

Introduction to Psychopharmacology

Department of Pharmacology FM MU

Lehmann classification of psychotropic substances

Affectivity	↑ antidepressants, anxiolytics
	↓ dysforics/antimanics
Vigility	↑ psychostimulants/nootropics
	↓ hypnotics/sedatives
Psychic integrity/integration	↑ neuroleptics
	↓ halucinogens/psychodysleptics/delirogens
memory and cognitive functions	↑ cognitive enhancers/ nootropics
	↓ anticholinergics, dementogens, neurotoxins, amnestics

SCHIZOPHRENIA
antipsychotics

ADHD psychostimulants

ANXIETY anxiolytics

DEPRESSION

PSYCHIC INTEGRATION halucinogens psychotomimetics

MEMORY AND COGNITION

INSOMNIA
sedatives
hypnotics
BIPOLAR DISORDE

nootropics

antidepressants

EPILEPSY anticonvulsants antiepileptics

ER

mood stabilizers

Classification of psychotropic drugs

- a new classification of psychotropic drugs is created based on the main mechanisms of effects
- (neuroscience based nomenclature NbN) ECNP (European College of Neuropsychopharmacology)
- Mobile phone app!
- https://www.ecnp.eu/~/media/Files/ecnp/Projects%20and%20initiatives/Nomenclature/140214%20Nomenclature%20list.pdf

Antipsychotics

Drugs used **predominantly in the therapy of psychoses** but also other indications:

pharmacoresistant depression

psychotic depression

anxiety

Huntington's disease

Tourette's syndrome

anesthesia / neuroleptanalgesia

sleep disorders

nausea, vomitus

Schizophrenia

- belong among psychoses with predominance of emotional disturbances, thinking, behavior, and personality disorder
- the most striking symptoms are delusions and hallucinations
- onset/Dg usually around 20th year of age
- genetic predisposition gender incidence polygenic inheritance
- affects about 1% of the population Dg. ICD 10: F20XX

Symptoms of schizophrenia

"Positive" symptoms - hallucinations, delusions, disintegration of thinking, speaking, catatonia, agitation, paranoia

"Negative" - absent, blunted or incongruous emotional responses, apathy, social withdrawal, anhedonia, lethargy, sexual dysfunction, impaired attention

Substances capable of causing psychosis - levodopa (DA)

- CNS stimulants (NA, DA, 5HT)
 - cocaine
 - amphetamines
 - khat, kathinon, methkathinon, mezkalin
- hallucinogens LSD (5HT2c agonist)
- cannabis
- apomorphine (agonism D₂)
- bupropion (NDRI)
- phencyclidin, ketamine (NMDA antag.)

Dopamine hypothesis of schizophrenia

- Antipsychotics reduce DA-activity on synapses
- Drugs increasing DA in the limbic system trigger psychosis
- Drugs that reduce DA-activity in the limbic system (DA antagonists on postsynaptic D receptors) reduce psychotic symptomatology
- Affinity of older "classical" APs to D2 rcp. correlates with their clinical effect

Classification of antipsychotics

1st. generation "typical"

Classical (basic, sedative): doses up to

hundreds of milligrams

Incisive:

doses in mg to tens of milligrams

2nd. generation ("atypical")

less: EPS, tardive dyskinesias, prolactinemias,

malignant neuroleptic. syndrome)

MARTA (Multi-Acting Receptor Targeted Agents)

SDA (Serotonin-Dopamine Antagonist)

D2 / D3 antagonists

DSSS (Dopamine-Serotonin System Stabilizers)

3rd. Generation?

agonists of DA autoreceptors, partial agonists, glutamatergic, beta blockers?

Classical (typical) antipsychotics

- affects positive, less negative symptoms, can aggravate cognition. dysfunction
- mechanism of action: reduction of dopaminergic neurotransmission (blockade of postsynaptic D₂ receptors

AE Extrapyramidal syndrome

Early (parkinsonoid, acute dyskinesia, akathisia)
Late (tardive dyskinesia and dystonia, tardive akathisia)

Neuroleptic malignant syndrome, hyperprolactinemia, anticholinergic, antihistamine, adrenolytic and others

Classical (typical) antipsychotics - basal

<u>levomepromazine</u> –D₂ antag. + another antag. (NA, 5HT, H, Ach) more pronounced sedation, less EPS, adjuvant with analgesics

antiemetic, antihistaminic, anti-adrenergic and anticholinergic effects

AE: Orthostatic collapse, QTc prolongation, torsades

chlorprotixen

5HT2, D1, D2, D3, H1, M and alpha 1 receptor antagonist In low dose for insomnia (up to 50 mg)

