MUNI MED

Arrhythmology

Cardiomyocytes

Cardiomyocytes
Heart muscle consists of
different types of
cardiomyocytes: **Cardiomyocytes**
Heart muscle consists of
different types of
cardiomyocytes: cardiomyocytes:

-
-
-

Mechanism of cardiomyocyte activity 1

- Mechanism of cardiomyocyte activity 1
Three cations present in both extra- and intracelular fluid participate
in electrical activity of heart muscle: Na†, K† and Ca²⁺. Na† and Ca²⁺
are present mainly in ECF (Ca²⁺ als **Mechanism of cardiomyocyte activity 1**
Three cations present in both extra- and intracelular fluid particin
in electrical activity of heart muscle: Na⁺, K⁺ and Ca²⁺. Na⁺ and
are present mainly in ECF (Ca²⁺ also , K⁺ and Ca²⁺. Na⁺ and Ca²⁺ **Mechanism of cardiomyocyte activity 1**
Three cations present in both extra- and intracelular fluid participate
in electrical activity of heart muscle: Na⁺, K⁺ and Ca²⁺. Na⁺ and Ca²⁺
are present mainly in ECF (C in ICF **Mechanism of cardiomyocyte activity 1**
Three cations present in both extra- and intracelular fluid participate
in electrical activity of heart muscle: Na*, K* and Ca^{2*}. Na* and Ca^{2*}
are present mainly in ECF (Ca^{2*} **Mechanism of cardiomyocyte activity 1**
Three cations present in both extra- and intracelular fluid participate
in electrical activity of heart muscle: Na⁺, K⁺ and Ca²⁺. Na⁺ and Ca²⁺
are present mainly in ECF (C Mechanism of cardiomyocyte activity 1
e cations present in both extra- and intracelular fluid participate
ectrical activity of heart muscle: Na⁺, K⁺ and Ca²⁺. Na⁺ and Ca²⁺
present mainly in ECF (Ca²⁺ also in e **Mechanism of cardiomyocyte activity 1**
Three cations present in both extra- and intracelular fluid participate
in electrical activity of heart muscle: Na⁺, K⁺ and Ca²⁺. Na⁺ and Ca²⁺
in ICF
In ICF
During fast de
- Na⁺ leads to depolarisa channels.

Mechanism of cardiomyocyte activity 1
Three cations present in both extra- and intracelular fluid participate
in electrical activity of heart muscle: Na⁺, K⁺ and Ca²⁺. Na⁺ and Ca²⁺
are present mainly in ECF (Ca ions Three cations present in both extra- and intracelular fluid participate
in electrical activity of heart muscle: Na⁺, K⁺ and Ca²⁺. Na⁺ and Ca²⁺
are present mainly in ECF (Ca²⁺ also in endoplasmic reticulum), K Three cations present in both extra- and intracelular fluid participate
in electrical activity of heart muscle: Na⁺, K⁺ and Ca²⁺. Na⁺ and Ca²⁺
are present mainly in ECF (Ca²⁺ also in endoplasmic reticulum), K Three cations present in both extra- and intracelular fluid participate
in electrical activity of heart muscle: Na⁺, K⁺ and Ca²⁺. Na⁺ and Ca²⁺
are present mainly in ECF (Ca²⁺ also in endoplasmic reticulum), K in electrical activity of heart muscle: Na⁺, K⁺ and Ca²⁺. Na⁺ and
are present mainly in ECF (Ca²⁺ also in endoplasmic reticulum)
in ICF
During fast depolarisation of a cardiomyocyte (phase 0), voltage
gated solu

Mechanism of cardiomyocyte activity 2

Mechanism of cardiomyocyte activity 2
In phase 2 ("plateau"), prolonged depolarisation is maintained by
the influx of Ca²⁺ through I_{Ca+L} channels. Unlike I_{Na} or I_{Ca}+L
channel is gated both by voltage and recepto **Mechanism of cardiomyocyte activity 2**
th phase 2 ("plateau"), prolonged depolarisation is maintained by
the influx of Ca²⁺ through I_{Ca-L} channels. Unlike I_{Na} or I_{to}, I_{Ca-}
channel is gated both by voltage and r **Mechanism of cardiomyocyte activity 2**
In phase 2 ("plateau"), prolonged depolarisation is maintained by
the influx of Ca²⁺ through $I_{C_{a-L}}$ channels. Unlike I_{Na} or I_{to} , $I_{CA_{L}}$
channel is gated both by voltage **Mechanism of cardiomyocyte activity 2**
In phase 2 ("plateau"), prolonged depolarisation is maintained by
the influx of Ca^{2+} through I_{Ca+} channels. Unlike I_{Na} or I_{U} , I_{Ca+}
channel is gated both by voltage a Mechanism of cardiomyocyte activity 2

In phase 2 ("plateau"), prolonged depolarisation is maintained by

the influx of Ca²⁺ through $l_{C_{a+1}}$ channels. Unlike l_{N_a} or l_{l_0} , $l_{C_{a+1}}$

channel is gated both by **Mechanism of cardiomyocyte activity 2**

In phase 2 ("plateau"), prolonged depolarisation is maintained by

the influx of Ca²⁺ through $|_{C_{a+}}$ channels. Unlike $|_{N_a}$ or $|_{c_2}$, $|_{C_{a+}}$

responds to vegletative r **interaction.** Mechanism of cardiomyocyte activity 2

In phase 2 ("plateau"), prolonged depolarisation is maintained by

the influx of Ca²⁺ through I_{CA_L} channels. Unlike I_{Na} or I_{to} , I_{CA_L}

channel is gated bo Mechanism of cardiomyocyte activity 2

In phase 2 ("plateau"), prolonged depolarisation is maintained by

the influx of Ca²⁺ through $l_{c_{2+}}$ channels. Unlike l_{Na} or l_{to} , $l_{c_{2+}}$

channel is gated both by volta **Mechanism of cardiomyocyte activity 2**
In phase 2 ("plateau"), prolonged depolarisation is maintained by
the influx of Ca²⁺ through I_{C_8L} channels. Unlike I_{N_8} or I_{U_8} , I_{C_8L}
channel is gated both by vo **Example 2**
 Solutify 2
 $\frac{1}{2}$ or I_{to} , $I_{\text{Ca-1}}$

achanism, that
 2^+ binds to

are it enhances the

an binds troponin

ing the actin-myosin

is in other types of

an.

