CHAPTER 1IV.
ARITHMETIC IN ARCHIMEDES.

Two of the treatises, the Measurement of a circle and the
Sand-reckoner, are mostly arithmetical in content. Of the Sand-
reckoner nothing need be said here, because the system for expressing
numbers of any magnitude which it unfolds and applies cannot be
better described than in the book itself; in the Measurement of o
circle, however, which involves a great deal of manipulation of
numbers of considerable size though expressible by means of the
ordinary Greek notation for numerals, Archimedes merely gives the
results of the various arithmetical operations, multiplication, extrac-
tion of the square root, etc., without setting out any of the operations
themselves. Various interesting questions are accordingly involved,
and, for the convenience of the reader, I shall first give a short
account of the Greek system of numerals and of the methods by
which other Greek mathematicians usually performed the various
operations included under the general term Xoyworuey (the art of
caleulating), in order to lead up to an explanation (1) of the way in
which Archimedes worked out approximations to the square roots of
large numbers, (2) of his method of arriving at the two approximate

values of »/3 which he simply sets down without any hint as to how
they were obtained*.

* In writing this chapter Thave been under particular obligations to Hultsch’s
articles Arithmetica and Archimedes in Pauly-Wissowa’s Real-Encyclopidie, 11.
1, as well as to the same scholar’s articles (1) Die Niherungswerthe irrationaler
Quadratwurzeln bei Archimedes in the Nachrichten von der kgl. Gesellschaft der
Wissenschayften zu Gottingen (1893), pp. 367 sqq., and (2) Zur Kreismessung des
Archimedes in the Zeitschrift fir Math. u. Physik (Hist. litt. Abtheilung) xxxix.
(1894), pp. 121 sqq. and 161 sqq. I have also made use, in the earlier part
of the chapter, of Nesselmann’s work Die Algebra der Griechen and the histories
of Cantor and Gow.
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§ 1. Greek numeral system.

It is well known that the Greeks expressed all numbers from 1
to 999 by means of the letters of the alphabet reinforced by the
addition of three other signs, according to the following scheme, in
which however the accent on each letter might be replaced by a
short horizontal stroke above it, as a.

o, B, ¥, 8, €, ¢, L, 9,0 are 1, 2, 3, 4,5, 6,7, 8 9 respectively.
e, N, w8 o, T g, 10,20, 30, L. 90 55
o, T, v, ¢, X, ¥, o, A, 100, 200, 300,...... 900 5

Intermediate numbers were expressed by simple juxtaposition
(representing in this case addition), the largest number being placed
on the left, the next largest following it, and so on in order. Thus
the number 153 would be expressed by pry’ or pry. There was no
sign for zero, and therefore 780 was y=’, and 306 rs” simply.

Thousands (x\uides) were taken as units of a higher order, and
1,000, 2,000, ... up to 9,000 (spoken of as xiAiot, Sirxihwe, k.7.\.) were
represented by the same letters as the first nine natural numbers
but with a small dash in front and below the line ; thus e.g. & was
4,000, and, on the same principle of juxtaposition as before, 1,823 was
expressed by ,awxy’ or awxy, 1,007 by af’, and so on.

Above 9,999 came a myriad (wvpuds), and 10,000 and higher
numbers were expressed by using the ordinary numerals with the
substantive uvpuddes taken as a new denomination (though the words
piptor, Siopdpior, Tpwpdpioy, k.m.A. are also found, following the
analogy of xiAwy, Sioxilior and so on). Various abbreviations were
used for the word pvpids, the most common being M or Mv; and,
where this was used, the number of myriads, or the multiple of
10,000, was generally written over the abbreviation, though some-

times before it and even after it. Thus 349,450 was I)&ﬂvv' *
Fractions (Aewrd) were written in a variety of ways. The most
usual was to express the denominator by the ordinary numeral with
two accents affixed. When the numerator was unity, and it was
therefore simply a question of a symbol for a single word such as
* Diophantus denoted myriads followed by thousands by the ordinary signs
for numbers of units, only separating them by a dot from the thousands. Thus

