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| Mathematics

fCHAPTER 7

Polygons After Euclid

- 13.1 What We Missed in Book IV

In Prop. IV. 16 Euclid constructs a regular 15-gon by superimposing
" an equilateral triangle on a regular pentagon (Fig. 13.1).

Implicit in this solution is a general principle: If we are able to
construct the regular r- and s-gon, and moreover, we know integers
x, y such that xr + ys = 1, then we can construct the rs-gon as well.
We need an arc of of the full circle and #, y as above:

1 _wrtys _ 1 1
y_x_+y_

TS Ys

. Hence this combination gives us the des1red_ arc. In the case of
the 15-gon we had

2 1 1

e T ———

5 3 15

. Since for any integers r, s with greatest common divisor
I 8ed(r,s) = 1, we can use the Euclidean algorithm (VIL.1,2) to find
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FIGURE 13.1

x, y with the desired properties, we are easily led to item (i} listed
below. This general formulation is, of course, modern. Euclid has
no reason to formulate the general pringiple (iii) because he needs
only the specific case he deals with. He generally refrains from hy-
pothetical statements like the one above: “If gcd(r,s) = 1, then .. .
if he does not have r, s with the desired property. '

13.2 - 'What Euclid Knew

With the above reservations we may say that BEuclid (in principle)
"knew” item (iii) below, and certainly he (or the pre-Euclidean
author of Book IV) knew the trivial observations (i) and (iv):

(i) Forall n > 1, the 2"-gon is constructible,
" (ii) The 3-and the 5-gons are constructible.

(iii) If the r~ and s-gons are constructible and ged(r, 8) = 1, then
the r - s-gon is constructible.

(iv) Ifthe n-gon is constructible and k divides n, then the k-gon is
constructible.

Given (i)-(iv), the problem for general n is reduced to prime
powers p' for odd primes p.
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FIGURE 13.2

13.3 Wh'a_t'-'Archimedes. Did

By a certain variant of the neusis procedure, Archimedes was able to
| construct the regular 7-gon. By the ordinary neusis, he could con-
i struct the 9~gon. In fact, this neusis shows how to trnsect an angle.
(Knorr (1986], 185).

t  Look at Fig, 13.2 and proceed by analysis and synthesis. Let the
 circle with center M and radius r and the line DEC with distance
t DE = r be given.

. Then we find, for the angles & and B, using 1.32 and 1.5:

 a={MDE+ ZMCD
= ZMD_E + /MEC
= /MDE + 2/MDE -
=38 '

Synthesis, Let angle @ < 90° be given. Mark distance XY = r on
~ the ruler and slide it into position such that X is on the (produced)
i line AB, Y ison the circle, and the (produced) line XY 'passes through
. C. The resulting angle g will be a.

1 Application: Trisect an angle a of 60° to find 8 = 20" With 2ﬁ at
 the center of a circle construct the regular 9-gon.
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13.4 What Gauss Proved

Carl Friedrich Gauss (30 April 1777-23 Feb. 1855) started his
scientific diary on 30 March 1796 with the following entry:

Foundations on which the division of the circle rests, that is its'
geometrical divisibility in seventeen parts, and so on.

As this short note reveals, the teenager Gauss had not only found
the construction of the 17-gon, but also the general principles be-
hind it. He exphcrtly states in his first publication, in April 1796
that the 17-gon is only a special case of his investigations. He had
already begun working on his great work Arithmetical Fivestigations
(Disquisitiones arithmeticae), which appeared in 1801 and in whlch
he proved the general theorem (artlcle 365):

For an odd prime number p, the regular p’~gon is constructible by
ruler and compass if and only ifi = I and p is a prime of the form
) p 22 +1, i.e., {fp is a so-called Fermat prime. -

The reduction of the problem to prime powers as above is done
by Gauss in art. 336.

Not all Fermat numbers Fy, = 22 + 1 are prime, Except for the
first few values Fy = 3, Fy = 5, F; = 17, F3 = 257, and Fy = 65537,
which are prime, all others with k < 24 are known to be composite.
As long as no general result about the Fermat numbers is obtained,
the question about the, constructibility of regular polygons remains

open.