lowers the voltage

stole (phase 3)
 Mechanism of cardiomyocyte activity 2

In phase 2 ("plateau"), prolonged depolarisation is maintained by

the influx of Ca²⁺ through $I_{C_{p+L}}$ channels. Unlike I_{Na} or I_{U_0} , $I_{C_{a+L}}$

channel is gated both b In phase 2 ("plateau"), prolonged depolarisation is maintained by
the influx of Ca²⁺ through $I_{C_{\text{a}-L}}$ channels. Unlike I_{Na} or I_{to} , $I_{C_{\text{a}-L}}$
channel is gated both by voltage and receptor mechanism, In phase 2 ("plateau"), prolonged depolarisation is maintained by
the influx of Ca²⁺ through $l_{c_{2+}}$ channels. Unlike l_{N_0} or l_{c_0} , $l_{c_{\alpha+}}$
channel is gated both by voltage and receptor mechanism, that
resp naintained by

ir I_{to}, I_{Ca-L}

ianism, that

binds to

it enhances the

binds troponin

the actin-myosin

other types of

vers the voltage

le (phase 3)

tside the cell in

ions return

cchanger. Ca²⁺

art muscle gets the influx of Ca²⁺ through $I_{C_{aL}}$ channels. Unlike I_{Na} or I_{t_0} , $I_{C_{aL}}$
channel is gated both by voltage and receptor mechanism, that
responds to vegetative nervous signalisation. Ca²⁺ binds to
ryanodin r channel is gated both by voltage and receptor mechanism, that
responds to vegetative nervous signalisation. Ca²⁺ thinds to
ryanodin receptor of sarcoplasmic reticulum, where it enhances the
release of more Ca²⁺ into t

is also pumped into sarcoplasmic reticulum. The heart muscle gets
to diastole

Pacemaker cells

- **Pacemaker Cells**

In pacemaker cells, sympathicus- and parasympathicus-

controlled sodium, potassium and calcium channels remain

open during the diastole, leading into continual loss of

negative voltage up to -65mV, wh controlled sodium, potassium and calcium channels remain open during the diastole, leading into continual loss of negative voltage up to -65mV, when fast depolarisation begins.
- **Pacemaker cells are present in SA node, AV node and** Purkinje fibres

Slow cells

Slow cells
Slow cells do not contain fast sodium channels, their depolarisation is
then mediated by Ca2+. The Ca2+ ion channels are influenced by the
Sympathicus and the parasympathicus.
Notike in healthy fast cells, the a Slow cells
Slow cells do not contain fast sodium channels, their depolarisation is
then mediated by Ca2+. The Ca2+ ion channels are influenced by the
sympathicus and the parasympathicus.
• Unlike in healthy fast cells, the $\begin{array}{c} \textsf{S} \textsf{low} \text{ cells} \\ \textsf{S} \textsf{low} \text{ cells do not contain fast sodium channels, their depolarisation is} \\ \textsf{then mediated by Ca2+. The Ca2+ ion channels are influenced by the sympatnicus and the parasympatnicus. \end{array} \textbf{S} \textsf{with fast cells, the amplitude of action potentials decreases during consequent depolarization of the slow cells population (decrement) \\ \textsf{upulation (decrement)} \\ \textsf{Under some circumstances (e.g., repeated stimulation in a short time). \end{array}$ Slow Cells
we cells do not contain fast sodium channels, their depolarisation is
in mediated by Ca2+. The Ca2+ ion channels are influenced by the
papthicus and the parasympathicus.
Unlike in healthy fast cells, the amplitu **Slow cells**

Slow cells do not contain fast sodium channels, their depolarisation is

then mediated by Ca2+. The Ca2+ ion channels are influenced by the

sympathicus and the parasympathicus.
 \blacksquare Lulike in healthy fas **Slow cells**

we cells do not contain fast sodium channels, their depolarisation is

in mediated by Ca2+. The Ca2+ ion channels are influenced by the

upathicus and the parasympathicus.

Unlike in healthy fast cells, the

-
-

Normal conduction within the heart

Sinoatrial (SA) node

- Group of pacemaker cells located in the right atrium
- **Under normal circumstances it serves as primary**
- Sinoatrial (SA) node
Group of pacemaker cells located in the right at
Under normal circumstances it serves as <u>prima
pacemaker</u> of the heart
It spontaneously generates electrical impulses
rate of 60-90/min **If it spontaneously generates electrical impulses at a** rate of 60-90/min
- **The SA node is richly** innervated by both sympaticus Sinoatrial nodeand parasympaticus, which **Atrioventricular** modify the SA node rate and node node node thus heart frequency

Atrial conduction system

- Atrial conduction system
Bachmann's bundle conducts action potentials
to the left atrium
Internodal tracts (anterior, middle and posterior) to the left atrium
- **I** Internodal tracts (anterior, middle and posterior) $$ run from SA node to AV node, converging near the coronary sinus. Atrial automacity foci are present within the atrial conduction system

Atrioventricular (AV) node

- **Area of specialized tissue located between atria and ventricles,** near the coronary sinus and tricuspid valve. It serves as secondary pacemaker and is the only way of electric connection between the atria and the ventricles under normal circumstances.
- **AV** node consists of 3 zones: AN (atria-nodus), N (nodus) and NH (nodus-His).
- I In AN zone, the conduction gets slower, as there is less sodium channels and slower depolarisation
- N zone is formed by nodal cells with low voltage (-50mV) "slow cells". In NH zone, the nuber of sodium $\bar{}$ channels increase again. The cells of NH zone can take over the function of pacemaker, in the case if no signal from \bigcap_{bundle} upper parts of the conduction system is His bundle present. Its rate is slower than that note rise of SA node: 40-60/min bundle **Purkinje Right bundle**

fibres

Bundle of His

- **Part of cardiac tissue specialized for fast electrical** conduction that leads the signal from AV-node to working myocardium of the ventricles.
- **After its short course, the Bundle of His branches ito** right and left bundle branch (Tawara branches). Right bundle branch is long and thin, thus more vulnerable than the left one
- **Left bundle branch is then** divided into the left **Singatrial node** anterior and left posterior **Atrioventricular** fascicle

Purkinje fibres

- п
- **Purkinje fibres**
Terminal part of the conduction system
Tertiary pacemaker idioventricular rhythm (20-40/min), without
innervation **Purkinje fibres**
Terminal part of the conduction system
Tertiary pacemaker – idioventricular rhythm (20-40/min), without
innervation п innervation

Jan Evangelista Purkyně (1787-1869), Right bundle Czech physiologist

Recording of action potentials

- Action potentials in various parts of the heart can be registered using electrodes п
- Besides the electrodes and a recorder, signal amplifier is also a part of the device п
- For Form of action potentials
Action potentials in various parts of the heart can be registered using electrodes
Besides the electrodes and a recorder, signal amplifier is also a part of the device
For recording the ECG cu . used.
- Recording of action potentials
Action potentials in various parts of the heart can be registered using electrodes
Besides the electrodes and a recorder, signal amplifier is also a part of the device
For recording the ECG c to positively charged electrode Recording of action potentials
Action potentials in various parts of the heart can be registered using electrodes
Besides the electrodes and a recorder, signal amplifier is also a part of the device
For recording the ECG c
- line (= condition, when the potential at both electrodes is equal)