for 8,069,000 he writes 7=. ,5, and Ay. ,;507: for 3881,776. Sometimes myriads
were represented by the ordinary letters with two dots above, as p =100 myriads
(1,000,000), and myriads of myriads with two pairs of dots, as ¢ for 10 myriad-
myriads (1,000,000,000).
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Tpitov, %, there was no need to express the numerator, and the
symbol was y”; similarly ¢”=1, «’=4%, and so on. When the
numerator was not unity and a certain number of fourths, fifths,
etc., had to be expressed, the ordinary numeral was used for the
numerator ; thus 6 w’ =%, ' oa”=12. In Heron's Geometry the
denominator was written twice in the latter class of fractions; thus
2 (8o wéprra) was B'e'e”, 23 (Aemrd TprakooréTpira ky' Or elkociTpla
Tpiakoorétpira) was kY Ay’ Ay”. The sign for 1, sjmov, is in
Archimedes, Diophantus and Eutocius L”, in Heron C or a sign
similar to a capital S*,

A favourite way of expressing fractions with numerators greater
than unity was to separate them into component fractions with
numerator unity, when juxtaposition as usual meant addition. Thus
4 was written L'8"=3%+4; 18 was C8'y'u"=3+1+1+%;
Eutocius writes L”£8” or 4 + ¢ for £2, and so on. Sometimes the
same fraction was separated into several different sums; thus in
Heron (p. 119, ed. Hultsch) 182 is variously expressed as

(@) $+3+ 7+ iz + oo
®) 3+3+75+4z+ 11w
and (¢) 3+3+H+ s+

Sexagesimal fractions. This system has to be mentioned becaunse
the only instances of the working out of some arithmetical operations
which have been handed down to us are calculations expressed in
terms of such fractions; and moreover they are of special interest
as having much in common with the modern system of decimal
fractions, with the difference of course that the submultiple is 60
instead of 10, The scheme of sexagesimal fractions was used by the
Greeks in astronomical calculations and appears fully developed in
the ovvraéis of Ptolemy. The circumference of a circle, and along
with it the four right angles subtended by it at the centre, are
divided into 360 parts (rpjpara or poipar) or as we should say degrees,
each polpa into 60 parts called (first) siwtieths, (wpéra) énkoord,
or minutes (Aerrd), each of these again into Selrepa éfyroard (seconds),
and so on. A similar division of the radius of the circle into 60

* Diophantus has a general method of expressing fractions which is the
exact reverse of modern practice; the denominator is written above the

04 ke a.ws
numerator, thus e=5/3, xa =21/25, and p«{. ¢y =1,270,568/10,816. Some-
times he writes down the numerator and then introduces the denominator

with év uoply or uoplov, e.g. T, la.uop ¢ )T'; Jayos = 38,069,000/331,776.
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parts (7uruere) was also made, and these were each subdivided into
sixtieths, and so on. Thus a convenient fractional system was
available for general arithmetical calculations, expressed in units of
any magnitude or character, so many of the fractions which we
should represent by 4%, so many of those which we should write
(#%)% (&) and so on to any extent. It is therefore not surprising
that Ptolemy should say in one place “In general we shall use the
method of numbers according to the sexagesimal manner because of
the inconvenience of the [ordinary] fractions.” For it is clear that
the successive submultiples by 60 formed a sort of frame with fixed
compartments into which any fractions whatever could be located,
and it is easy to see that e.g. in additions and subtractions the
sexagesimal fractions were almost as easy to work with as decimals
are now, 60 units of one denomination being equal to one unit of
the next higher denomination, and “carrying” and “borrowing”
being no less simple than it is when the number of urits of one
denomination necessary to make one of the next higher is 10 instead
of 60. In expressing the units of the circumference, degrees, potpat
or the symbol f was generally used along with the ordinary numeral
which had a stroke above it ; minutes, seconds, etc. were expressed
by one, two, etc. accents affixed to the numerals. Thus g B=2°
wotpv pl pf p' =47° 42' 40”.  Also where there was no unit in any
particular denomination O was used, signifying od8euln potpa, oddév
éénroardv and the like ; thus O o’ 870" =0°1'2"0"”. Similarly, for
the units representing the divisions of the radius the word rpijpara
or some equivalent was used, and the fractions were represented as
before ; thus runudrwv & & ve” = 67 (units) 4' 55",

§ 2. Addition and Subtraction.

There is no doubt that, in writing down numbers for these
purposes, the several powers of 10 were kept separate in a manner
corresponding practically to our system of numerals, and the

hundreds, thousands, etc., were written in separate vertical rows,
The following would therefore be a typical form of a sum in addition ;

avkd = 1424

P Y 103

MpBowa 12281
Y

M X 30030

3

Myowh 7 43838
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and the mental part of the work would be the same for the Greek as
for us.

