

Pharmacotherapy of cardiovascular diseases

- MUDr. Alena Máchalová, Ph.D., Department of Pharmacology

Cardiovascular diseases

= diseases of heart and blood vessels!

Are closely connected to other disorders

(atherosclerosis, dyslipidaemia, obesity, hypertension...)

Pharmacotherapy is usually complex and drugs from many classes are used in combinations

Risk factors

Given: age, gender, genetic disposition

Changeable: atherosclerosis, hypertension, dyslipidaemia/hyperlipoproteinaemia, smoking, diabetes mellitus, obesity, bad eating habits, stress...

Risky is \LDL-concentration, **\UDL-concentration**

It is important do pay attention to those factors, which can be changed

COMPLEX THERAPY of CVS diseases

Diagnoses Heart failure Hypertension Dysrrhytmia IHD chronic, acute **Related risk factors** Dyslipidaemia Hypertension **INOTROPICS** Risk of thrombosis **ANTIARRHYTMICS** Drugs **ANTIHYPERTENSIVES HYPOLIPIDEMICS** Pharmacotherapy is usually <u>complex</u> and **ANTITHROMBOTICS** drugs from many classes are used in combinations

morphin

Atherosclerotic plaque obstructs the vessel ⇒ IHD If ruptured, consequenting thrombus may occlude the vessel ⇒ AMI, stroke

<u>RISK OF</u> THROMBOSIS

ANTITHROMBOTICS

Anticoagulants

Thrombus prophylaxis (usually in venous vessels)

heparin, nadroparin, dabigatran, apixaban warfarin

Thrombus prophylaxis (usually in arteries)

ASA, clopidogrel

Dissolution of formed thrombus (arteries and veins)

alteplase, reteplase

HYPOLIPIDEMICS

DYSLIPIDEMIAS

Some of the most often metabolic disorders

HYPOLIPIDEMICS

1. Decreasing plasma CHol (LDL)

- Decrease of intestinal (re)absorption of bile acids/cholesterolu
 RESINS, EZETIMIB
- Inhibition of CH and VLDL synthesis
 STATINS
- Increase density of membrane LDL receptors
 PCSK9 inhibitors

2. Decrease of plasma TG

- Influence synthesis of VLDL and conversion of plasma lipoproteins
 FIBRATES, STATINS (INDIRECTLY)
- Gene therapy 3 x 1012 genome copies of human lipoprotein lipase in a viral vector to treat hyperlipoproteinemia I
 Glybera

1st choice drugs in all types of dyslipidaemia are STATINS!!

STATINS

1st choice drugs in atherosclerosis

MoA – competitive <u>inhibitors of HMG-CoA reductase</u> (hydroxy methyl glutaryl CoA reductase) <u>+</u> <u>significant antiinflammatory effect</u>

$\rightarrow \uparrow$ LDL clearence

- pleiotropic (extralipid) statin effects:
 - antiinflammatory !!!
 - antiaggregant
 - positive effects in endothelial dysfunction

AE: liver disorders: \uparrow activity of transaminases and kreatinkinase (monitoring is necessary!)

- Myalgia, rhabdomyositis (0,5% of pacients) can lead to rhabdomyolysis and kidney failure (most often after combination with FIBRATES and CYP3A4 inhibitors)
- interactions!!

simvastatin, atorvastatin

Iovastatin, fluvastatin, pravastatin, rosuvastatin (long acting)

MoA: agonists of nuclear PPAR-α rec. (peroxisome proliferator-activated receptors) inhibit liver production of VLDL and ↑ catabolism of VLDL
 → decrease export of TG to peripheral tissues

I: isolated hyper TG-emia (when resistant to statin)

AE: nausea, vomiting, risk of bile stones (↑CH in bile), myalgia (dangerous is myositis or rhabdomyolysis)

fenofibrate

ciprofibrate, bezafibrate

ANTIHYPERTENSIVES

HYPERTENSION

• repeatedly increased blood pressure (BP) 140/90 mm Hg at least at 2 out of 3 measurements taken at least at two separated visits at the doctor

• prevalence in adult population 20-30 %

Classification of arterial hypertension according to etiology

- primary (esencial) about 95 % of all patients with hypertension; multifactorial disease without identified cause
- **<u>secondary</u>** disease with identified cause
 - nephrogenic most often, kidney diseases
 - renovascular narrowing of renal artery
 - endocrine adrenal or thyroid glands disease
 - drug-associated hypertension chronic therapy by corticoids, NSAID, hormonal contraception
 - hypertension in pregnancy