Classical (typical) antipsychotics - basal

melperone

Low affinity D2 antagonism

5HT2A, alpha1 antagonist, without affinity for H1, M

low risk of dyskinesia + EPS

Confusion, anxiety restlessness, especially in the elderly and alcoholics (deliria) (low doses)

tiaprid

D2, D3 antagonism

lacks affinity for H1, α 1, α 2, 5HTR

I: Behavioral disorders, confusion, agitation, especially in the elderly and alcoholics (deliria) (low

doses

Classical (typical) antipsychotics -incisive

fluphenazine

D2 antag., Highly effective (Dmax 40 mg)

AE: EPS, TD, priapism, galactorea

<u>flupentixol</u> - D2 antag, not so sedative, more EPS

AE: EPS - initiation of therapy, TD, insomnia, tachycardia, \(\bar{\chi}\) weight, dyslipidemia, rarely NMS

i.m.- noncompliance

<u>haloperidol - D</u>₂ antag. ,highly potent, better than phenothiazines, long $T_{1/2}$, less sedation, influencing BP better tolerability (blood count, liver injury)

Comparison of basal and incisive AP

Basal AP

- Low potency (high doses – hundreds of milligrams)
- Sedation to hypnosis
- D2 receptor blockade
- slower PK
- Frequent anticholinergic
 and antihistaminic
 adverse effects
- ↓ EPS

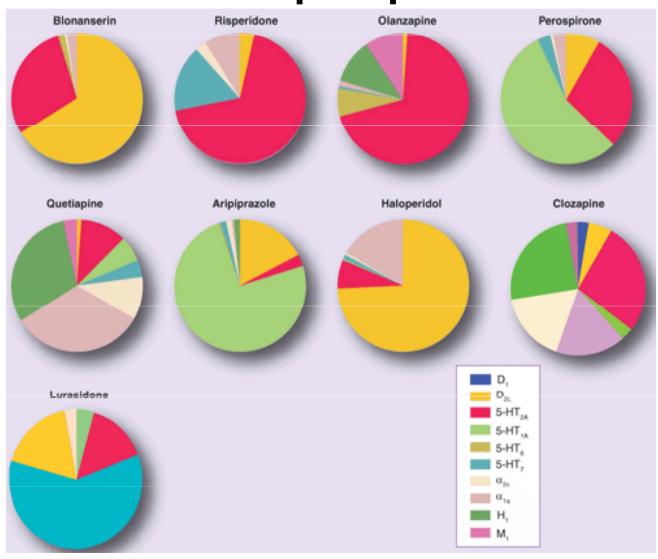
Incisive AP

- High potency (lower doses)
- Little sedation
- Block D2 receptor
- faster PK
- Causes 个 EPS

Atypical antipsychotics

- higher efficacy, better tolerability
- affect positive and negative symptoms, cognition
- D₂ receptor occupancy <80%, binding to multiple neurotransmitter systems
- affect not only transport of dopamine but also other neuromediators (serotonin)
- wide range between antipsychotic effects and EPS
- selective extrastriatal (mesolimbic) blockade of dopamine D_1 , D_2 receptors
- risperidone, ziprasidone, olanzapine, quetiapine ...

Atypical antipsychotics



- selective D₂/D₃ receptor antagonists sulpiride, amisulpride
- selective serotonin and dopamine receptor antagonists (SDAs)
 risperidone, ziprasidone, lurasidone, iloperidone, sertindole
- multi-receptor antagonists (MARTA: D, 5-HT, α, H1, M)
 clozapine, olanzapine, quetiapine and zotepine
- DSSS (D2) stabilizer
 aripiprazole, cariprazine

Relative receptor profile AP2G

Atypical antipsychotics - MARTA

clozapine

```
antag. D_2, antag. 5HT_{2A} (\uparrow release DA)
```

5HT_{1A}, 5HT_{2C}, (cognitive, affective symptoms)

minimal impact on the nigrostriatal system

Effect on alpha, 5HT2 rcp

Useful in: Pharmacoresistant psychoses - responds about 1/3

risk of suicidium, aggressive patients, EPS

AE: sedation, weight gain,

agranulocytosis - genetic test

Atypical antipsychotics - MARTA

olanzapine antag. D₂, antag. 5HT_{2A}

5HT_{2C} - improving cognitive symptoms

better efficiency

available depot injectable DDF

No/low risk of agranulocytosis

AE: sedation, weight gain, tachycardia, rarely TD

Atypical antipsychotics - SDA

<u>risperidone</u>

antag. D_2 , antag. 5HT2A (\uparrow release DA), α 1, 5HT7 (antidepresive action) p.o. i.m. depot inj.

active metabolite 9-OH risperidon = Paliperidone

I: schizophrenia, mania, bipolar disorder, behavioral disorders in children, ADHD, resistant OCD

AE: weight gain, dyslipidemia, hyperprolactinemia

paliperidone

antag. D_2 , antag. 5HT2A, α 1, less affinity 5HT7 p.o. and depot inj.