Similarly a subtraction would be represented as follows:
o
M yxAs'=93636
8

Myv 6 23409
4
M okl 70227

§ 3. Multiplication.

A number of instances are given in Eutocius’ commentary on
the Measurement of a circle, and the similarity to our procedure is
just as marked as in the above cases of addition and subtraction.
The multiplicand is written first, and below it the multiplier preceded
by éxi (=*into”). Then the highest power of 10 in the multiplier
is taken and multiplied into the terms containing the separate
multiples of the successive powers of 10, beginning with the highest
and descending to the lowest ; after which the next highest power
of 10 in the multiplier is multiplied into the various denominations
in the multiplicand in the same order. The same procedure is
followed where either or both of the numbers to be multiplied
contain fractions. Two instances from Eutocius are appended from
which the whole procedure will be understood.

a) g’ 780
éari Y’ x 780
9 €
MM ¢’ 490000 56000
M, o 56000 6400
3
opod M’ sum 608400
(2)
y L8 3013} 4 [= 30133
it ey LS x 3013} 1
k)
MM § agyv/ 9,000,000 30,000 9,000 1500 750
Mpre L 30,000 100 30 5 2}
aga L L 9,000 30 9 13 3+1
adila LS 1,500 5 13 1 2
‘pvlﬂi LH L,"S”"]”Lr" 750 2% %+i % Tla—

k)
[6u08] M Bymfis” [9,041,250 + 30,1374 + 9,041% + 1506 + 3 + 3 +1
+ 753+ 1+ 1+ %]
= 9,082,689
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One instance of a similar multiplication of numbers involving
fractions may be given from Heron (pp. 80, 81). It is only one of
many, and, for brevity, the Greek notation will be omitted. Heron
has to find the product of 432 and 7$2, and proceeds as follows :

4.7=28,
62 _ 248
4. 51 =5%D
38 7231
Lry 7647
33 62 _..2046 1 _ 31,6 1
164 64 814 8L T 6484

The result is accordingly
28+ 510, 82 A 28+ T7+33+8%. 4%
=35+82+82. 4
The multiplication of 37° 4’ 55" (in the sexagesimal system) by

itself is performed by Theon of Alexandria in his commentary on
Ptolemy’s givralis in an exactly similar manner.

§ 4. Division.

The operation of dividing by a number of one digit only was
easy for the Greeks as for us, and what we call “long division” was
with them performed, mutatis mutandis, in the same way as now
with the help of multiplication and subtraction. Suppose, for
instance, that the operation in the first case of multiplication given

above had to be reversed and that fl,"lvl (608,400) had to be divided
by ¢’ (780). The terms involving the different powers of 10 would
be mentally kept separate as in addition and subtraction, and the
first question would be, how many times will 7 hundreds go into 60
myriads, due allowance being made for the fact that the 7 hundreds
have 80 behind them and that 780 is not far short of 8 hundreds?
The answer is 7 hundreds or ', and this multiplied by the divisor

vs £
Y’ (780) would give M ¢’ (546,000) which, subtracted from M’

(608,400), leaves the remainder 1:’[/,81:' (62,400). This remainder has
then to be divided by 780 or a number approaching 8 hundreds, and
8 tens or »' would have to be tried. In the particular case the
result would then be complete, the quotient being yx’ (780), and
there being no remainder, since =’ (80) multiplied by y=’ (780) gives

the exact figure M Bv' (62,400).
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An actual case of long division where the dividend and divisor
contain sexagesimal fractions is described by Theon. The problem
is to divide 1515 20' 15” by 25 12’ 10", and Theon’s account of the
process comes to this.

Divisor Dividend Quotient
25 12’ 10" 1515 20 15" First term 60
B 25 .60 = 1500
Remainder 15 = 900’
Sum 920
12'.60 = 720
Remainder 200’
10”.60 = 10’
Remainder 1907 Second term 7’
25.7 = 175
T 15 = 900"
Sum 915"
12°.7 84"
Remainder 831"
1077 1710
Remainder 829" 50" | Third term 33"
25.33" 825"
Remainder 47507 = 290"
12" . 33" 396"

(too great by) 106™

Thus the quotient is something less than 60 7' 33". It will be
observed that the difference between this operation of Theon’s and

that followed in dividing 15[/7)1)’ (608,400) by y=’ (780) as above is
that Theon makes three subtractions for one term of the quotient,
whereas the remainder was arrived at in the other case after one
subtraction. The result is that, though Theon’s method is quite
clear, it is longer, and moreover makes it less easy to foresee what
will be the proper figure to try in the quotient, so that more time
would be apt to be lost in making unsuccessful trials.