Therapy of arterial hypertension

Aim: BP under 140/90 mm Hg

in patients with \uparrow CV risk DM under 130/85 mm Hg

Non-pharmacological approach:

- Lifestyle changes smoking, alcohol, medications
- Aerobic exercise, no isometric load
- Increase amount of nonsaturated FA, Ca⁺⁺, K⁺
- Body weight

Pathophysiological causes

■ P=R.Q

- Change in peripheral resistence (R)
- Q cardiac output
 - Increased circulating volume
 - Increased contractility
 - Increased heart rate

Farmacotherapy of hypertension

- 1. ACE-inhibitors (ACE-I)
- 2. angiotensin II receptor blockers
- 3. Ca⁺⁺ channel blockers
- 4. diuretics
- 5. betablockers
- 6. renin inhibitors
- 7. drugs acting centrally
- 8. alpha-blockers

- Some of these drug classes are used also in therapy of IHD
- Arrytmias
- Chronic HF
- 9. drugs with direct vasodilatant mechanism

ANTIHYPERTENSIVES

- act on three effector locations (heart, vessels, kidney)
- influence medium and long-term mechanisms of BP regulation

RAA hibiting rugs

ACE-inhibitory (ACEi) 1st choice drugs

- **MoA:** 1) reversible ACE inhibition
 - 2) bradykinin degradation blockade (vasodilation)

captopril, perindopril

Angiotensin II receptor blockers (sartans)

MoA: Competitive antagonists on AT₁

1st choice drugs

valsartan, losartan

Renin inhibitors (kirens)

2nd choice!

MoA: bind to the active site of renin and inhibit the binding of renin to angiotensinogen, which is the rate-determining step of the RAAS cascade

aliskiren

MED

Common pharmacodynamic effect of ACEi and sartans

- decrease in peripheral vessels resistance

- (via low AT1 stimulation or ↑ bradykinin)
- decrease intravascular volume
- specific dilatation of vas efferens
- positive glycometabolic effects
- antiproliferative activity

ACEi

Kinetics:liver microsomal metabolisms (enalapril = prodrug)VARIABILE HALF-LIFE (captopril vs perindopril)

- **AE:** hypotension, hyperkalemia
 - decrease degradation of several small neuropeptides (bradykinin)

\rightarrow dry cough

- angiooedema
- **CI:** pregnancy, breast-feeding
 - primary hyperaldosteronism

ACEi

Indications:

- hypertension
- heart insufficiency
- AMI
- \rightarrow Significant decrease in mortality rate in AMI, CVD

1st choice in:

- state after AMI, CVA
- remodelation of heart and vessels LV hypertrophy, heart failure
- DM

Sartans

Angiotensin II receptor blockers

Kinetics: variable

AE, indications, CI: the same as ACEi BUT NO cough!!

Losartan, valsartan

Renin inhibitors - kirens

AE: Hypotension Diarrhoea Angiooedema

aliskiren

We do **not combine** drugs acting on RAAS! (ACEi+sartans in patients with **diabetic nephropathy**)

2nd choice!

Direct vasodilatants

MoA: specifically block L-channel in heart and vessel muscle cells

affect mostly vessel smooth muscle (= are vasoselective) ⇒ **do not influence myocard, decrease blood pressure**

Direct vasodilatants

MoA: specifically block L-channel in heart and vessel muscle cells

Smooth musscle cells (vessels, bronchi, GIT, uterus) ⇒ decrease in peripheral resistence Electrical conduction system of the heart (SA, AV node) ⇒ negative chronotropic and inotropic effect
Non-dihydropyridines

strong effect also on <u>electric activity of heart incl</u> <u>coronary vessels</u>

Antiarrhytmics

Angina pectoris (IHD)

Dihydropyridines – affect mostly vessel smooth muscle

1.generation - lower vasoselectivity, shorter effect

nifedipin

2.generation - higher vasoselectivity, longer effect

nitrendipin (fast onset), felodipin, isradipin, nisoldipin, nilvadipin, nimodipin

3.generation - antiatherogenic effects, long effect

amlodipin

CAVE – CCB have negative inotropic effect!