Leads

- **Leads**
• The direction of the deviation depends on the comparison of the electrode
pair (lead), to which a conventional direction is assigned (usually, it points
from right, up and back to left, down and forward), and rec **Leads**
The direction of the deviation depends on the comparison of the electrode
pair (lead), to which a conventional direction is assigned (usually, it points
from right, up and back to left, down and forward), and recor from right, up and back to left, down and forward), and recorded dipole moment vector **Leads**
• The direction of the deviation depends on the comparison of the electrod
pair (lead), to which a conventional direction is assigned (usually, it points
from right, up and back to left, down and forward), and reco • The direction of the deviation depends on the comparison of the electrode
pair (lead), to which a conventional direction is assigned (usually, it points
from right, up and back to left, down and forward), and recorded di • The direction of the deviation depends on the comparison of the electrode
pair (lead), to which a conventional direction is assigned (usually, it points
from right, up and back to left, down and forward), and recorded di
-
-
- depends on:
	- A) character of voltage change (depolarization or repolarization
	- B) direction of voltage change spreading (in comparison with a dipole moment vector)

12-lead ECG (uses 10 electrodes)
Electrode placement:
_{On the right arm, avoiding bony prominences.} 12-lead ECG (uses 10 electrodes)
Electrode placement:
RA: On the right arm, avoiding bony prominences.
LA: In the same location that RA was placed, but on the left arm this time.
RL: On the right leg, avoiding bony promine

Electrode placement:

RA: On the right arm, avoiding bony prominences.

LA: In the same location that RA was placed, but on the left arm this time.

LL: In the same location that RL was placed, but on the left leg this time.

V1: In the fourth intercostal space (between ribs 4 & 5) just to the right of the sternum (breastbone).

V2: In the *fourth* intercostal space (between ribs 4 & 5) just to the *left* of the sternum.

V3: Between leads V2 and V4.

V4: In the fifth intercostal space (between ribs 5 & 6) in the mid-clavicular line (the imaginary line that extends down from the midpoint of the clavicle (collarbone).

V5: Horizontally even with V4, but in the anterior axillary line. (The anterior axillary line is the imaginary line that runs down from the point midway between the middle of the clavicle and the lateral end of the clavicle; the lateral end of the collarbone is the end closer to the arm.)

V6: Horizontally even with V4 and V5 in the midaxillary line. (The midaxillary line is the imaginary line that extends down from the middle of the patient's armpit.)

12-lead ECG – electrode placement

Orientation of the leads

- **Crientation of th
Einthoven's leads
- A reference electrode is on one limb,
an active one on another**
-
- **Orientation of 1**
Einthoven's leads
- A reference electrode is on one limb,
an active one on another
Wilson's leads
- Reference electrode is constructed as
the Wilson's terminal, an active one is
- п
	- as a reference one

Electric potential changes – summation of vectors (ECG curve in the leads I, II, III)

Normal ECG curve

Description of ECG **Description of E**

heart rat

inus

- 60-90/min
- 60-90/min
- 60-100

- other
- computed by the set of the set of

- tachyca
- tachyca
- tachyca
- tachyc **Description of E**

mythm
nus

- normal
- 60-90/min
- other
- achyca
- 40-60/min
- 40-60/min
- 30-90/min
- 40-60/min
- 50-100/min
- 50-100

- **Description of E**

mythm
nus $-60-90/\text{min}$
 $-60-90/\text{min}$
 $-40-60/\text{min}$
 $-30-40/\text{min}$
 $-30-40/\text{min}$
 $-30-40/\text{min}$
 $-30-40/\text{min}$ Description of E

heart rat

inus

– 60-90/min

– other

– other

– 40-60/min

– 40-60/min

– 30-40/min

trial fibrilation

trial flutter • rhythm • atrial fibrilation
• sinus – 60-90/min • 60 – 100/m
– other • tachycardi
• junctional • >100/min – 40-60/min – 40-60/min – bradycardi
• idioventricular • <60/min – 30-40/min • atrial fibrilation
• atrial fibrila $\begin{array}{l} \mathsf{P} \ \mathsf$ n of ECG
• heart rate
– normal
• 60 – 100/min
– tachycardia n of ECG

• heart rate

– normal

• 60 – 100/min
– tachycardia
• >100/min n of ECG

• heart rate

– normal

• 60 – 100/min
– tachycardia
• >100/min
– bradycardia n of ECG

• heart rate

– normal

• 60 – 100/min

– tachycardia

• >100/min

– bradycardia

• <60/min

-
- sinus
	-
	-
- junctional
	-
- idioventricular
	-
-
-
-
- rhythm

 sinus

 60-90/min

 other

 junctional

 40-60/min

 junctional

 40-60/min

 dioventricular

 30-40/min

 atrial fibrilation

 atrial filutter

 ventricular tachycardia

 secription of waves and i • rhythm

• sinus $-60-90/\text{min}$ • fleat tate
 $-60-90/\text{min}$ • 60 – 100/min
 $-$ other

• junctional • >100/min

• 40-60/min

• idioventricular

• idioventricular

• 30-40/min

• atrial fibrilation

• atrial fibrilation

• • description of waves and intervals
- electrical axis of the heart
- rhythm heart rate
	-
	-
	-
	- >100/min
	-
	- <60/min

Normal Sinus Rhythm

Implies normal sequence of conduction, originating in the sinus node and proceeding to the ventricles via the AV node and His-Purkinje system.

ECG Characteristics: Regular narrow-complex rhythm Rate 60-100 bpm Each QRS complex is preceded by a P wave P wave is upright in lead II & downgoing in lead aVR

Normal 12-lead ECG

Arrhythmias:

- Flectrophysiological abnormalities arising from the
mpairment of the electric signal
urrhythmias are defined by exclusion i.e., any rhythm that is not
normal sinus rhythm is an arrhythmia
With respect to the
— <u>Frequency</u> Electrophysiological abnormalities arising from the
mpairment of the electric signal
urrhythmias are defined by exclusion - i.e., any rhythm that is no
normal sinus rhythm is an arrhythmia
With respect to the
— <u>Frequency</u> Fectrophysiological abnormalities arising from the
mpairment of the electric signal
wrhythmias are defined by exclusion - i.e., any rhythm that is not
normal sinus rhythm is an arrhythmia
With respect to the
— <u>Frequency</u> Electrophysiological abnormalities arising from the п impairment of the electric signal
- n. a normal sinus rhythm is an arrhythmia
- **Notainal With respect to the**
	-
	-
	-

Possible causes of arrhytmia Myocardial ischaemia, hypoxia and reperfusion, pH disorders
Disorders of myocardium — hypertrophy, dilatation, amyloidosis, scar after acute myocardium — hypertrophy, dilatation, amyloidosis, scar after acute myoca Possible causes of arrhytmia
Myocardial ischaemia, hypoxia and reperfusion, pH disorders
Disorders of myocardium – hypertrophy, dilatation, amyloidosis, scar after acute myocardial infarction
Aberrat conduction – pro excit **POSSible Causes of Ally**
Myocardial ischaemia, hypoxia and reperfusion, pH disorders
Disorders of myocardium – hypertrophy, dilatation, amyloidosis, sc
Inflammation (myocarditis)
Aberrant conduction – pre-excitation syndr **POSSible causes of arrhytmia**
Myocardial ischaemia, hypoxia and reperfusion, pH disorders
Disorders of myocardium – hypertrophy, dilatation, amyloidosis, scar after acute myocardi
Inflammation (myocarditis)
Aberrant condu **POSSible causes of arrhytmia**
Myocardial ischaemia, hypoxia and reperfusion, pH disorders
Disorders of myocardium – hypertrophy, dilatation, amyloidosis, scar after acute myocardial infarction
Inflammation (myocarditis)
A **POSSible Causes OF**
Myocardial ischaemia, hypoxia and reperfusion, pH disorders
Disorders of myocardium – hypertrophy, dilatation, amyloidosis, st
Inflammation (myocarditis)
Aberrant conduction – pre-excitation syndromes
 POSSIDIE CAUSES
Myocardial ischaemia, hypoxia and reperfusion, pH disorder
Disorders of myocardium – hypertrophy, dilatation, amyloidd
Inflammation (myocarditis)
Aberrant conduction – pre-excitation syndromes
Vegetative