§ 6. Extraction of the square root.

‘We are now in a position to see how the operation of extracting
the square root would be likely to be attacked. First, as in the case
of division, the given whole number whose square root is required
would be separated, so to speak, into compartments each containing
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such and such & number of units and of the separate powers of 10.
Thus there would be so many units, so many tens, so many hundreds,
etc., and it would have to be borne in mind that the squares of
numbers from 1 to 9 would lie between 1 and 99, the squares of
numbers from 10 to 90 between 100 and 9900, and so on. Then the
first term of the square root would be some number of tens or
hundreds or thousands, and so on, and would have to be found in
much the same way as the first term of a quotient in a “long
division,” by trial if necessary. If A is the number whose square
root is required, while o represents the first term or denomination of
the square root and « the next term or denomination still to be
found, it would be necessary to use the identity (@ + ®)?= a®+ 2ax + «?
and to find = so that 2ax + 2* might be somewhat less than the
remainder 4 —a® Thus by trial the highest possible value of =
satisfying the condition would be easily found. If that value were
b, the further quantity 2ab +4* would have to be subtracted from
the first remainder 4 — @? and from the second remainder thus left
a third term or denomination of the square root would have to be
derived, and so on. That this was the actual procedure adopted is
clear from a simple case given by Theon in his commentary on the
avvraéis. Here the square root of 144 is in question, and it is
obtained by means of Eucl. 11. 4. The highest possible denomina-
tion (i.e. power of 10) in the square root is 10 ; 10® subtracted from
144 leaves 44, and this must contain not only twice the product of
10 and the next term of the square root but also the square of that
next term itself. Now, since 2 .10 itself produces 20, the division
of 44 by 20 suggests 2 as the next term of the square root; and
this turns out to he the exact figure required, since

2.20+ 2° =44,

The same procedure is illustrated by Theon’s explanation of
Ptolemy’s method of extracting square roots according to the
sexagesimal system of fractions. The problem is to find approxi-
mately the square root of 4500 polpat or degrees, and a geometrical
figure is used which makes clear the essentially Euclidean basis of
the whole method. Nesselmann gives a complete reproduction of
the passage of Theon, but the following purely arithmetical represen-
tation of its purport will probably be found clearer, when looked at
side by side with the figure.

Ptolemy has first found the integral part of /4500 to be 67.
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Now 67%= 4489, so that the remainder is 11. Suppose now that
the rest of the square root is expressed by means of the usual
sexagesimal fractions, and that we may therefore put

J«w—o(>:J672+11=67+g% % 6%*’

2.67x
60

11.60

or &, which is at the same time greater than 4. On trial, it

where «, y are yet to be found. Thus # must be such that

is somewhat less than 11, or 2 must be somewhat less than

turns out that 4 will satisfy the conditions of the problem, namely

that (67 + 6;40> must be less than 4500, so that a remainder will
be left by means of which y may be found.

o 7 K [
67 ¢ | 5
1489 268' | &
-
%
3
o
€ ¢
& 268’ 16"
9 x
55" 3688" 40"
8 Y
2.6

Now 11 T(Z—4 s (%)2 is the remainder, and this is equal to

11.60°—2.67.4.60—16 7424
60° T o60®

7424

4\ y ;
Thus we must suppose that 2 (67 + §6> 60? approximates to 507’

or that 8048y is approximately equal to 7424. 60.
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Therefore y is approximately equal to 55. We have then to

subtract
4\ 55 55\? 442640 3025
2(67“‘%)@* (@o‘) T Te0r T 607

from the remainder -’z—g—gé above found.

. 442640 7424 . 2800 46 40
The subtraction of 50 from 07 81Ves 505 O g+ e
but Theon does not go further and subtract the remaining 32—3—45 ,

55
602
As a matter of fact, if we deduct the

instead of which he merely remarks that the square of

40
60° * 60°"
3025 from 2400

60¢ 602’
164975
60 -
To show the power of this method of extracting square roots by

approximates to
so as to obtain the correct remainder, it is

found to be

means of sexagesimal fractions, it is only necessary to mention that
103 85
60 " 60 7 60°
approximation is equivalent to 1:7320509 in the ordinary decimal
notation and is therefore correct to 6 places.