- not in decreased function of LV
- not to be combined with other negatively inotropic drugs (BB)

Non-dihydropyridines – strong effect also on electric activity of heart diltiazem verapamil

PK: variable bioavailability variable half-life (e.g. nifedipin vs. amlodipin – 2 vs. 40 h) CYP metabolisation

AE: gum hyperplasia

oedema, hypotension, headache bradykardia (Non-DHP), reflexive tachycardia (DH pyridines) negative inotropic effects constipation

- I: hypertension angina pectoris local vasodilation in interventions (i.a. application) tachyarytmia (non-dihydropyridines)
- **CI:** AV block, heart failure (verapamil, diltiazem) tachykardia (DH pyridines)

Diuretics and aldosterone antagonists

- drugs increasing excresion of water and Na+
- act in **tubular system of kidneys**

Carboanhydrase inhibitors/proximalacetazolamideThiazide diuretics/distalhydrochlorothiazide, indapamidLoop diureticsfurosemidePotassium-sparing diureticsamilorideAldosterone antagonistsspironolaktone, eplerenoneOsmotic diureticsmannitol

Thiazides Inhibit resorption of Na and Cl in distal tubulus.

⇒ Inhibition of water resorption ⇒ increased diuresis, (up to 12 h) + vasodilation Hypotensive effects with delay 3-4 days, full clinical effect (in 3-4 w).

The most often prescribed diuretics (HT, HF).

hydrochlorothiazide, indapamide

Insufficient efficacy when impaired kidney function ⇒ **loop diuretics are indicated**

Loop diuretics Inhibit co-transport of Na/K/2Cl in thick ascending loop of Henle

 $\rightarrow \text{ decrease interstitial osmolarity} \rightarrow \text{ decrease water reabsoption from lumen} \rightarrow \text{increased diuresis}$ The strongest, short effect + vasodilatant efficacy
Lots of AE: loss of ions (Na, CLK, Ca, Mg), passibly benate, performed effect

Lots of AE: loss of ions (Na, Cl, K, Ca, Mg), possibly hepato-, nephro-, ototoxic **I:** HT, lung oedema, congestive heart failure, hypercalcemia, chronic renal failure

ARE VERY EFFECTIVE (even in kidney insufficiency), BUT BIG LOSS OF IONS Risk of activation of RAAS

positive effects on <u>remodelation</u> \rightarrow in heart failure also in monotherapy AE: gynekomastia, menstruation problems

eplerenon (selective for mineralocorticoid rec)

Carboanhydrase inhibitors / proximal diuretics

Act in proximal tubule

Osmotic diuretic

Act in the whole nephron

MoA: cannot be reabsorbed and cause leads to hyperosmolarity of filtrate

INDICATIONS:

- Forced diuresis
- Increased intraocular presuure,
- Acute renal failure

mannitol

Diuretics

General characteristic:

Advantages:

usually possible combination with others AHT potentiation of other AHT effects no influence on CNS cheap

Disadvantages:

metabolic effects low tolerance (in elderly people)

Diuretics

General characteristic:

AE:

potassium depletion (except K⁺ sparing) hyperurikemia (thiazides, loop diuretics) weakness, nausea dysbalance in glycid and lipid metabolism (thiazides) hypovolemia, hypotension (furosemid) hyperkalemia, hypomagnezemia (amilorid, spironolakton)

CI:

gout (thiazides) renal failure, hyperkalemia (K+ sparing) Relative: pregnancy, metabolic syndrome

Diuretics

General characteristic:

AE:

potassium de
hyperurikemiaAll AE are strongly dose-dependenthyperurikemia⇒ If possible, the lowest effective doses are
preffereddysbalance ir⇒ Usually combined with other AHThypovolemia,hypotension (furosemid)hyperkalemia,hypomagnezemia (amilorid, spironolakton)

CI:

gout (thiazides) renal failure, hyperkalemia (K+ sparing) Relative: pregnancy, metabolic syndrome

Diuretics – INDICATIONS

1. HYPERTENSION

- combined therapy (thiazides, potassium-sparing)
- kidney failure (loop diuretics)
- in resistant hypertension (Aldosterone antag.)

2. HEART FAILURE

- Chronic HF (thiazides, potassium sparing, loop d.)
- 3. FORCED DIURESIS

(loop, osmotic)

- 4. OEDEMAS (loop, osmotic)
- 5. HYPERKALCEMIA (loop)

Betablockers

MoA: block **adrenergic reactions** provided by activation of β receptors (CV effect mostly by β_1). Act as competitive antagonists of noradrenaline, dopamine and adrenaline.

Antihypertensive effects:

- targeting RAAS (inhibitit release of renin) ⇒ decrease of volume
- decrease of HR and cardiac output
- decrease of O2 consumption

antiischemic effects

Final BP levels are reached in 14 days of therapy!!