- п
- Myocardial ischaemia, hypoxia and reperfusion, pH disorders
Disorders of myocardium hypertrophy, dilatation, amyloidosis, sca
Inflammation (myocarditis)
Aberrant conduction pre-excitation syndromes
Vegetative nervous s Disorders of myocardium – hypertrophy, dilatation, amyloidosis, scar after acute m

Inflammation (myocarditis)

Aberrant conduction – pre-excitation syndromes

Vegetative nervous system disorder (nervous lability, compens п
- п
- п
- п
- п
- п
- п
- п

Brady- and tachyarrhythmias:
Brady- and tachyarrhythmias: rady- and tachyarrhyt

radyarrhythmias

- SA block
- sick-sinus syndrome
- AV block
Chyarrhythmias **rady- and tachyarrh**
 radyarrhythmias

Fadyarrhythmias

Fad block

Fall block

Fall block

Fall block
 All block rady- and tachyarrh
rady- and tachyarrh
adyarrhythmias
- sa block
- sick-sinus syndrome
achyarrhythmias
supraventricular (SV) adyarrhythmias

SA block

SA block

SICK-sinus syndrome

AV block

Chyarrhythmias

upraventricular (SV)

- SV premature beat – atrial, junction

- AV node re-entry tachycardia (AVNRT)
- AV re-entry tachycardia (WOIf-Parkin

1. Bradyarrhythmias

-
-
-

2. Tachyarrhythmias

- a) Supraventricular (SV)
	-
	-
	-
	-

b) Ventricular

п

- -
	-

Mechanism of Arrhythmia

- 1. Pacemaker activity disorder (enhanced, depressed, ectopic)
- 2. Re-entry
- 3. Triggered activity

(early afterdepolarisations, delayed afterdepolarisations)

4. Conduct block

Recognizing altered automaticity on ECG

Gradual onset and termination of the arrhythmia.

The P wave of the first beat of the arrhythmia is typically the same as the remaining beats of the arrhythmia (if a P wave is present at all).

Mechanism of Re-entry

-
-
-
-
-
-

Mechanism of Re-entry 2

- **Prior to re-entry formation, new electric impulse is required**
immediately after the preceding one (e.g. ectopic pacemaker)
- \blacksquare Only the α pathway is depolarized, β is in the refractory period
- If the conduction through α pathway is slow, the signal gets to the second "crossroads" just after the cells of β pathway are ready for a new depolarisation
- Signal might then return through the β pathway (backwards). A re-
entry circuit is formed which depolarizes the surrounding tissue a Prior to re-entry formation, new electric impulse is required
immediately after the preceding one (e.g. ectopic pacemaker)
Only the α pathway is depolarized, β is in the refractory period
If the conduction through high-frequency ectopic focus is formed
- **Signal in the re-entry circuit goes down through the slow pathway (!)**
Recognizing reentry on ECG

Abrupt onset and termination of the arrhythmia.

The P wave of the first beat of the arrhythmia is Recognizing reentry on ECG
or and termination of the arrhythmia.
The P wave of the first beat of the arrhythmia is
different from the remaining beats of the
arrhythmia (if a P wave is present at all). arrhythmia (if a P wave is present at all).

Reentrant Rhythms

AV nodal reentrant tachycardia (AVNRT) **AV reentrant tachycardia (AVRT)** Reentrant
AV nodal reentrant tachycard
AV reentrant tachycardia (A)
– Orthodromic
– Antidromic Reentrant
AV nodal reentrant tachycard
AV reentrant tachycardia (AV
– Orthodromic
– Antidromic
Atrial flutter **Atrial flutter Atrial fibrillation N** Ventricular tachycardia

Triggered activity
on (EAD)

- Early afterdepolarization (EAD) п
- Triggered activity

Early afterdepolarization (EAD)

Under certain circumstances, the action potential can be much longer than absolute

refractory period (usually factors lengthening the phase 3 hypokalemia, genetic

Su Triggered activity
Early afterdepolarization (EAD)
Under certain circumstances, the action potential can be much longer than absolute
refractory period (usually factors lengthening the phase 3 – hypokalemia, genetic
causes п causes, some drugs) \rightarrow long QT
- Such cells can be easily depolarized by local currents
- Their depolarization then induce the depolarization wave in the whole myocardiumп

Delayed afterdepolarization (DAD)

 Delayed afterdepolarization (DAD)
 Delayed afterdepolarization (DAD)

- **Example 2014**
 Example 2014

Whenever there is high level of

Ca²⁺ in the cytoplasm, ryanodin

receptors might be activated,

which leads into spilling of Ca²⁺ Ca2+ in the cytoplasm, ryanodin receptors might be activated, which leads into spilling of Ca²⁺ ions from sarcoplasmic reticulum into the cytoplasm Carry (DAD)

Whenever there is high level of

Ca²⁺ in the cytoplasm, ryanodin

receptors might be activated,

which leads into spilling of Ca²⁺

ions from sarcoplasmic

reticulum into the cytoplasm

The Ca²⁺ ions ar **Example 10:**
 Example 10:

Whenever there is high level of

Ca²⁺ in the cytoplasm, ryanodin

receptors might be activated,

which leads into spilling of Ca²⁺

ions from sarcoplasmic

reticulum into the cytoplasm

T Cation (DAD)

Whenever there is high level of

Ca²⁺ in the cytoplasm, ryanodin

receptors might be activated,

which leads into spilling of Ca²⁺

ions from sarcoplasmic

reticulum into the cytoplasm

The Ca²⁺ ions a Cation (DAD)

Whenever there is high level of

Ca²⁺ in the cytoplasm, ryanodin

receptors might be activated,

which leads into spilling of Ca²⁺

ions from sarcoplasmic

reticulum into the cytoplasm

The Ca²⁺ ions a Whenever there is high level of
Ca²⁺ in the cytoplasm, ryanodin
receptors might be activated,
which leads into spilling of Ca²⁺
ions from sarcoplasmic
reticulum into the cytoplasm
The Ca²⁺ ions are then
exchanged fo Wrienever trefe is high-rever of
Ca²⁺ in the cytoplasm, ryanodin
receptors might be activated,
which leads into spilling of Ca²⁺
ions from sarcoplasmic
reticulum into the cytoplasm
The Ca²⁺ ions are then
exchanged f Fis ingit level of
plasm, ryanodin
be activated,
p spilling of Ca²⁺
plasmic
ne cytoplasm
re then
Na⁺ via their
ratio 1:3 (positive
ower membrane
can result in the
channels and
tion
- exchanged for Na⁺ via their
- П voltage, which can result in the new depolarization