But it is now time to pass to the question how Archimedes

Ptolemy gives as an approximation to ~/3, which

obtained the two approximations to the value of /3 which he
assumes in the Measurement of a circle. In dealing with this
subject I shall follow the historical method of explanation adopted
by Hultsch, in preference to any of the mostly a priore theories
which the ingenuity of a multitude of writers has devised at
different times,

§ 6. Early investigations of surds or incommensurables.

From a passage in Proclus’ commentary on Eucl. 1.* we learn
that it was Pythagoras who discovered the theory of irrationals
(4§ 7év d\éywv mpoypareia). Further Plato says (Theaetetus 147 p),
“On square roots this Theodorus [of Cyrene] wrote a work in

* p. 65 (ed. Friedlein).
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which he proved to us, with reference to those of 3 or 5 [square] feet.
that they are incommensurable in length with the side of one square
foot, and proceeded similarly to select, one by one, each [of the other
incommensurable roots] as far as the root of 17 square feet, beyond
which for some reason he did not go.” The reason why V2 is not
mentioned as an incommensurable square root must be, as Cantor
says, that it was before known to be such. We may therefore
conclude that it was the square root of 2 which was geometrically
constructed by Pythagoras and proved to be incommensurable with
the side of a square in which it represented the diagonal. A clue
to the method by which Pythagoras investigated the value of /2
is found by Cantor and Hultsch in the famous passage of Plato
(Kep. vi1i. 546 B, c) about the ‘geometrical’ or ‘nuptial’ number.
Thus, when Plato contrasts the gy and appyros Siduerpos Tijs
weuwados, he is referring to the diagonal of a square whose side
contains five units of length ; the dppnros didperpos, or the irrational
diagonal, is then /50 itself, and the nearest rational number is

A/B0—1, which is the pyrj 8wuerpos. We have herein the
explanation of the way in which Pythagoras must have made the
first and most readily comprehensible approximation to /2; he
must have taken, instead of 2, an improper fraction equal to it but
such that the denominator was a square in any case, while the
numerator was as near as possible to a complete square. Thus

Pythagoras chose %, and the first approximation to ~/2 was

accordingly ;, it being moreover obvious that J§>%. Again,

Pythagoras cannot have been unaware of the truth of the
proposition, proved in Eucl. 11. 4, that (a + b)* = a® + 2ab + b°, where
a, b are any two straight lines, for this proposition depends solely
upon propositions in Book 1. which precede the Pythagorean
proposition 1. 47 and which, as the basis of 1. 47, must necessarily
have been in substance known to its author. A slightly different
geometrical proof would give the formula (a-b)’=a’—2ab+b%
which must have been equally well known to Pythagoras. It could
not therefore have escaped the discoverer of the first approximation

N/B0—1 for »/50 that the use of the formula with the positive sign

would give a much nearer approximation, viz. 7 + which is only

ﬁ’
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2
greater than /50 to the extent of <1l4> . Thus we may properly

assign to Pythagoras the discovery of the fact represented by
1 _
Tz> V50>,

The consequential result that ~2> % NVBO—1 is used by

Aristarchus of Samos in the 7th proposition of his work On the
size and distances of the sun and moon¥*.

With reference to the investigations of the values of /3, /5,

V6, ...... 17 by Theodorus, it is pretty certain that /3 was
geometrically represented by him, in the same way as it appears

* Part of the proof of this proposition was a sort of foretaste of the first part
of Prop. 3 of Archimedes’ Measurement of a
circle, and the substance of it is accordingly A K
appended as reproduced by Hultsch.

ABEK is a square, KB a diagonal, 2 HBE
=3} . KBE, t FBE =3°and 4C is perpendicu-
lar to BF so that the triangles ACB, BEF are

similar. H
Aristarchus seeks to prove that
AB:BC=>18:1 D
If R denote a right angle, the angles KBE,
HBE, FBE are respectively #§R, 3R, &R. B N

Then HE : FE > t HBE : +t FBE.

[This is assumed as a known lemma by Aristarchus as well as Archimedes.]