Atypical antipsychotics-SDA

<u>lurasidone</u>

- Risk of EPS: modest
- Relat. safe, well tolerated AP (lacks AE: weight gain, metabolic AE, anticholinergic, sedtion, ortostatic hypotension, low risk of QTc prolongation)

cariprazine

- D2, D3, 5HT2B, 5HT1A partial agonist
- 5HT2A, 5HT2C alpha1B antagonist

Atypical antipsychotics - DSS

```
    aripiprazole – partial agonist D<sub>2</sub> + 5HT1A, antag. 5HT2A (localy increases DA –improves cognitive fctions, affectivity)
    blocks 5HT2C, 5HT7 –antidepresive action
    lacks sedation, weight gain
    p.o. + depot inj.
```

Other Indications: augmentation of antidepressants,

Adverse effects

Blockade of D₂ receptors in nigrostriatal pathway

EPS - early (acute)

- late (tardive)

Severity does not correlate with dose!

https://www.youtube.com/watch?v=FUr8ltXh1Pc&t=8s

Acute dystonia

- involuntary contraction of individual muscles or muscle groups of prolonged duration, causing abnormal movements or positioning of different body parts.
- occurs in up to 25-33% of all patients treated with typical AP

https://www.youtube.com/watch?v=2krwEbm5hBo

Adverse effects

Blockade of D₂ receptors in nigrostriatal pathway

EPS

Akathisia

- intense mental discomfort, compulsive movements restlessness

https://www.youtube.com/watch?v=W_iiy8ISvdY

Adverse effects

Blockade of D₂ receptors in nigrostriatal pathway

EPS

Parkinson's syndrome (PS)

combination of bradykinesia (movement retardation)

akinesia (inability to start movement)

hypokinesia (reduction of motion range)

stiffness/rigidity (increased muscle tone)

shaking

Typical APs: about 30-50%.

https://www.youtube.com/watch?v=6HKMusvSfel

Neuroleptic malignant syndrome

- 1. AP treatment in the previous 7 days (in depot inj. In previous 2-4 weeks)
- 2. Hypertermia > 38 st. C
- 3. Muscle rigidity
- 4. 5symptoms of:
 - Changes in mental state
 - Tachycardia
 - Hypertension or hypotension
 - Tachypnoea or hypoxia
 - Sweating or salivation
 - Tremor
 - Incontinence
 - Increased creatine phosphokinase or myoglobinuria
 - Leukocytosis
 - Metabolic acidosis

Excluding other neuropsychiatric or somatic disease

Anxiolytic and hypnosedative drugs

Anxiety disorder

 A chronic condition characterized by an excessive and persistent sense of apprehension, with physical symptoms such as sweating, palpitations, and feelings of stress

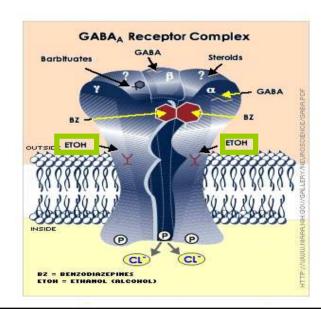
Anxiety disorders recognised clinically include the following:

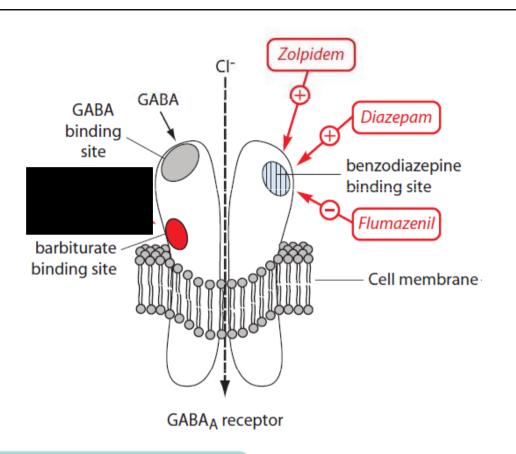
- generalised anxiety disorder (GAD)
- obsessive–compulsive disorder (OCD)
- post-traumatic stress disorder (PTSD)
- social anxiety disorder, phobias etc.

Anxiolytics

- First line: non-benzodiazepine (SSRI + others, see the AD materials)
- Second line: benzodiazepines (BZ, adjuvant therapy)

- drugs mostly acting like CNS depressants (not always sedative)
- affecting receptors in limbic system, hypothalamus, cerebellum and corpus striatum


Mechanism of action (BZD)


- specific (via receptors)
- selectively binding to the benzodiazepine binding site of GABA_A subunit (coupled with Cl⁻ channel)
- increase affinity of binding site for GABA (positive allosteric modulation)
- increase in frequency of opening of Cl⁻ channel
- hyperpolarization of neuron membrane

inhibition of signal transduction

Inhibition of neural activity is leading to anxiolytic effect in higher doses to sedation and sleep overdose can be lethal (specially if combined with ethanol)

