growing)


genetic factors

various theories about its origin

Mechanism of alergic reaction:

early contact with allergen allergen binds to IgE antibody degranulation of cells containing histamine activation of phospholipase C → mobilization of intracellular Ca2+ → mediators are released: HIS, PG, LT, PAF, cytokines

Nature Reviews | Immunology

Allergy treatment

MED

always as an addition to taking enviromental control measures and avoiding allergen

H₁- antihistamines

glucocorticoids

mast cells stabilizers

immunotherapy

epinephrine (anaphylactic shock)

H₁ antihistamines

MoA: antagonization of H₁ receptor they antagonize the allergy symptomes caused by histamine

high selectivity to H_1 rp. \rightarrow low affinity to H_2 rp. 3 generations

AE:

antimuskaric, antiserotonergic a antiadrenergic effects of older drugs of this group (sedation, fluctuating blood presure,...)

block of Na⁺ channels → locally anaesthetic and antipruritic effect

H₁ antihistamines

pharmacokinetics

Dosage forms: oral, topical, parenteral (i.m., infusion)

easy and quickly absorbed from GIT

distributed evenly in the body

metabolized in liver (some in form of prodrug)

excreted in urine, stool

drugs of <u>I. generation</u> cross the blood-brain barrier \rightarrow central effects (sedation)

cross the placenta and are distributed into milk!

H₁ antihistamines - I. generation

relatively old drugs

in general lower selectivity to H₁ receptors

they cross the **blood-brain barrier**

effect lasts approx. 4 - 6 h

rather common adverse effects

dimetinden (Fenistil®) promethazine bisulepin (Dithiaden®) moxastine – for motion sickness (Kinedryl®) cyproheptadine – treatment of serotonin syndrome ketotifen

H₁ antihistamines AE of I. generation

sedative, even hypnotic eff.– driving, heavy mashinery operation (!)

paradoxical reaction (children, elderly) = excitation
(sleeplessness, nervousness, tachycardia, tremor, ...)
indigestion (nausea, vomiting, diarrhea x constipation)

skin symptoms \rightarrow phototoxicity

anticholinergic effects

increas in appetite (antiserotoninergic effect)

ortostatic hypotension (weak block of α-adrenergic rp.)

H₁ antihistamines II. and III. generation

- low distribution to CNS minimal sedative effect
- better properties higher selectivity towards rp., less AE

- effect lasts for 12 – 24 hours, given 1 - 2 times a day

II. generation

- cetirizine
- loratadine
- fexofenadine
- azelastine
- levocabastine

III. generation

- levocetirizine
- desloratadine
- bilastine
- rupatadine

Novel H₁ antihistamines III. generation

bilastine

high selectivity towards H₁-receptors, antiinflammatory properties

not metabolized by liver or intestinal wall, low potential for drug-drug interaction

rupatadine

long-term effect

dual effect (H₁ antagonist + blocks PAF receptors)

H₁ antihistamines AE of II. generation

MFD

arrythmogenic→ QT interval prolongation (some drugs even withdrawn)

possible sedation when overdosed (cetirizine)

Interactions:

are metabolised by CYP3A4 → be cautious of inhibitors of this isoform (macrolide ATB, azole antifungals, verapamil, grapefruit juice...)

H₁ antihistamines Indications I

treatment of symptoms of **allergic diseases** - allergic rhinitis - urticaria, drug and food allergy

add-on treatment of anafylactic reactions

pruritus of various ethiology (e.g. itching in allergic and non-allergic dermatitis + insect bites)

tinitus, Meniére's disease

H₁ antihistamines Indications II

migraine

nausea a vomiting movement sickness (moxastine, embramine) vertigo

prophylactic premedication before some drugs (e.g. monoclonal antibodies)

sleeplessness, when hypnotics are not tolerated

anxiety (hydroxyzine → mild anxiolytic effect)

H₁ antihistamines Contraindications

- alcohol dependency - hypersensitiveness to that substance - serious hypotension - simultaneous administration of sedative drugs (I.generation) - activities which require full attention (I.generation) - patients with history of arrythmias (II. generation)