Therefore HE :FE> 15:2. .. cccoovviinniniiiinninine (a).
Now, by construction, BK2=2BE?.
Also [Eucl. v1. 3] BK : BE=KH : HE;
whence KH=~N2HE.
. = 50-1
And, since NOES 55

KH:HE >17:5,
so that KE:EH=>12:5 coiivviiiviiiiiinininnenneennnnn(B)-
From (a) and (8), ex aequali,
KE:FE>18:1.
Therefore, since BF > BE (or KE),

BF:FE>18:1,
go that, by similar triangles,
AB : BC > 18 : 1.
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afterwards in Archimedes, as the perpendicular from an angular
point of an equilateral triangle on the opposite side. It would
thus be readily comparable with the side of the “1 square foot”
mentioned by Plato. The fact also that it is the side of three
square feet (rplmovs Svvaps) which was proved to be incommensurable
suggests that there was some special reason in Theodorus’ proof for
specifying feet, instead of units of length simply; and the ex-
planation is probably that Theodorus subdivided the sides of his
triangles in the same way as the Greek foot was divided into
halves, fourths, eighths and sixteenths. Presumably therefore,

exactly as Pythagoras had approximated to /2 by putting g—g
for 2, Theodorus started from the identity 3 = % It would then
be clear that

= 8+1 . 17
\/3<\/T,l.e.1.

To investigate »/48 further, Theodorus would put it in the form

491, as Pythagoras put /50 into the form ~/49+1, and the
result would be

Ji8 (= JI&)TI)<7—1L4.

‘We know of no further investigations into incommensurable
square roots until we come to Archimedes.

§ 7. Archimedes’ approximations to /3.

Seeing that Aristarchus of Sanfos was still content to use the
first and very rough approximation to /2 discovered by Pythagoras,
it is all the more astounding that Aristarchus’ younger contemporary
Archimedes should all at once, without a word of explanation, give
out that

1351 J3> 265

————— _

780 153

as he does in the Measurement of a circle.

In order to lead up to the explanation of the probable steps by
which Archimedes obtained these approximations, Hultsch adopts
the same method of analysis as was used by the Greek geometers in
solving problems, the method, that is, of supposing the problem
solved and following out the necessary consequences. To compare
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the two fractions — 265 and 13501 , we first divide both denominators

153 "¢ 78
into their smallest factors, and we obtain

780=2.2.3.5.13,
153=3.3.17.

‘We observe also that 2.2.13 = 52, while 3.17 =51, and we may
therefore show the relations between the numbers thus,

780=13.5.52,
153 =3.51.
For convenience of comparison we multiply the numerator and
denominator of i—gg by 5; the two original fractions are then
1351 1325

1558 204 15 57

so that we can put Archimedes’ assumption in the form
1351 > 15V3 > 1325

]
and this is seen to be equ1va.1ent to

6_~é>15~/3>26_l

1 1\? .
Now 26—5—2= \/ 26°-1 +<E> , and the latter expression
is an approximation to / 26’—
‘We have then 26— — 3> J267 1.

As 26~5—12. was compared with 15./3, and we want an ap-
proximation to &/3 itself we divide by 15 and so obtain

s (26 >> L Jze=1

But o V36—1- \/ e g_;§= V3, and it follows
| 1 =
that = (26 - 5‘é> > 3.

The lower limit for »/3 was given by

1 1
~/3>ﬁ<26—ﬁ>,
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and a glance at this suggests that it may have been arrived at by
simply substituting (52 — 1) for 52.

Now as a matter of fact the following proposition is true. If
@’ +b 18 a whole number which 1is not a square, while a® is the nearest
square number (above or below the first number, as the case may be),
then

b T b
ai%>~/a ib>ai2ail.

Hultsch proves this pair of inequalities in a series of propositions
formulated after the Greek manner, and there can be little doubt
that Archimedes had discovered and proved the same results in
substance, if not in the same form. The following circumstances
confirm the probability of this assumption.

(1) Certain approximations given by Heron show that he
knew and frequently used the formula

»\/agib(\)aii,

20
(where the sign e denotes ‘“is approximately equal to "),
Thus he gives N/%N7+%4—,
VB8
16’

— 11
JTBeo 8 + o

(2) The formula ~/a“+b~a+%bTi is used by the Arabian

Alkarkhi (11th century) who drew from Greek sources (Cantor,
p. 719 sq.).
It can therefore hardly be accidental that the formula
b - b
a_-t%> Ja ib>ai2ail
gives us what we want in order to obtain the two Archimedean

approximations to ~3, and that in direct connexion with one
another*.