Drug	Subunit selectivity
Diazepam	α1, α2, α3, α4, α5, α6
Flunitrazepam	α1, α2, α5
Midazolam	α1, α2, α3, α4, α5, α6
Zolpidem	α1
Flumazenil	Antagonist at α1, α2, α3, α4, α5, α6

GABA _A subunit	effect
α_1	sedative, anterograde amnesia, partially anticonvulsive; addictive
α_2	anxiolytic, myorelaxant
$\begin{array}{c} \alpha_3 \\ \alpha_5 \end{array}$	contributing to myorelaxant effects
α ₁ α ₅	modulating temporal and spatial memory

Indications

- adjuvant therapy in psychiatry (for transient period)
- acute intervention of panic attack
- treatment of acute alcohol withdrawal
- diagnostic/therapeutic procedures (gastroscopy, colonoscopy)
- commonly used together with an SSRI to provide symptomatic relief for the first few weeks before the
 effects of the SSRI kick in
- phobias (strong fears of specific things or situation (snakes, flying)
- psychosomatic disorders
- post-traumatic stress disorder (anxiety triggered by insistent recall of past stressful experiences

Effects of benzodiazepines

1) hypnosedative

midazolam

2) anxiolytic

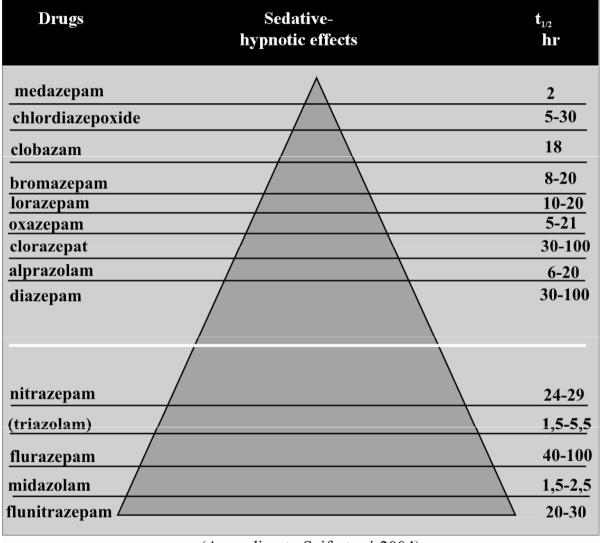
alprazolam, bromazepam, oxazepam

3) anticonvulsant

diazepam, clonazepam

4) myorelaxant

clonazepam


5) amnestic (anterograde amnesia)

most of benzodiazepines, historically typical for flunitrazepam

Pharmacokinetics of benzodiazepines

- ABSORPTION:
 - well absorbed if given orally, C_{max} reached in about 1 h
 - intramuscular injection absorption time is mostly unpredictable
 - possible IV and per rectum application (used for pediatric febrile seizures)
- BINDING: strongly bound to plasma proteins
- DISTRIBUTION: large V_d: accumulation in body fat (high lipid solubility)
- METABOLISM: hydroxylation
 - conjugation with glucuronic acid
- short-, medium- and long-acting BZ
- the role of N-desmethyldiazepam

(According to Seifertová 2004)

Clonazepam = anticonvulsant, anxiolytic use $(t_{1/2} = 50 \text{ hr})$

Specific antagonist of benzodiazepine receptors

flumazenil

Use: in benzodiazepine overdose, antagonising the central sedative effects of benzodiazepines in anaesthesiology

- the onset of action is rapid and usually effects are seen within one to three minutes
- its action lasts for only about 1 hour, so drowsiness tends to return repeat doses of flumazenil may be required to prevent recurrent symptoms of overdosage once the initial dose of flumazenil wears off
- can cause acute withdrawal syndrome in benzodiazepine dependent patient

Unwanted effects

- drowsiness, confusion, amnesia, impaired coordination
- paradoxical reactions (aggression, violence; see Beers list)
- dependence (in human subjects and patients, stopping BZ treatment after weeks and months causes an increase in symptoms of anxiety, together with tremor and dizziness)
- cognitive deficits (memory loss, slower psychomotor deficits)
- breath center depression
- muscle relaxation
- tolerance (gradual escalation of dose needed to produce the required effect and occurs with all BZs. Appears to represent a change at the receptor level)
- "rebound" phenomenon
- may cause "floppy baby syndrome" or neonatal abstinence syndrome when used during third trimester of gravidity (tremor, tachypnea, convulsions)

Beers list

 guidelines for healthcare professionals to help improve the safety of prescribing medications for older adults