Sinus bradycardia

HR< 60 bpm; every QRS narrow, preceded by p wave **Can be normal in well-conditioned athletes** sleep, with up to 2 sec pauses

Sinus arrhythmia

- Usually respiratory--Increase in heart rate during inspiration п
- Exaggerated in children, young adults and athletes—decreases with age п
- Usually asymptomatic, no treatment or referral п
- Can be non-respiratory, often in normal or diseased heart, seen in digitalis toxicity п
- Referral may be necessary if not clearly respiratory, history of heart diseaseп

SA arrest with compensatory AV activity

Increased/Abnormal Automaticity

Calcide Automaticity
 Sinus tachycardia (normal sequence and shape

of P and QRS)

• stress reaction, fever, physical effort,

byparthyreoidism, reaction to hypotension nal Automaticity
Sinus tachycardia (normal sequence and shape
of P and QRS)
• stress reaction, fever, physical effort,
hyperthyreoidism, reaction to hypotension **hal Automaticity**
• sinus tachycardia (normal sequence and shape
of P and QRS)
• stress reaction, fever, physical effort,
• hyperthyreoidism, reaction to hypotension **is and Automaticity**
Al **Automaticity**
Pand QRS)
Pand QRS)
stress reaction, fever, physical effort,
hyperthyreoidism, reaction to hypotension
opic atrial tachycardia (P wave is bizzare) **Calculary Automaticity**

Figures at a strategy

Sinus tachycardia (normal sequence and shape

of P and QRS)

• stress reaction, fever, physical effort,

hyperthyreoidism, reaction to hypotension

Ectopic atrial tachycardi

Sinus tachycardia (normal sequence and shape
of P and QRS)
• stress reaction, fever, physical effort,
hyperthyreoidism, reaction to hypotension
Ectopic atrial tachycardia (P wave is bizzare)
Junctional tachycardia (P wave QRS, or is hidden behind it, or goes immediately before QRS and is bizzare)

www.uptodate.com

Sick Sinus Syndrome
Sick Sinus Syndrome
SA node in older age (fibrosis) or following ischemia Sick Sinus Syndrom

Sick Sinus Syndrom

d function of SA node in older age (fibrosis) or

causes: amyloidosis, hypothyreoidism, hypothe

ests by alternating types of arrhythmia:

- Sinus bradycardia

- Wandering pacemaker

- **Sick Sinus Syndrome**
Altered function of SA node in older age (fibrosis) or following ischemia
Other causes: amyloidosis, hypothyreoidism, hypothermia, medication
Manifests by alternating types of arrhythmia: Sick Sinus Syndrome
Altered function of SA node in older age (fibrosis) or following ischemia
Other causes: amyloidosis, hypothyreoidism, hypothermia, medication
Manifests by alternating types of arrhythmia:
- Sinus bradyc Sick Sinus Syndrome
Altered function of SA node in older age (fibrosis) or following ischen
Other causes: amyloidosis, hypothyreoidism, hypothermia, medicatio
Manifests by alternating types of arrhythmia:
- Sinus bradycard Sick Sinus Syl
d function of SA node in older age (f
causes: amyloidosis, hypothyreoidis
ests by alternating types of arrhythm
- Sinus bradycardia
- Wandering pacemaker (ectopic atrial foci)
- SA arrest or SA block Sick Sinus Syndrome
d function of SA node in older age (fibrosis) or following ischemia
causes: amyloidosis, hypothyreoidism, hypothermia, medication
ests by alternating types of arrhythmia:
- Sinus bradycardia
- Wandering Sick Sinus Syndrome
d function of SA node in older age (fibrosis) or following ischer
causes: amyloidosis, hypothyreoidism, hypothermia, medicatio
ests by alternating types of arrhythmia:
- Sinus bradycardia
- Wandering pa
- п
- п
	-
	-
	-
	-

Supraventricular premature beats Supraventricular premature beats
(supraventricular extrasystoles)
complexes.
mature atial contrations Supraventricular pro

Supraventricular e

(supraventricular e

Narrow QRS complexes.

In case of premature atrial contractions

(PAC), the origin is an ectopic focus in Supraventricular premature t

(supraventricular extrasysto

Narrow QRS complexes.

In case of premature atrial contractions

(PAC), the origin is an ectopic focus in

the atria. The QRS is preceded by a

Learre P wave Supraventricular premature beats

(supraventricular extrasystoles)

Narrow QRS complexes.

In case of premature atrial contractions

the atria. The ORS is preceded by a

bizarre P wave

In case of premature junctional Supraventricular premature bear

(supraventricular extrasystoles)

Narrow QRS complexes.

In case of premature atrial contractions

(PAC), the origin is an ectopic focus in

bizarre P wave

In case of premature junctional
 **Supraventricular pr

(supraventricular expansion (Supraventricular expansion of the anim case of premature atrial contractions

(PAC), the origin is an ectopic focus in

the atria. The QRS is preceded by a

bizarre P wave** Supraventricular prematur

(supraventricular extrasy:

Narrow QRS complexes.

In case of premature atrial contractions

(PAC), the origin is an ectopic focus in

the atria. The QRS is preceded by a

bizarre P wave

contrac Supraventricular premature be

(supraventricular extrasystole

Marrow QRS complexes.

In case of premature atrial contractions

(PAC), the origin is an ectopic focus in

the atria. The QRS is preceded by a

bizarre P wave
 **Supraventricular premature is (Supraventricular extrasystic

(Supraventricular extrasystic

In case of premature atrial contractions

(PAC), the origin is an ectopic focus in

the atria. The QRS is preceded by a

bizarre** Supraventricular premature |

(supraventricular extrasysto

In case of premature atrial contractions

(PAC), the origin is an ectopic focus in

the atria. The QRS is preceded by a

bizarre P wave

In case of premature junc **ENTRETT CUTTS CONTRETT CUTTS (SUPPROPERT)**

Narrow QRS complexes.

In case of premature atrial contractions

(PAC), the origin is an ectopic focus in

the atria. The QRS is preceded by a

bizarre P wave

In case of premat

п

- (**SUPRAVENTICULAR EXTASYSTOLE:**

Narrow QRS complexes.

In case of premature artial contractions

(PAC), the origin is an ectopic focus in

the atria. The QRS is preceded by a

bizarre P wave

ontraction (PJC), P wave is (SUPTAVenTITICUIAT EXTTASYSTOIE

Narrow QRS complexes.