* Most of the a priori theories as to the origin of the approximations are
open to the serious objection that, as a rule, they give series of approximate
values in which the two now in question do not follow consecutively, but are
geparated by others which do not appear in Archimedes. Hultsch’s explanation
is much preferable as being free from this objection. But it is fair to say that
the actual formula used by Hultsch appears in Hunrath’s solution of the puzzle
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We are now in a position to work out the synthesis as follows.

From the geometrical representation of /3 as the perpendicular
from an angle of an equilateral triangle on the opposite side we
il

obtain = /3 and, as a first approximation,

2—%> 3.

Using our formula we can transform this at once into

1 1
J3>2—4—1, or 2-3.
Archimedes would then square <2 —%), or g, and would obtain

o ; le. he would put

—, which he would compare with 3, or 5

\/ ol and would obtain

1 1 5 . 26 -
§<5+‘5>>N/3, l.e. 1‘5>A/3.

To obtain a still nearer approximation, he would proceed in the

26\? 676 . 675 .
same manner and compare <ﬁ> , Or 395" with 3, or 595 whence it

= 26° —
would appear that M3i=,/Z oo

and therefore that 15 <26 - _> > /3,

: 1351
that is, w80~ V3.

The application of the formula would then give the result

5 1 1
3> (26— —>
V3> 15( 6 -5-1)
1326 — or 265
15. 51 ! 163"
The complete result would therefore be
1351 265
3>
780 = V3> 153
(Die Berechnung irrationaler Quadratwurzeln vor der Herrschaft der Decimal-
briiche, Kiel, 1884, p, 21; cf. Ueber das Ausziehen der Quadratwurzel bei
Griechen und Indern, Hadersleben, 1883), and the same formula is implicitly
used in one of the solutions suggested by Tannery (Sur la mesure du cercle

d’Archiméde in Mémoires de la société des sciences physiques et naturelles de
Bordeauz, 2° série, 1v. (1882), p. 313-337).

that is, N3>—

f2
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Thus Archimedes probably passed from the first approximation
7, 5 5, 26 26 . 1351
i to 3 from 3 to 5 and from 15 directly to 780 *

approximation of all, from which again he derived the less close

the closest

approximation ?% The reason why he did not proceed to a still

nearer approximation than 1 is probably that the squaring of

1351
780
this fraction would have brought in numbers much too large to be
conveniently used in the rest of his calculations. A similar reason
will account for his having started from ginstea.d of % ; if he had
used the latter, he would first have obtained, by the same method,
- = Gk - -
V3 Z\/4916 1, ard] ¢henos 4ﬁ> V3, or %> ~/3; the squaring

i 2—-
of 56 would have given 3=%—1, and the corresponding

E—l& , where again the numbers

are inconveniently large for his purpose.

approximation would have given

§ 8. Approximations to the square roots of large
numbers.

Archimedes gives in the Measurement of a circle the following
approximate values:

(1) 30132 > /9082321,
(2) 18382 > ~/3380929,
(3) 10093 > ~/1018405,
(4) 2017} > /4069284,
(5) 5914 < +/349450,

(6) 1172} < ~/137394333,
(7 2339} < /5472132,

There is no doubt that in obtaining the integral portion
of the square root of these numbers Archimedes used the method
based on the Buclidean theorem (o + b)®=a®+ 2ab +* which has
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already been exemplified in the instance given above from Theon,

where an approximation to /4500 is found in sexagesimal fractions.
The method does not substantially differ from that now followed ; but
whereas, to take the first case, /9082321, we can at once see what
will be the number of digits in the square root by marking off pairs
of digits in the given number, beginning from the end, the absence
of a sign for 0 in Greek made the number of digits in the square
root less easy to ascertain because, as written in Greek, the number

Ri,ﬁm' only contains six signs representing digits instead of seven.
Even in the Greek notation however it would not be difficult to see
that, of the denominations, units, tens, hundreds, ete, in the square
root, the units would correspond to xa’ in the original number, the

k)
tens to Br, the hundreds to 1?/1, and the thousands to M. Thus it
would be clear that the square root of 9082321 must be of the form

1000« + 100y + 102 + w,

where a, y, 2, w can only have one or other of the values 0,1, 2,...9.
Supposing then that « is found, the remainder & — (1000x)? where
N is the given number, must next contain 2.1000x.100y and
(100y),, then 2 (1000x+ 100y).10z and (102)°, after which the
remainder must contain two more numbers similarly formed.