Organ System/ Therapeutic Category/Drug(s)	Rationale	Recommendat ion	Quality of Evidence	Strength of Recomm endation	References
Benzodiazepines Short- and intermediate-acting: Alprazolam Estazolam Lorazepam Oxazepam Temazepam Triazolam Long-acting: Chlorazepate Chlordiazepoxide Chlordiazepoxide-amitriptyline Clidinium-chlordiazepoxide Clonazepam Diazepam Flurazepam Quazepam	Older adults have increased sensitivity to benzodiazepines and decreased metabolism of long-acting agents. In general, all benzodiazepines increase risk of cognitive impairment, delirium, falls, fractures, and motor vehicle accidents in older adults. May be appropriate for seizure disorders, rapid eye movement sleep disorders, benzodiazepine withdrawal, ethanol withdrawal, severe generalized anxiety disorder, periprocedural anesthesia, end-of-life care.	Avoid benzodiazep ines (any type) for treatment of insomnia, agitation, or delirium.	High	Strong	Allain 2005 Cotroneo 2007 Finkle 2011 Paterniti 2002
Nonbenzodiazepine hypnotics Eszopiclone Zolpidem Zaleplon	Benzodiazepine- receptor agonists that have adverse events similar to those of benzodiazepines in older adults (e.g.,	Avoid chronic use (>90 days)	Moderate	Strong	Allain 2005 Cotroneo 2007 Finkle 2011 McCrae 2007 Orriols 2011 Rhalimi 2009

Contraindications

- pregnancy and lactation
- myasthenia gravis
- ethylism, co-medication with other hypnotics
- respiratory insufficiency, sleep apnoe
- any other comorbid addiction
- patients using benzodiazepines should not donate blood or drive vehicles

Benzodiazepine withdrawal syndrome

- more frequent with: short-acting benzodiazepines (alprazolam), higher doses, serious concurrent psychopathology
- more expressed in women and patients abusing alcohol
- 25-50 % patients are capable of consecutive discontinuation of BZ use during 6-21 months. First half of dose is discontinued easier then the other half, therefore rapid discontinuation of first half is recommended, followed by 10-20 % reduction during 3-5 days
- "plateau" stage is recommended during discontinuation, when the dose is not reduced
- usually the morning dose is reduced in the first place, then the afternoon's one a the evening dose is the last reduced
- long-acting benzodiazepines cause delayed withdrawal syndrome (2-4 weeks later)

Non-benzodiazepine drugs with anxiolytic effect

- SSRI: sertraline, fluvoxamine, fluoxetine (see AD materials)
- other AD: mirtazapine, trazodone, amitriptyline, dosulepin, venlafaxine
- antiepileptics: gabapentin, pregabalin (generalised anxiety disorder), tiagabine, valproic acid
- antipsychotics: quetiapine, olanzapine

Non-benzodiazepine drugs with anxiolytic effect

- partial agonist at 5-HT1A receptors: buspirone used to treat generalised anxiety disorders and as adjuvant therapy in depression, less effective in controlling panic attacks or severe anxiety states
- H1 antihistamins: hydroxyzine
- guaifenesin (+ myorelaxant+expectorant action)
- beta-blockers: metipranolol, metoprolol
- medicinal herbs: Valerian, Hop, Saffron, Passionflower, St. Johns Wort, Rhodiola, Lavender

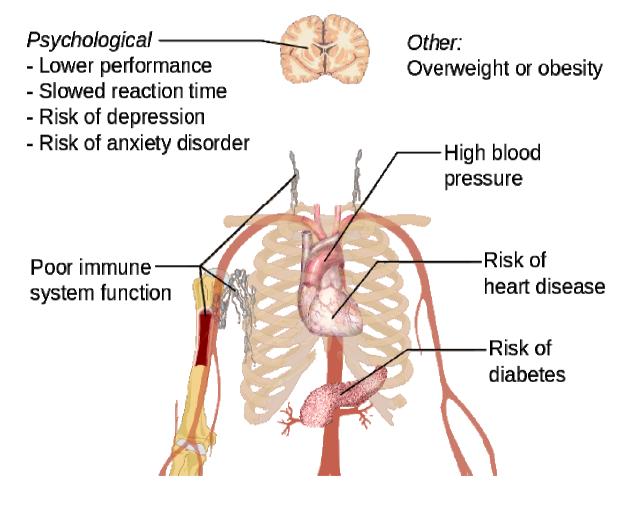
Hypnosedatives

Sedation

can be defined as a suppression of responsiveness to a constant level of stimulation, with decreased spontaneous activity and ideation.

A hypnotic drug should produce drowsiness and encourage the onset and maintenance of a state of "sleep" that as far as possible resembles the natural state of sleep.

Hypnotic effects involve more pronounced depression of the CNS than sedation, and this can be achieved with most sedative drugs simply by increasing the dose.