In case of premature atrial contractions

(PAC), the origin is an ecclopic focus in

the atria. The QRS is preceded by a

bizarre P wave

In case of premature juncti
-
-
- п people

-
-

Atrial Flutter

www.spencerknoxmd.com

Flutter waves have constant amplitude, duration, and morphology through the cardiac cycle There is usually either a 2:1 or 4:1 block at the AV node (thanks to its decrement), resulting in **4:1 block**
www.spencerknoxmd.com
re caused by a large re-entrant circuit in the wall of the right atrium (,typical
3iphasic "sawtooth" flutter waves at a rate of ~ 300 bpm
Flutter waves have constant amplitude, duration, rhythm (1:1 AV conduction \rightarrow circulatory failure)

Unmasking of Flutter Waves

Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, 7th ed., 2005.

In the presence of 2:1 AV block, the flutter waves may not be immediately apparent. These can be brought out by administration of adenosine (increases the K+ efflux, which leads into hyperpolarization and disabling the AV node depolarization).

Atrial fibrillation is caused by numerous wavelets of depolarization spreading throughout the atria simultaneously, leading to an absence of coordinated atrial contraction.

Mild tachycardia usually < 150 bpm, when controlled by rate-slowing treatment, it may oscillate

This kind of rhythm is present in up to 5% of adult population, mostly in older age. It is often connected with other diseases of the heart (ischaemic haert disease, heart failure, valvular disease.

Atrial Fibrillation

AV nodal re-entry tachycardia (AVNRT)

AV nodal re-entry tachycardia (*I*
• Most common regular supraventricular
tachyarytmia, indistinguishable from escaped
junctional rhythm (enhanced AV automaticity), AV nodal re-entry tachycardia (AVNRT)

Most common regular supraventricular

tachyarytmia, indistinguishable from escaped

junctional rhythm (enhanced AV automaticity),

AVNRT has usually higher heart rate (>140/min). AV nodal re-entry tachycardia (AVI
• Most common regular supraventricular
tachyarytmia, indistinguishable from escaped
junctional rhythm (enhanced AV automaticity),
AVNRT has usually higher heart rate (>140/min).
• AVNRT i AV nodal re-entry tachycardia (AVNRT)
• Most common regular supraventricular
tachyarytmia, indistinguishable from escaped
junctional rhythm (enhanced AV automaticity),
AVNRT has usually higher heart rate (>140/min).
• AVNR AV nodal re-entry tachycardia (AVNRT)
• Most common regular supraventricular
tachyarytmia, indistinguishable from escaped
junctional rhythm (enhanced AV automaticity),
AVNRT has usually higher heart rate (>140/min).
• AVNR AV nodal re-entry tachycardia

• Most common regular supraventricular

tachyarytmia, indistinguishable from escaped

junctional rhythm (enhanced AV automaticity),

AVNRT has usually higher heart rate (>140/min).
• AVNRT is

Mechanism of AVNRT

AV re-entry tachycardia (AVRT)
try between AV node and an accessory pathway AV re-entry tachycardia (AVRT)
Re-entry between AV node and an accessory pathway
There are several type of accessory pathway
Kent: adjacent atrial and ventricular AV re-entry tachycardia (AVRT)

Re-entry between AV node and an accessory pathway

There are several type of accessory pathway

1. Kent: adjacent atrial and ventricular

2. Mahaim: adjacent lower part of the AVN and ventri AV re-entry tachycardia (AVRT)
Re-entry between AV node and an accessory pathway
There are several type of accessory pathway
Kent: adjacent atrial and ventricular
Mahaim: adjacent lower part of the AVN and ventricular (wi

-
- There are several type of accessory pathway
- 1. Kent: adjacent atrial and ventricular
-
- Usually no structure heart disease, occur in any age individual
-

AV re-entry tachycardia (AVRT)
o<u>rthodromic</u> (i.e. antegrade conduction through AV node – more often): δ-wave
g the steady state but disappears during the arrhythmia; or <u>antidromic</u> (i.e. - AVRT can be <u>orthodromic</u> (i.e. antegrade conduction through AV node – more often): δ-wave appears during the steady state but disappears during the arrhythmia; or <u>antidromic</u> (i.e. antegrade conduction through accesso AV re-entry tachycardia (AVRT)
AVRT can be <u>orthodromic</u> (i.e. antegrade conduction through AV node – more often): δ-wave
appears during the steady state but disappears during the arrhythmia; or <u>antidromic</u> (i.e.
antegrad **AV re-entry tachycardia (AVRT)**
AVRT can be <u>orthodromic</u> (i.e. antegrade conduction through AV node – more often): δ-wave
appears during the steady state but disappears during the arhythmia; or <u>antidromic</u> (i.e.
antegr

Wolff-Parkinson-White Syndrome (WPW) is a condition in which the heart beats too fast due to abnormal, extra electrical pathway between the heart's Free the during the arhythmia
The arhythmia
Ather Syndrome (WPW) is a
condition in which the heart
beats too fast due to
abnormal, extra electrical
pathway between the heart's
atrium and ventricle – bundle
of Kent (ortho Wolff-Parkinson-White
Syndrome (WPW) is a
condition in which the heart
beats too fast due to
abnormal, extra electrical
pathway between the heart's
atrium and ventricle – bundle
of Kent (orthodromic AVRT).

Atrioventricular Block

AV block is a delay or failure in transmission of the cardiac impulse from atrium to ventricle. Atrioventricular Block
AV block is a delay or failure in
transmission of the cardiac impulse
from atrium to ventricle.
Three degrees:
–1) all the depolarization waves are
transmitted to ventricles, but with a delay
–2) som **ATTIOVENTICUIAT BIOCK**

V block is a delay or failure in

ansmission of the cardiac impulse

but a delay or failure in

the degrees:

1) all the depolarization waves are

transmitted to ventricles, but with a delay

2) so – 2) some signals and the cardiac impulse
Fransmission of the cardiac impulse
From atrium to ventricle.
Three degrees:
– 1) all the depolarization waves are
transmitted to ventricles, but with a delay
– 2) some signals are

1 st Degree AV Block

The Alan E. Lindsay ECG Learning Center ; http://medstat.med.utah.edu/kw/ecg/

is constant All P waves are conducted

r
|
Mobitz 1
|enckebach)
| (Wenckebach)

As the PR interval prolongs, the RR interval actually shortens

Usually caused by vegetative dysbalance

Mobitz 2 (Hay; or only Mobitz)

ECG Characteristics: Constant PR interval with intermittent failure to conduct

Usually caused by structural disease

3 rd Degree (Complete) AV Block

Relatively constant PP intervals and RR intervals Greater number of P waves than QRS complexes

QRS complexes are usually narrow with HR 40-60 bpm (junctional rhythm). When the pacemaker cells in NH zone are destroyed, there might be idioventricular rhythm with wide QRS and HR 20-40 bpm

Intraventricular Block **Intraventricular Block
(Bundle Branch Block, BBB)**
Fanch block, RBBB (complete, Complete, Complete, Complete, Complete, Complete, Consequent
Conserver bradycardia in trifascicular block Intraventricular B

Right bundle branch block, RBBB (complete,

Left bundle branch block, RBBB (complete,

Left bundle branch block, LBBB (complete)