They have most AE of all 1st choice drugs

(especially in young patients)

Betablockers

- Lipofility /hydrofility
- Selectivity
- Parcial agonistic activity
- Other effects (eg. α rec blockade, direct vasodilatant eff...)

Bradines (ivabradine)

Alternative to betablockers <u>MoA:</u> Inhibit Na/K chanell (I_f current) in SA node. *Negative chronotropic effect.*

Classification by selectivity

	NON-SELECT						
W/O ISA	sotalol (antiarrytmic) timolol antiglaucomatic	WITH ISA	cart antigl	eolol aucomatic	Not used in CV therapy		
CARDIOSELECTIVE β_1 rec							
W/O ISA	metoprolol atenolol esmolol	WITH ISA	ace	butolol			
	t _{1/2} = 2-10 min.	nebivo t _{1/2} = 30-50	lol Dhod	+ mild vasodi	latant		

celiprolol = β_1 , α_1 , α_2 , vasodilatation (β_2 ISA) **labetalol, carvedilol** = β_1 , β_2 , α_1

MED

Beta blockers with combined effects

Apart from $\beta1$ and $\beta2$ act on

- α₁- rec, Ca²⁺ channels
- antioxidant eff.

carvedilol

I: hypertension, IHD, HF

labetalol

I: severe hypertension (i.v.) in pregnancy (from the 2. trimester)

Beta-blockers

- I: HT AP arytmia chronic heart failure (cave!) glaucoma, tremor
- CI: asthma AV block COPD (relat.) bradycardia DM (relat.) difficult erection (some)

Abused by athletes!

AE:

Negative influence on lipid and glycid metabolism

- bronchospasm (non-selective)
- disrupted peripheral circulation (non-selective)
- bradyarrhytmia (BB without ISA)
- insomnia, sedation, depression (lipofilic BB)
 rebound phenomenon

Beta-blockers

Individual choice of drug:

Older patient Younger patient IHD, AMI IHD, AP DM II. pregnancy bradycardia under 50 heart failure IDLE hyperliproteinemia HT during surgery β_1 or with ISA NS not with strong ISA BB generally suitable more than others low doses β_1 , with ISA β_1 , alpha+beta withdraw BB (or with ISA) carve,bisopr,metopr β_1 , with ISA, vasodil. with ISA esmolol

Farmacotherapy of hypertension

- **1.** ACE-inhibitors (ACE-I)
- 2. angiotensin II receptor blockers
- 3. Ca⁺⁺ channel blockers
- 4. diuretics
- 5. betablockers
- 6. renin inhibitors
- 7. drugs acting centrally
- 8. alpha-blockers

- Some of these drug classes are used also in therapy of
- IHD
- Arrytmias
- Chronic HF
- 9. drugs with direct vasodilatant mechanism

ANTIHYPERTENSIVES

- act on three effector locations (heart, vessels, kidney)
- influence medium and long-term mechanisms of BP regulation

Centrally acting antihypertensives

Imidazoline receptor agonists

imidazoline I₁ receptor in medulla oblongata

I₁- in CNS and kidney

- I₂- pain modulation, neuroprotection
- I₃ insulin secretion

 \downarrow heart + vessels + kidney stimulation by sympathetic NS \downarrow renin and vasopressin secretion great positive effect on glycaemia and insulin resistance

moxonidine rilmenidine

Unlike central α_2 -agonists

- DO NOT CAUSE sedation
- rebound fenomenon

Centrally acting antihypertensives

Central α_2 agonists

 α -metyldopa – false precursor of NA + α_2 stimulation Indicated in <u>pregnancy</u>

clonidine - α2 stimulation, sedation, strong rebound phenomenon Indicated in hypertension crisis (ICU)

Central α2 agonist + peripheral α1 antagonist

urapidil – very strong anti HT

Alpha blockers

- selective reversible α_1 -lytics
- no effect on α_2 rcp. do not increase NA
- advantageous effects in prostate hyperplasia

AE: postural hypotension especially after 1st dose (prazosin) \rightarrow start with lower dose given in the evening before sleep

I: monotherapy in BHP combination in hypertension

prazosin doxazosin terazosin

urapidil

Direct vasodilatators (nitrodilatators)

1st choice in angina pectoris

Nitrates

Using free SH- groups (from glutathion) they cause release of NO in endothelium (EDRF)

- \rightarrow vasodilation
- \rightarrow antithrombotic action

AE: Tachyphylaxis!, headaches, orthostatic hypotension

nitroglycerine – for acute attacks **isosorbid dinitrate (ISDN)** – infusion in HT crisis, prophylaxis **isosorbid 5-mononitrate (ISMN)** – active metabolite, chronic AP

NO donors

natrium nitroprusside - for acute attacks **molsidomin** – different structure, fibrinonolytic, for chronic therapy

Calcium channel blockers were discussed earlier

ANTIARRHYTMICS

Drugs, which DIRECTLY or UNDIRECTLY affect electrophysiological processes on membranes, thus influecing generation and lenght of action potential.