INDICATION

- HYPNOTICS: are used for treating sleep disturbances and disorders
 - insomnia
- SEDATIVES in anxiety, ammeliorrate hyperactivity, aggressivity
- No clear cut-off between HYPNOTICS and SEDATIVES ,,HYPNOSEDATIVES"

Complications of **Insomnia**

Insomnia:

– temporary = less than week

short term= less than month

chronic = more than month (according to International Classification
 of Sleep Disorders 3 months with a frequency of 3 times a week)

Indications

Sleep disorders in case of:

- no causative treatment available
- causative treatment still not effective
- short term treatment
- severe sleep disorder (debilitating for patient, causing sick leave)

Recommended just for **short courses** of treatment of insomnia- from few

days to 2 weeks (max. of 4 weeks in a row)

"Ideal" hypnotic drug

- to mimick physiological structure of sleep cycles
- broad ther. range
- optimal halflife of elimination
- rapidly absorbed after p.o. admin.
- terap. levels in blood 5-7 h, no active metabolites
- no ADE , interactions
- no risk of addiction

First generation hypnotics

clomethiazole

acts as a positive allosteric modulator at the barbiturate/picrotoxin site of the GABAA receptor Indications: insomnia in geriatric patients, acute alcohol withdrawal syndrome, delirium tremens Contraindicated in case of sleep apnoe and chronic respiratory insufficiency

barbiturates

- obsolete, death from respiratory and cardiovascular depression if given in large dose flumazenil not effective
- mainly used in anaesthesia (thiopental) and as a treatment of epilepsy (phenobarbital)

Second generation hypnotics

Benzodiazepines

- midazolam also for premedication in anaesthesiology
- diazepam
- cinolazepam
- clobazam
- medazepam

unwanted effect: dependence, drowsiness, disturbed sleep cycle

Third generation hypnotics

Selective agonists at benzodiazepine site containing α_1 subunit

- selective hypnotic effect, lacking moyrelaxant, anxiolytic and anticonvulsive effect
- non-benzodiazepine structure
- can cause dependence, not causing morning "hangover", causing confusion, hallucinations, somnambulism and delusions in sensitive and geriatric patients
- zopiclone
- zolpidem
- zaleplon

Antidepressive drugs in treating insomnia

- trazodone
- agomelatine
- mirtazapine see AD materials

New trends in hypnosedatives

Drugs influencing circadian rhytms

melatonin

- just weak hypnotic
- universal signal molecule which gives estimate about light/dark cycle to the brain
- is synthetised in epiphysis, retina, GIT
- sleep do not affect synthesis, peak levels between 11PM and 3AM

New trends in hypnosedatives

Dual orexin receptor antagonist

suvorexant

- produces similar reinforcing effects to those of zolpidem
 and thus may have a similar abuse liability
- unwanted effects: sleep terror, drowsiness
- contraindicated in pregnancy

Risks associated with using hypnotics

- dependence, cognitive disorders
- higher mortality (respiratory center depression caused by overdose)
- higher infection rate (weak respiratory infections, pneumonia)
- higher risk of cancer
- depression and suicide
- higher risk of dementia, fractures and injuries

Other drugs with hypnosedative effect

antipsychotics: quetiapine

chlorprothixen, levomepromazine

- H1 antihistamins (1. generation): hydroxyzine, promethazine, moxastine, bisulepine

medicinal herbs

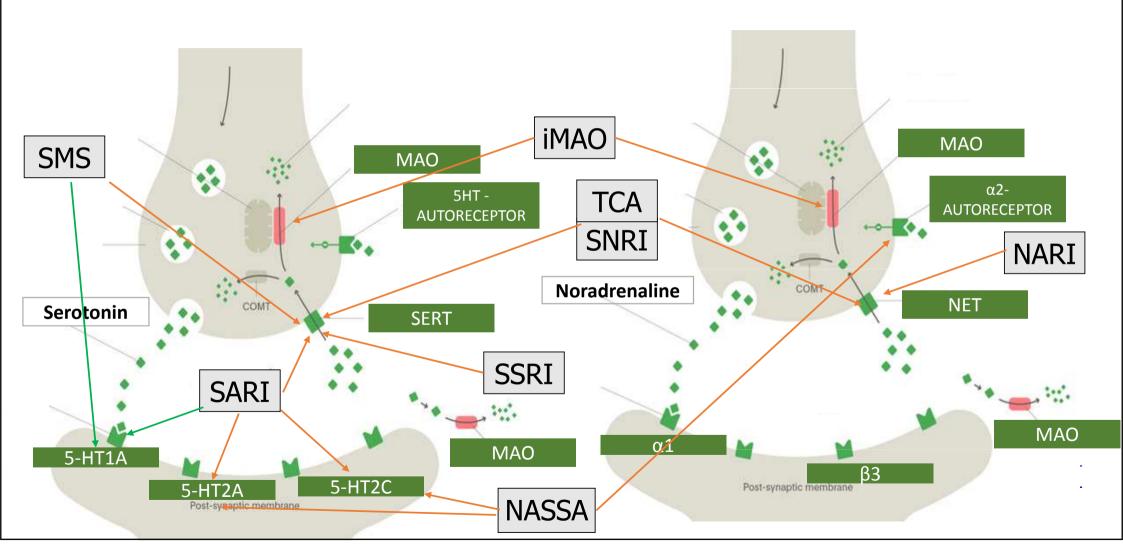
Medicinal herbs as hypnosedatives

- Melissa off. (Lemon balm)
- Valeriana off. (Valerian)
- Humulus lupulus (Hop)
- Passiflora incarnata (maypop, purple Passionflower)
- Hypericum perforatum (St. Johns Wort)