Left bundle branch block, LBBB (complete)

Left bundle branch block, LBB **Intraventricular E

(Bundle Branch Blo**

Right bundle branch block, RBBB (complete, complete, severe branch

Left bundle branch block, LBBB (complete)

Left bundle branch block, LBBB (complete)

Left bundle branch block, Intraventricular Block,
 (Bundle Branch Block, B

Right bundle branch block, RBBB (complete,

Left bundle branch block, LBBB (complete)

Left bundle branch block, LBBB (complete)

Incomplete LBBB: left anterior hemiblock Intraventricular Block

(Bundle Branch Block, B

Right bundle branch block, RBBB (complete,

Left bundle branch block, LBBB (complete)

Left bundle branch block, LBBB (complete)

Incomplete LBBB: left anterior hemiblock

(**Intraventricular (Bundle Branch Enginement (Bundle Branch Enginement)**

Incomplete)

Left bundle branch block, LBBB (complete, Complete, Complete)

Left bundle branch block, LBBB (complete)

Incomplete LBBB: left anterior **Cular Block
h Block, BBB)
• Usually asymptomatic
• Severe bradycardia in trifascicular block
• Risk of re-entry (Bundle Branch Re-entry
Tachvcardia) Cular Block

h Block, BBB)

• Usually asymptomatic

• Severe bradycardia in trifascicular block

• Risk of re-entry (Bundle Branch Re-entry

• Tachycardia)
• Asynchrony of the ventricles (may worsen Cular Block

h Block, BBB)**

• Usually asymptomatic

• Severe bradycardia in trifascicular block

• Risk of re-entry (Bundle Branch Re-entry

Tachycardia)

• Asynchrony of the ventricles (may worsen

hemodynamic compromis

- incomplete)
-
-
- п

-
- Tachycardia)
- **Cular Block**
 h Block, BBB)

 Usually asymptomatic

 Severe bradycardia in trifascicular block

 Risk of re-entry (Bundle Branch Re-entry

Tachycardia)

 Asynchrony of the ventricles (may worsen

hemodynamic compro hemodynamic compromise in heart failure) – may be treated by biventricular pacemaker implantation

Intraventricular block - ECG
Intraventricular block - ECG
[:] QRS (iRBBB, LPH, LAH: 100-120 ms; RBBB,

- Intraventricular block EC
Widening of QRS (iRBBB, LPH, LAH: 100-120 ms; RBBB,
LBBB: ≥120 ms)
In complete left- or right bundle block, there are also LBBB: ≥120 ms)
- Intraventricular block ECG
Widening of QRS (IRBBB, LPH, LAH: 100-120 ms; RBBB,
LBBB: ≥120 ms)
In complete left- or right bundle block, there are also
changes in plateau and repolarization synchronization,
LBBB)
LBBB) Intraventricular block - ECG
Widening of QRS (IRBBB, LPH, LAH: 100-120 ms; RBBB,
LBBB: ≥120 ms)
In complete left- or right bundle block, there are also
changes in plateau and repolarization synchronization,
LBBB)
LBBB, mos INTRIVENTICUIAT DIOCK - ECG
Widening of QRS (iRBBB, LPH, LAH: 100-120 ms; RBBB,
LBBB: ≥120 ms)
In complete left- or right bundle block, there are also
changes in plateau and repolarization synchronization,
LaBBB)
In RBBB LBBB) In traventricular block - ECG

Widening of QRS (iRBBB, LPH, LAH: 100-120 ms; RBBB,

LBBB: ≥120 ms)

In complete left- or right bundle block, there are also

changes in plateau and repolarization synchronization,

Leading **Intraventricular block - ECG**

Widening of QRS (IRBBB, LPH, LAH: 100-120 ms; RBBB,

LBBB: ≥120 ms)

changes in plateau and repolarization synchronization,

leading into changes of ST segment and T wave (esp.

LBBB)

In R **Intraventricular b**
Widening of QRS (iRBBB, LPH, LAH: 100-120 m
LBBB: ≥120 ms)
In complete left- or right bundle block, there are a
changes in plateau and repolarization synchroniz
leading into changes of ST segment and ITEL COVICT MOCHAT MOOT MET COVICT MET COVICT MET COVICT MUST AND MONDERN MORE CONTROLL AND A USBED ASSESS.

IN COMPRESSION IN COMPRESSION IN CONTROLL AND THE ART OF THE CONTROLL AND CONTROLL AND INTERNATIONAL DEVICE CONTR Widening of QRS (iRBBB, LPH, LAH: 100-120 ms; RBBB,

LBBB: ≥120 ms)

In complete left- or right bundle block, there are also

changes in plateau and repolarization synchronization,

LBBB)

LBBB, most striking changes are Widening of QRS (iRBBB, LPH, LAH: 100-120 ms; RBBB,

LBBB: ≥120 ms)

In complete left- or right bundle block, there are also

changes in plateau and repolarization synchronization,

leading into changes of ST segment and LBBB: \geq 120 ms)

In complete left- or right bundle block, there are also

changes in plateau and repolarization synchronization,

leading into changes of ST segment and T wave (esp.

LBBB)

ID RBBB, most striking chang
-
-
- rhythm)

Ventricular Premature contractions (VPC)
Ventricular Premature contractions (VPC)
[:]icular extrasystoles (VES)

Ventricular Premature contractions (VPC)
Syn. ventricular extrasystoles (VES)
Is caused by either reentrant signaling or enhanced automaticity i
ectopic focus or by triggered activity Ventricular Premature contractions (VPC)
Syn. ventricular extrasystoles (VES)
Is caused by either reentrant signaling or enhanced automaticity in some
ectopic focus or by triggered activity Ventricular Premature contractions (VPC
Syn. ventricular extrasystoles (VES)
Is caused by either reentrant signaling or enhanced automaticity
ectopic focus or by triggered activity

vertificular Premature Contractions (VPC)
Syn. ventricular extrasystoles (VES)
Is caused by either reentrant signaling or enhanced automaticity in some
ectopic focus or by triggered activity
The QRS complex is enlarged (>1 Syn. ventricular extrasystoles (VES)

Is caused by either reentrant signaling or enhanced automaticity in some

ectopic focus or by triggered activity

The QRS complex is enlarged (>120ms) and has different shape, it is
 Syn. ventricular extrasystoles (VES)
Is caused by either reentrant signaling or erectopic focus or by triggered activity
ectopic focus or by triggered activity
The QRS complex is enlarged (>120ms) are
accompanied by change

Coupling of VES

- п
- **Coupling of VES**
Isolated VES are usually benign
Premature ventricular beats occurring after every normal beat are te
bigeminy, if 2 normal QRS complexes are followed by VES, we spear **COUPLING OF VES**
Premature ventricular beats occurring after every normal beat are termed ventricular
Prigeminy, if 2 normal QRS complexes are followed by VES, we speak of ventricular
Prigeminy (caused by ectopic pacemake **beolated VES are usually benign
Bisolated VES are usually benign
Premature ventricular beats occurring after every normal beat are termed ventricular
bigeminy, if 2 normal QRS complexes are followed by VES, we speak of ve COUDLING OF VES**
Isolated VES are usually benign
Premature ventricular beats occurring after every normal beat are terme
bigeminy, if 2 normal QRS complexes are followed by VES, we speak of
trigeminy (caused by ectopic pa Solated VES are usually benign

Premature ventricular beats occurring after every normal beat are termed ventricular

bigeminy, if 2 normal QRS complexes are followed by VES, we speak of ventricular

trigeminy (caused by e remature ventricular beats occurring after every normal beat are termed ventricular
bigeminy, if 2 normal QRS complexes are followed by VES, we speak of ventricular
trigeminy (caused by ectopic pacemaker focus)
 $\begin{bmatrix} 1 &$ п

п

What is this arrhythmia? Monomorphic ventricular tachycardia

Monomorphic = fixed re-entry circuit

Monomorphic ventricular tachycardia is usually caused by re-entry, and most commonly

seen in patients following myocardial infarction.