H₃ antihistamines

MUNI MED

betahistine

MoA: H₃ antagonist, H₁ agonist analogue of histamine

improves microcirculation of the inner ear by vasodilatating capillaries

indications: tinitus, vertigo, Menière's disease

Drugs used in diseases characterized by bronchial obstruction

Department of Pharmacology

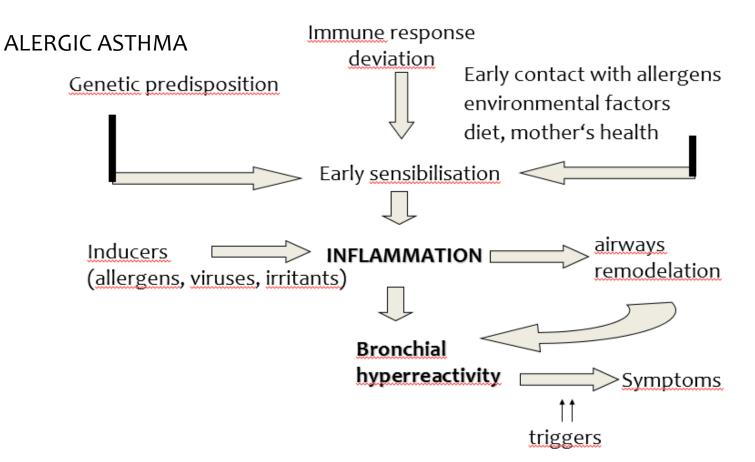
Bronchial asthma

chronic inflammatory disease of airways affecting 300 million people all across the globe prevalence in CZ: 8 %, in children over 10 %

Characteristics:

bronchial hyper-reactivity obstruction (often reversible) inflammation

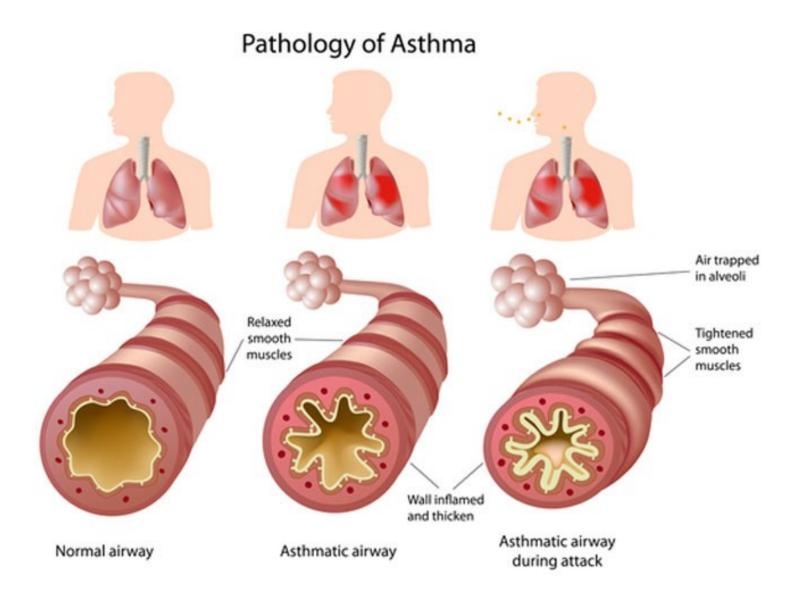
Symptoms:


shortness of breath (bronchoconstriction, mucous plug, oedema, airway remodeling due to the inflammation)

difficult and prolonged **expiration** \rightarrow wheezing, whistling

cough (especially at night or in early morning)

Bronchial asthma



NON-ALERGIC ASTHMA

MFD

- allergy not present
- excercire-induced, aspirin-sesitive, infectious, work-related, endogenous

https://www.canstockphoto.com/anatomy-of-asthma-6231875.html

Diagnose

Anamnesis – personal, familiar

Clinical examinations - auscultation, signs of atopy, eosinophilia, PEF – Peak Expiratory Flow FEV 1 – Forced Expired Volume

Laboratory tests- eosinophilia, IgE

Allergy testing

Classification with regard to seriousness

MFD

Intermittent – sign up to once a week, night symptoms up to twice a month, pulmonary function normal

Mild persistent– signs no more than once daily, night symptoms up to twice a month, PEF at least 80 %

Moderate persistent– signs once a day and are not permanent, night sign no more than once a week, PEF 60-80 %

Severe persistent – permanent signs, daily, obstruction, PEF $\leq 60 \%$

Managment of asthma

 $\mathbb{N} \vdash \mathbb{D}$

the disease itself cannot be fully treated, the goal is to keep asthma under control

Goals:

minimalize both acute and chronic symptoms reduction of exacerbations (lessen SABA administration) improvement of the quality of life (physical activity) avoid adverse effects of the treatment