ANTIARRHYTHMIC DRUG CLASS	DRUG	PRIMARY MECHANISM OF ACTION*	
Class IA	Quinidine, procainamide, disopyramide	Na ⁺ channel blocker, prolongs action potential duration (APD)	
Class IB	Lidocaine, mexiletine	Na ⁺ channel blocker, rapid dissociation	
Class IC	Flecainide, propafenone	Na ⁺ channel blocker, slow dissociation	
Class II	Propranolol, sotalol, esmolol	β Adrenergic blocker	
Class III	Amiodarone, sotalol, ibutilide, dofetilide, dronedarone	Prolongs APD (primarily by K+ channel blockade)	
Class IV	Verapamil, diltiazem	Ca ²⁺ channel blocker (nondihydropyridine)	
Miscellaneous	Adenosine	Adenosine receptor agonist	
Miscellaneous	Digoxin	Na ⁺ , K ⁺ -ATPase inhibitor	

MUNI Med

Amiodarone -

MoA: K⁺ ion channels block

ADVERSE EFFECTS

Dose-depentent frequency

1**. MoA**

- Imparied trasmission of signal
- negative inotropic eff.

2. Specific AE

- fotosenzitisation (10%)
- irreversible lung fibrosis

3. Effects on thyroid

- HYPOTHYREOSIS (10%)
- THYREOTOXIKOSIS (rare)

INDICATION

- Prophylaxis of fibrilation or flutter of atrium (in CHF)
- Pharmacological cardioversion of fibrilation or flutter of atrium

Highly lipofilic ⇒ accumulates in liver and body fat

Very long half-life

Lots of interactions (*P-glp., CYP*)

Digoxin – Heart glycoside kardiotonic + antiarrhytmic drug

- Activates parasympaticus via nervus vagus ⇒ antiarrhytmic effects
 ⇒ negative chronotropic eff
- Inotropic effect is caused by inhibition of Na/K ATP-ase pump
 ⇒ positive inotropic eff

INDICATION:

- CHF (positive inotropic eff)
- Arrhytmia (atrial fibrillation with fast response)

Narrow therapeutic window (TDM)

Large volume of distribution

Renal elimination

Lots of interactions (P-glp.)

INOTROPICS

Heart glycosides (cardiotonics) digoxin

Catecholamines

adrenaline, dobutamine, noradrenaline, dopamine

Inhibitors of PDE-3

milrinone

Calcium sensitisers

levosimendan

DRUGS WITH POSITIVE INOTROPIC EFFECT

MoA: inhibition of Na/K ATP-ase pump ⇒ influx of Ca²⁺ into sarcoplasma

MoA: stimulation of β rcp. \Rightarrow indirect effect on Ca²⁺ influx

MoA: specific blockade of phosphodiesterase -3 in myocardium ⇒ bloc degradation of cAMP ⇒ cardiostimulation

MoA: strogner binding of myofilaments to troponin C ⇒ **increased contractility**

Conclusions

Pharmacotherapy of hypertension

- 1. Non-pharmacological approach
- 2. Hypertension is often accompanied by other CV diagnoses (combined therapy)
- 3. Antihypertensives of the 1st choice, alone, or in combinations
 - ⇒ RAAS Inhibitors
 - ⇒ Ca channels blockers
 - ⇒ Diuretics, betablockers....

Pharmacotherapy of IHD

(dyslipidemia, hypertension, obesity, DM2, thrombosis prevention)

⇒ NITRATES and NO donors

⇒ **Dihydropyridines** (in case of present hypertension)

Decreasing metabolic demands of the heart

- decrease of workload (negative chronotropic, dromotropic ef)
- prolong oxygen delivery to myocardium (longer diastole)

slower frequency⇒ BETABLOCKERSand conduction⇒ Non-dihydropyridines

MED

Pharmacotherapy of acute HF

Thank you for your attention