Antidepressan ts

- loss of interest, happiness and motivation
- loss of self-confidence, remorses, feeling of guilt
- suicidal tendencies (in 2/3 patients)
- loss of energy and tiredness
- attention deficit, indecision
- agitation (if anxiety is present)
- sleep disorder (characteristic is early wake-up)
- change in apettite
- decrease of libido

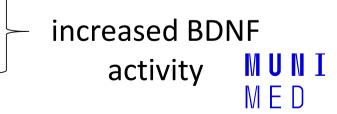
emotional and biological symptoms


Monoamine theory of depression

- depression = monoamine deficit in particular parts of the brain
- mania = hyperactivity of monoamines in the CNS
- clinical evidence substances decreasing monoamine activity = mood aggravation
- the specific roles of 5-HT and NA are not clear
- antidepressants directly or indirectly increase the monoamine activity

Mechanismus účinku antidepresiv

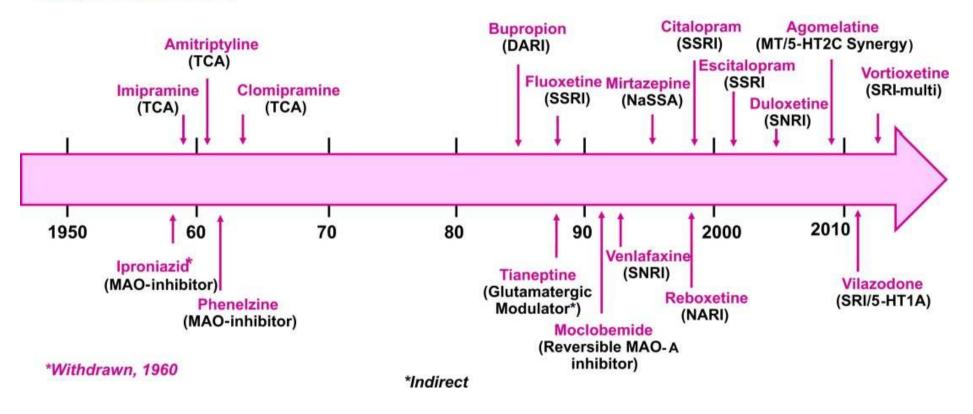
Mode of action of antidepressants



most AD increase 5-HT, NA or D activity

General modes of action of antidepressants:

- MAO inhibition (selective MAO A/ nonselective)
- reuptake inhibition (SERT, NAT)
- desensitisation/antagonism of presynpatic autoreceptors (5-HT_{1D}, α_2)
- agonism of postsynaptic receptors 5-HT_{1A}
- antagonism of postsynaptic receptors 5-HT_{2A}


increase of 5-HT and/or NA

History of antidepressants

Major depression

Efficacy of antidepressants

- in general partial response or remission in 60-70% of patients
- "only 30 %" in the first line of antidepressant treatment
- significant interindividual differences in treatment response
- the efficacy of distinct groups of AD is equipotential
 - = criteria of AD selection
 - 1. depression side symptoms (agitation, anxiety, insomnia)
 - 2. decrease of adverse reactions risk

SSRI – selective serotonin reuptake inhibitors

- inhibit also NAT, but more selective for SERT
- PK and PD differences between single agents = one SSRI can be replaced by other in case of therapy failure
- drugs of choice in most patients
- great safety profile but not tolerability
- 个 risk of suicide in tennagers
- risk of drug-drug interactions (iCYP 2D6 and 3A4 inhibitors)

I: depression, anxiety, OCD, PTSD, migraine, pain

SSRI

ΑE

- GIT irritation
- 个 bleeding, sex. dysfunction, anhedonia

Serotonin syndrome

- induced by hyperactivity of serotonine in the CNS
- high risk in combinations of serotonergic drugs (AD, triptans, analgesics)

Antidepressant discontinuation syndrome - FINISH

SSRI

fluoxetine

- 5-HT_{2A}antagonist, CYP2D6 strong inhibitor

sertraline

- the strongest SERT inhibitor
- weak DAT inhibitor, anxiolytic activity

paroxetine

- weak antimuscarinic effect = sedative; CYP2D6 strong inhibitor

citalopram

- the lowest risk of drug-drug interactions

SSRI - escitalopram

MofA: SERT selective inhibition

Indications: depression, anxiety

Administration: per os

PK: good absorption from GIT, low protein binding, complete biotransformation in liver (CYP2C19), active metabolites, dominantly excreted into urine