Chronic obstructive pulmonary disease (COPD)

affecting 600 million people all across the globe prevalence: 8 % risk factors: smoking, polluted air, dust and chemical vapors at workplace, genetic predisposition

Characteristics:

chronic inflammation caused and maintained by long-term exposure to harmful agents (irritating gases and particles) poorly reversible, progressing bronchial obstruction production of mucus

Symptoms:

cough (usually whole day, hardly ever only during night) expectoration shortness of breath

Managment of COPD

MUNI MED

we can only slow the progression reduction of risk factors is necessary (mainly top quit smoking)

Goals: symptom reduction

improvement in physical condition and overall health state

prevention of complications and exacerbations

Administration

oral, parenteral (injections, infusions)

inhalation

- local administration, high drug concentration at the site of action

- fast onset of the effect

- minimal penetration to systemic circulation $\rightarrow \downarrow$ risk of side effects

MUN] MED

Drugs used in diseases characterized by bronchial obstruction

BRONCHODILATATORS

- β_2 sympathomimetics
- parasympatholytics
- glucocorticoids
- methylxanthines
- roflumilast (COPD only)
- antileukotrienes
- imunoprofhylactics

- asthma only
- monoclonal antibodies
- noselective sympathomimetics (epinephrine, life-saving medication)
- adjuvant medication (antitussics, drugs facilitating expectoration)

β_2 sympathomimetics

MoA: selective β_2 stimulants

- inhibition of mediator release from mast cells + stimulation of ciliary beat frequency

- diagnostics – post-bronchodilator test (salbutamol)

- mostly inhaled, may be also given orally (mainly in kids)

 not completely selective in their binding to β receptors long-term use = down-regulation of receptors

β_2 sympathomimetics

Indication: asthma, COPD

AE: nervousness, tremor, cephalgia, palpitation, hypokalemia (mainly when given orally)

Cl: hypertension, dysrhythmia, pregnancy

β_2 sympatomimetics

Short-acting = SABA (also rapid-acting = RABA)

fast onset of effect, which lasts 4 – 6 hours, inhalation

salbutamol

fenoterol

Long-acting = LABA

effect lasts for up to 12 hours, inhaled or administered orally

salmeterol

clenbuterol

formoterol (RABA)

indakaterol (U-LABA)

vilanterol (U-LABA)

Parasympatholytics

MoA: competitive antagonism of M receptors

- in a form of inhalation

- can be combined with β_2 -sympathomimetics or glucocorticoids

Indication: COPD, asthma

AE: if entering the systemic circulation (low risk, they contain quaternary nitrogen in their structure) – anticholinergic effects

Cl: glaucoma, prostate hypertrophy, pregnancy

Parasympatholytics

MFD

ipratropium

- used in asthma as well – in patients resistent to β_2 sympathomimetic treatment (approx. 1/6 of patients) short acting (SAMA)

aclidinium (LAMA)

tiotropium (U-LAMA)

COPD only

glykopyrronium-bromide (U-LAMA)

umeclidinium (U-LAMA)

Glucocorticoids

MoA: inhibition of phospholipase A2 by lipocortin

Effects I:

 \downarrow cytokine, PG a LT secretion

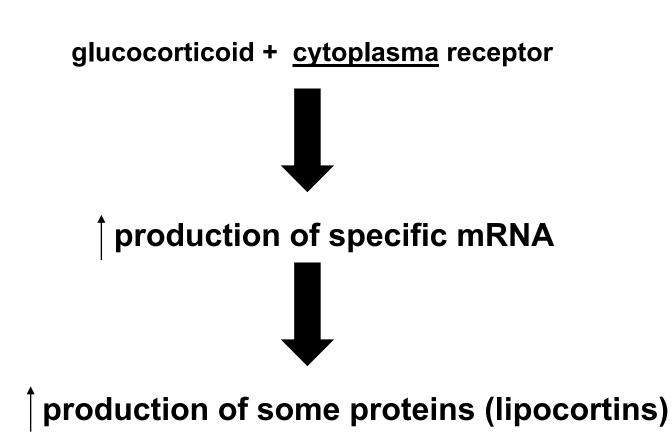
 \downarrow lipolytic and proteolytic enzyme secretion

 \downarrow endothelial permeability

block of cell migration

↓ bronchial hyperreactivity,

Glucocorticoids


Effects II:

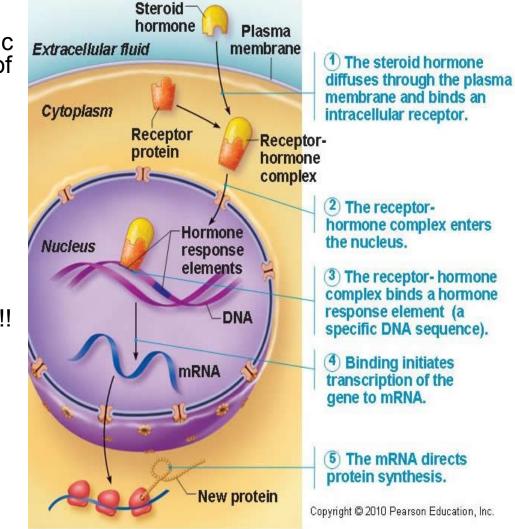
reduction of edema prevention of chronic irreversible changes (hypertrophy and hyperplasia of bronchial smooth muscles, subendothelial fibrosis and thickening of mucous basal membrane)

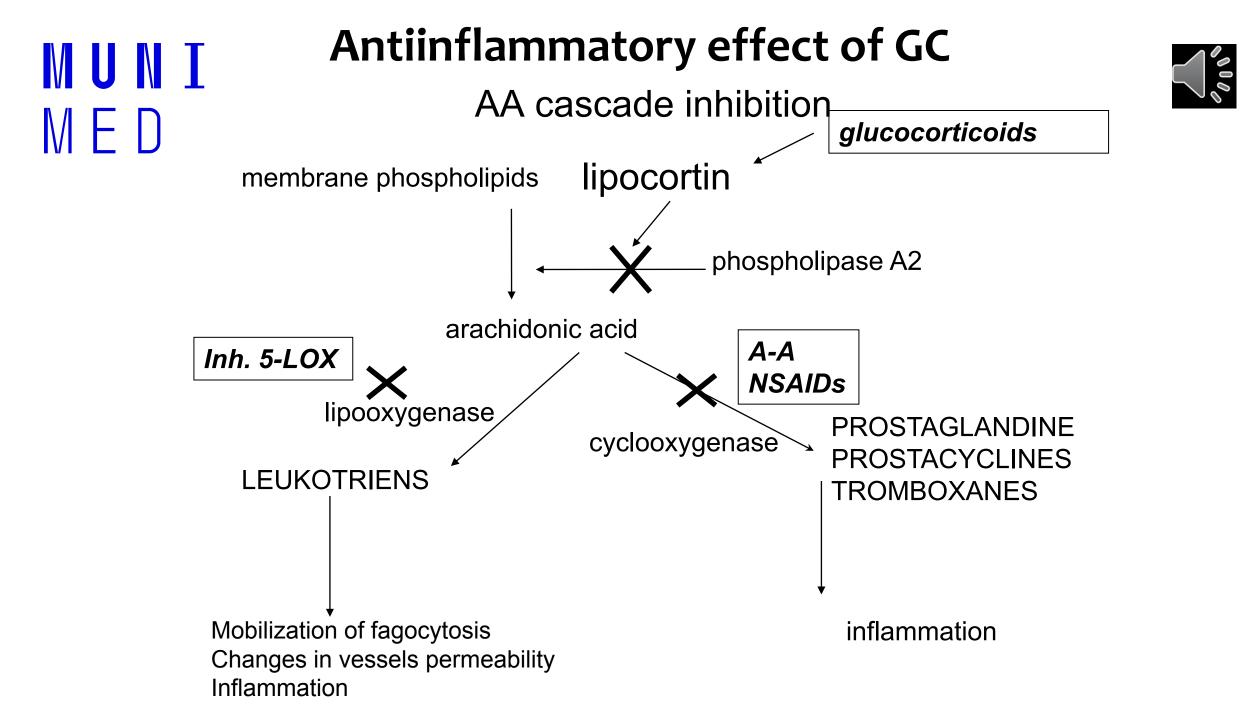
increase in sensitivity of β_2 adrenergic receptors to β_2 - SM

MoA at the cellular level

MoA at the cellular level

After entering the cell they bind to specific receptors in cytoplasm causing change of conformation = activation of receptors


MED


Complexes of corticoid + receptor are transported to cell nucleus and bind to DNA elements.

The result is increased transcription of genes either inducing or inhibiting synthesis of other proteins

GLC receptors are present in all tissues!!!