-Note. We have seen how to construct a regular 9-gon with a
marked ruler. Gauss's theorem shows that the 9-gon is not con-
structible by ruler and compass. Hence the use of a marked ruter
is definitely a stronger method than the ordinary ones in geometry.
(For more and precise mformatlon see Hartshorne [2000] Section
30) :
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',13 5 How Gauss Did It

t For thls part we assume that the reader is familiar with the elemen-
tary properties of the complex numbers. This new tool stands the
- test by solving an old problem. We will present Gauss's method only
E for the pentagon and in a somewhat modernized version, For the
17-gon and a complete treatment, see Hartshorne, chapter 6. In the
Ecomplex plane, the regular n-gon is represented by the nth roots of
fumty, that i Is, the solutlons of the equatlon

Z"—1=0.

These solutions are |

3 2r ., 2w

c =.C08 ~—— - 18in —

| _ n n

 and its powers £%, ., ., (") ¢ = g0 = 1, We will investigate only the
§ case n = 5, that is, the regular pentagon, from a new vantage point
 (Fig: 13.3). -

i The representation

= CO§ n +isin 2n
£= 5 5

f will not help us. We have to use the algebraic equation

0=z —1=(z~1)z* +2°+22 +2+1).

FIGURE 13.3
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The first factor represents the solution ¢® = 1 and is of no fur-
ther interest, It just fixes the position of the pentagon in the circle.
Because all our solutions will be different from zero, we may divide

the second factor by z? and obtain the new equation
0=22 4241427 +272
=424z 2427 -1
=@Z+z Y+ @E+z -1

. With this little trick we have obtained a quadratic equation for

w=z+z7h ' '
-w2+w—~.1=0,
) : o _w+l 2_5
_ 1 iy
w - = —,
2ty 2

For a geometric interpretation of this, we have to observe that
==7 and ==

Our two solutions for w then amount to.
w, = ¢+ ¢V = 2. real part of ¢,
wy, =4+ "% = 2. real part of ¢%.

This gives us something constructible:

h real.partofc;zﬂ— +

ol - B

S5

‘real part of ¢ = it

Figure 13.3 (b) shows how it is done by using the right triangle
with vertices 0, 3i, —§. For the final determination of { = x + iy we
know x and have to solve a second quadratic equation,
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for y. The result is :
_ ; ~
Y= Zﬁ. 5+4/5, forg,

y= —Eﬁ\/s ~ /5 for 2.
This gives us
f= -,/ 10 - 24/5

¥ for the snde f of a regular pentagon inscribed in the unit circle and

d = —\/ 10 + 24/5 for its dlagonal

£13.6 The Moral of ghe Stoty_ |

E Note (i). Our quadratic equation (x) for w is similar to the one we
F foun d for the d1agonal of a pentagon w1th side f == l There we had

B-d=1,

- Ifwe keep f = 1 andletd = f +w = 1+ w, the geometric
3 equatlon becomes

(w+ 1)2 - (w+ 1) =1, | (13.1)
Wtw=1, (13.2)

[ the same as above There are many different constructions of the
. pentagon, but closer inspection will always turn up this same
i quadratic equation (or a close relative as above). This equation is
} what one calls the abstract essence of the problem. Abstraction
E makes clear what the real nucleus of the problem is, apart from all
different disguises.
] Note (ii). With what was called “a little trick” we reduced the so-
' lution of the biquadratic equation for ¢ to the successive solution of
* two ordinary quadratic equations. The trick is in fact Gauss's general
. method: Find the roots different from 1 for the equation 2" —1 =0
- by solving quadratic equations successively, which can be done by
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ruler and compass. This new method, based on the new tool of com-
plex numbers, is the unifying idea for the construction of regular
polygons. Euclid had to deal with each case separately. Gauss, by ab-
straction, found the general solution. Generalization and abstraction
made the problem accessible and the solution transparent.

13.7 What Plotinus Has to Say About
All This
The neo-Platonic philosopher Plotinus (~ 200-270 ¢.E.) wrote a trea-

tise about beauty. He has found the right words for what we have
seen in a particularly significant case:

But where the Ideal Form has entered, it has grouped and coor-
dinated what from a diversity of parts was to become a unity: it
has rallied confusion into cooperation: it has made the sum one
harmonious coherence: for the Idea is a unity and what it moulds
must come to unity as far as multiplicity may.

And on what has thus been compacted to unity, Beauty en-
thrones itself, giving itself to the parts as to the sum: when it lights
on some natural unity, a thing of like parts, then it gives itself to'

- that whole. Thus, for an illustration, there is the beauty, conferred
by craftsmanship, of all a house with all its parts, and the beauty
which some natural guality may give to a single stone. (Plotinus,
First Ennead VI, “On Beauty” 2. p. 22, cf. Plotinus {1952])