AE: prolongation of QT, serotonine syndrome

DDI: iMAO **\(\Trisk\)** risk of serotonine syndrome, CYP inhibitors

KI: till 18 years, gravidity, lactation

SNRI – serotonin and noradrenaline reuptake inhibitors

MofA – nonselective blockade of 5-HT and NA reuptake

"activating" drugs

AE: stimulation of adrenergic receptors = insomnia, sex. impairment,

↓ apetite, hypertension

increased risk of suicide, discontinuation sydrome

venlafaxine + desvenlafaxine

duloxetine – also for neuropathic pain, hepatotoxic

NDRI – noradrenaline and dopamine reuptake inhibitors

bupropion

- little effect on 5-HT
- in comparison to other DAT and NAT inhibitors does not cause euphoria
- in the treatment of smoking cessation

AE

risk of seizures, aggravation/development of psychotic signs

NARI – noradrenaline reuptake inhibitor

reboxetine

MofA – blockade of NAT: SERT = 20:1

• M, H1 and α_1 antagonist

AE

- stimulation of adrenergic receptros = insomnia, restlessness, anxiety
- constipation, sex. dysfunction
- atomoxetine –ADHD therapy

SARI – serotonine antagonist and reuptake inhibitor

trazodone

MofA

- SERT inhibition
- 5-HT_{1A} agonism
- 5-HT_{2A} and _{2C} antagonis
- H_1 and α_1 antagonismus

AE: hypotension, sleepiness

CYP2D6 substrate, 3A4 inhibitor

mirtazapine

NASSA – noradrenergic and specific serotonergic antidepressants

MofA: block of presynaptic α_2 + postsynaptic 5-HT2A, 5-HT2C and 5-HT3

stimulation of 5-HT1

block of H1 and weak antagonism of α1

Administration: per os

PK: F from GIT app. 50%, protein binding, substrate of CYP3A4, CYP2D6 and CYP1A2, complete metabolization, some metabolites are active

AE: serotonine syndrome, sedation, ↑ weight

Interactions: serotonergic drugs, including St. John's wort, CYP inducers/inhibitors

KI: till 18 years, combination with iMAO

- drug discontinuation— slow dose decrease
- suitable in depression with insomnia, low risk of sex. disorders

SMS – serotonin modulator and stimulator vortioxetine

MofA: inhibice SERT

5-HT_{1A}agonism

5-HT_{1D}, 5-HT₃ antagonism

AE: pruritus, nausea, live dreams

- risk of serotonin syndrome
- CYP2D6 substrate

e

MASSA-melatonine agonist and serotonin selective antagonist

MofA: MT₁ and MT₂ agonist

5- HT_{2C} antagonist

- increased melatonin release and resynchronizes circadian rhythm
- CYP1A2 substrate
- risk of hepatotoxicity = monitoring of transaminases
- in single dose when going to bed

TCA

MofA: 5-HT, NA and D reuptake inhibition

+ 5-HT_{2A} antagonism and 5-HT_{1A} agonism

+ antagonism of H_1 , M, α_1 and 5- HT_{2C} => AE

serotonergic

adrenergic

clomipramine

imipramine, desipramine

amitriptyline, nortriptyline

TCA

4

AE:

antiM – confusion, cognitive deficit, peripheral effects anti H_1 – sedation, weight gain anti α_1 – ortostatic hypotension anti $5HT_{2C}$ - weight gain

significant acute toxicity

proarrhythmogenic

initial dose usualy titrated

TCA

- liver metabolism CYP2D6 and 3A4
- plasma protein binding
- long $t_{1/2}$ = risk of drug accumulation

• "older" drugs, still in use

I: resistant depression

co-analgesics

iMAO

- ireversible inhibitors today obsolete
- reversible selective iMAO A moclobemide
- the strongest effect on 5-HT > NA > D
- "cheese reaction"
- positive effect on cognition
- inhibitor of CYP2D6, 2C19 and 1A2

AE: hypotension, CNS stimulation, weight gain

Side effects of antidepressant therapy

Nonselective serotonergic activity (SSRI, iMAO, TCA, SNRI)

- + anxiolytic and antidepressant activity
- sex. impairment, emotional flatness, serotonin syndrome

Nonselective noradrenergic activity (TCA, NARI)

- + "activation" of patient, antidepressant activity
- tremor, tachycardia, hypertension

Side effects of antidepressant therapy

antihistaminergic activity = sedation, weight gain

 α_1 lytic activity= ortostatic hypotension and risk of falls

antimuscarinic activity = cognitive deficit and peripheral effects

QT interval prolongation

activating

fluoxetine

nortriptyline

venlafaxine

sedative

paroxetine, fluvoxamine, citalopram

dosulepin, maprotiline

trazodone

X

mirtazapine

agomelatine

Augmentation of antidepressant terapy

Antipsychotics

- separately or in combination with antidepressants
- in depression with psychotic symptoms, and in prophylaxis
- atypical antipsychotics

Anxiolytics

• in the begining of therapy of depression with significant anxiety component to decrease the risk of suicide

Phytopharmacology