Proteins called **lipocortins** are able to suppress phospholipase A

Glucocorticoids

given by inhalation lower risk of systemic adverse effects AE: affected vocal cords – croaky voice, oral candidiasis (thrush)

beclomethasone budesonide fluticasone ciclesonide mometasone

systemic administration

orally, via injection – acute conditions, doses are gradually decreased, in severe persistent asthma – if nothing else is effective

prednisone triamcinolone hydrocortisone (injection)

Methylxanthines

MoA: phosphodiesterase 1 – 4 inhibitors adenosine receptors antagonists

sustained-release drug forms

Effects:

- bronchodilatation
- cardiostimulation (+chrono, +inotropic eff.)
- diuretic eff.
- CNS and respiratory center stimulation
- stimulation of hydrochloric acid secretion

Methylxanthines

Effects:

- substrates of CYP450 – be cautious if patient is a smoker!

Cl: pregnancy, epilepsy, cardiovascular disease

AE: tachycardia, palpitations, sleeplessness

Methylxanthines

theophylline

- combination therapy with β_2 SM is convenient

- becoming obsolent, therapeutic drug monitoring needed

- variable pharmacokinetics, low therapeutic index

aminophylline - a complex of theophylline and ethylendiamine (better solubility)

- COPD, emphysema

roflumilast

selective long-acting inhibitor of phosphodiesterase 4

reduces the inflammation in bronchi in COPD

Antileukotrienes

MoA: antagonism of LT-receptors / inhibition of lipoxygenase

LT receptor antagonists:

treatment of persisting asthma, allows lowering of glucocorticoid dose 1-2x a day, orally

montelukast

Inhibitors of LOX: need for frequent application not registered in CZ (zileuton – USA)

Imunoprophylactics (mast cells stabilizers)

MoA: stabilisation of mast cell membrane $\rightarrow \downarrow Ca^{2+}$ influx $\rightarrow \downarrow$ degranulation of mast cells and thereby \downarrow histamine release influence on lymphocyte function

prevention of asthma attack, they **do not affect already present bronchospasm**

Use: as preventive, long-term, maintenance therapy – mild and moderate asthma when combined with other antiasthmatics, they allow lowering of their dose

Cl: pregancy (1. trimester)

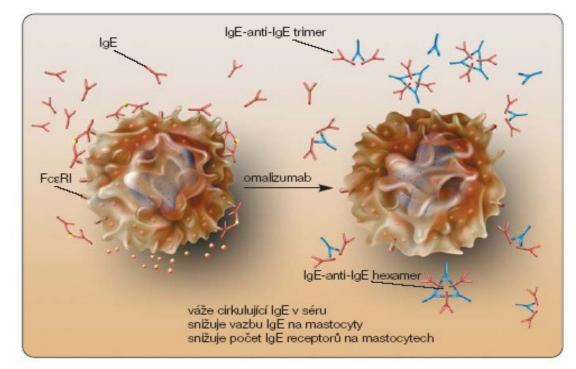
nedokromil, ketotifen (H1 antihistamine), cromoglycate

Monoclonal antibodies

MED

Anti-IgE

omalizumab


antibodies against a part of IgE, which binds to mast cells

Indication: severe persistent allergic asthma, which cannot be otherwise controlled

administered subcutaneously in specialized centers only

omalizumab

Obr. 3 Mechanismus působení omalizumabu

http://www.remedia.cz/Okruhy-temat/Respiracni-onemocneni/Omalizumab-terapeuticka-perspektiva-v-lecbe-tezkeho-bronchialniho-astmatu/8-10-gD.magarticle.aspx

Monoclonal antibodies

Anti-IL-5

mepolizumab, reslizumab

add-on treatment for severe refractory eosinophilic asthma in adult patients

Other options

Bronchial thermoplasty

• bronchoskopic procedure, during which a therapeutic radiofrequency energy is delivered to the airway wall, resulting in reduction of smooth mucle cells

Allergen immunotherapy

• induces tolerance to the triggering allergen

Devices for inhaled medications

MDI = metered dose inhalers drugs as solutions, propellants

BAI = breath-actuated inhalers

DPI = dry powder inhalers spinhaler, diskhaler, turbohaler

nebulizers (liquid → aerosol)

Devices for inhaled medications

spacers for children and elderly

patient must be educated how to use their inhaler \rightarrow up to 41 % of patients use incorrect technique

inhalers often combine two drugs (bronchodilator + glucocorticoid or two bronchodilators)

Adjuvant medication in diseases characterized

by bronchial obstruction and another drugs affecting respiratory system

antitussives

drugs facilitating expectoration

H₁ antihistamines (mainly II. a III. generation)