Sometimes,

Monomorphic ventricular tachycardia

Monomorphic = fixed re-entry circuit

Monomorphic ventricular tachycardia is usually caused by re-entry, and most commonly seen in patients following myocardial infarction.

Sometimes, it is called "ventricular flutter"

circuits, or torsades de pointes

Ventricular or supraventricular?
Wentricular or supraventricular?
w QRS is typical for supraventricular arrhythmias (i.e. origin in

- **I** While narrow QRS is typical for supraventricular arrhythmias (i.e. origin in SA node, atria, AV node), wide QRS can be caused by ventricular arrhythmia -80% of cases, as well as by supraventricular arrhythmia combined with conduction block or by AVRT -20% of cases
- An older (non-arythmic) ECG of the same person might be checked, if available
- If we don't know, it is better to treat the arrhythmia as ventricular

Polymorphic ventricular tachycardia – torsades de pointes

"Nymorphic ventricular tachycardia — to"
"Twisting of the points"
"Twisting of the points"
activity)
activity) Intertional Colymorphic ventricular tachycardia – torsades de pointes
Interval – early afterdepolarization (triggered
Interval – early afterdepolarization (triggered
activity) activity)

"Twisting of the points"

Is connected with the long QT interval – early afterdepolarization (triggered

activity)

Unstable cardiomyocytes may be influenced by local currents that induce

new depolarization, while the for new depolarization, while the former activity)
activity)
Unstable cardiomyocytes may be influenced by local currents that induce
new depolarization, while the former action potential is still not finished (R-
on-T phenomen on-T phenomenon). Tachyarhythmia with unstable, rotating circuit may be
triggered
triggered
triggered
triggered triggered

Torsades de pointes - ECG
Torsades de pointes - ECG
the circuit leads into changing shape of QRS in a given lead

Torsades de pointes - ECG
The rotation of the circuit leads into changing shape of QRS in a given lead
Causes: hypokalemia, pharmacological/genetic block of K* or Na* channels Torsades de pointes - ECG
The rotation of the circuit leads into changing shape of QRS in a given lead
Causes: hypokalemia, pharmacological/genetic block of K⁺ or Na⁺ channels or Maria
Manadian Charles
National Channels
Cor National Channels П Causes: hypokalemia, pharmacological/genetic block of K⁺ or Na⁺ channels п

-
-
-
-
-

Defibrillation

- **Defibrillation**
• Electric action of the heart can be re-
coordinated by electric discharge (with the
• One electrode is put at upper sternum, the **Defibrillation**

Electric action of the heart can be re-

coordinated by electric discharge (with the

energy of 200 – 360 J).

• One electrode is put at upper sternum, the

other above the apex of the heart.

• If a defi
-
- **but the Conduct of School Defibrille**

• Electric action of the heart can be recoordinated by electric discharge (with the

energy of 200 – 360 J).

• One electrode is put at upper sternum, the

other above the apex of the heart.

• If a defibrill

At public places, automatized external defibrillators (AED) are available. They are capable of automatic analysis of cardiac electric activity in 10-20 sec, and performing discharge, when necessary

ICD

- **Patients at risk may** undergo the implant

Fatients at risk may

undergo the

implantntation of

defibrillator (ICD =

implantable cardioverterdefibrillator (ICD = implantable cardioverterdefibrillator).
- **The device will** automatically discharge during ventricular fibrillation
- **I**ICD is usually implanted below left clavicle

Cardiac stimulation (arteficial pacemaker - PM)
PMs are used in manifesting bradyarrhythmia

- Cardiac stimulation (arteficial pacer

PMs are used in manifesting bradyarrhythmia

(SA and AV blocks, trifascicular block; in tachy-

brady atrial fibrillation and sick sinus syndrom it

is used together with pharmacologi Cardiac stimulation (arteficial pacemy)
PMs are used in manifesting bradyarrhythmia
(SA and AV blocks, trifascicular block; in tachy-
brady atrial fibrillation and sick sinus syndrom it
is used together with pharmacologica **Cardiac stimulation (arteficial pacemylation)**
PMs are used in manifesting bradyarrhythmia
(SA and AV blocks, trifascicular block; in tachy-
brady atrial fibrillation and sick sinus syndrom it
is used together with pharma Cardiac stimulation (arteficion)

PMs are used in manifesting bradyarrhythmia

(SA and AV blocks, trifascicular block; in tachy-

brady atrial fibrillation and sick sinus syndrom it

is used together with pharmacological t
- п
- п
- п

ECG in cardiac stimulation
electrodes are installed in stimulated parts of the heart ECG in cardia
Fine stimulating electrodes are installe
- Atria
- Right ventricle
- Both ventricles (biventricular) – ECG in cardia
– Right ventricle
– Atria
– Right ventricle
– Both ventricles (biventricular)
– Sequential – atria + ventricles ECG in cardia

The stimulating electrodes are installed

- Atria

- Right ventricle

- Both ventricles (biventricular)

- Sequential – atria + ventricles

- Atrial triggered ventricular stimulation ECG in cardiac stim

The stimulating electrodes are installed in stimula

– Atria

– Right ventricle

– Both ventricles (biventricular)

– Sequential – atria + ventricles

– Atrial triggered ventricular stimulation

The wa

The stimulating electrodes are installed in stimulated parts of the heart П

-
-
-
-
-

ECG in cardiac stimulation

- Atria

- Atria

- Right ventricle

- Both ventricle

- Both ventricle

- Sequential – atria + ventricles

- Atrial triggered ventricular stimulation

- Atrial triggered ventricular stimulation ECG in cardiac stimulation
The stimulating electrodes are installed in stimulated parts of the heart
- Atria
- Right ventricle
- Both ventricles (biventricular)
- Sequential – atria + ventricles
- Atrial triggered ventricu ECG In cardiac Stimulation
The stimulating electrodes are installed in stimulated part
- Atria
- Right ventricle
- Both ventricle
- Sequential – atria + ventricles
- Atrial triggered ventricular stimulation
The waves on

ECG in cardiac stimulation - examples

NUNI MED

Thank you for your attention