In the particular case (1) clearly x=3. The subtraction of
(3000)° leaves 82321, which must contain 2.3000.100y. But, even
if y is as small as 1, this product would be 600,000, which is greater
than 82321. Hence there is no digit representing Aundreds in the
square root. To find 2, we know that 82321 must contain

2.3000. 10z + (102)%,

and z has to be obtained by dividing 82321 by 60,000. Therefore
%=1. Again, to find w, we know that the remainder

(82321 — 2. 3000. 10 - 10%),

or 22221, must contain 2.3010w +«? and dividing 22221 by
2.3010 we see that w=3. Thus 3013 is the integral portion of
the square root, and the remainder is 22221 —(2.3010.3 +3?%), or
4152,

The conditions of the proposition now require that the approxi-
mate value to be taken for the square root must not be less than
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the real value, and therefore the fractional part to be added to 3013
must be if anything too great. Now it is easy to see that the
2
fraction to be added is greater than % because 2.3013. ‘l)+ @) is
less than the remainder 4152. Suppose then that the number

required (which is nearer to 3014 than to 3013) is 3014—{;”,
and s has to be if anything too small.

Now (3014)*=(3013)° + 2. 3013 + 1= (3013)* + 6027
= 9082321 — 4152 + 6027,

whence 9082321 = (3014)° - 1875.
By applying Archimedes’ formula »/a* +b<a + 2i , We obtain
3014~ 21%70514> +/9082321.
The required value £ p has therefore to be not greater than ég;g
It remains to be explained why Archimedes put forg the va.lue%
which is equal to 62(2)2 In the first place, he evidently preferred

fractions with unity for numerator and some power of 2 for
denominator because they contributed to ease in working, e.g. when
two such fractions, being equal to ea.ch other, had to be added.

(The exceptions, the fractions % and 6’ are to be explained by

exceptional circumstances presently to be mentioned.) Further, in
the particular case, it must be remembered that in the subsequent

work 2911 had to be added to 3014—75 and the sum divided by 780,

or2.2.3.5.13. It would obviously lead to simplification if a
factor could be divided out, e.g. the best for the purpose, 13. Now,
dividing 2911 + 3014, or 5925, by 13, we obtain the quotient 455,

and a remainder 10, so that 10—-:—; remains to be divided by 13.

Therefore £ 7 has to be so chosen that 10g — p is divisible by 13, while

g approximates to, but is not greater than, égzg The solution

p=1, ¢g=4 would therefore be natural and easy.



ARITHMETIC IN ARCHIMEDES. Ixxxvii

(2) ~/3380929.

The usual process for extraction of the square root gave as the
integral part of it 1838, and as the remainder 2685. As before, it
was easy to see that the exact root was nearer to 1839 than to 1838,
and that

/3380929 = 1838* + 2685 = 1839* — 2. 1838 — 1 + 2685

=1839°-—992.
The Archimedean formula then gave
992 T TTT Y
-5 29.
1839 — o— 200 > ~/3380929

It could not have escaped Archimedes that ! was a near approxima-

4
992 1984 . 1 1839 1 .
3678 °F 7356 SinCe 7= saga and 1 would have satisfied

the necessary condition that the fraction to be taken must be less

tion to

than the real value. Thus it is clear that, in taking % as the

approximate value of the fraction, Archimedes had in view the
simplification of the subsequent work by the elimination of a factor,

If the fraction be denoted by g, the sum of 1839—% and 1823, or

3662 —g, had to be divided by 240, i.e. by 6.40. Division of 3662
by 40 gave 22 as remainder, and then p, ¢ had to be so chosen that

22 —]—; was conveniently divisible by 40, while ]7; was less than but

92 . .
3678° The solution p =2, ¢=11 was easily
seen to satisfy the conditions.

(8) 1018405

The usual procedure gave 1018405=1009°+ 324 and the ap-
proximation

approximately equal to 9

324 P
1009 gore > ~/1018405.

324
It was here necessary that the fraction to replace 3018 should be
1

5 satisfied the conditions,

while the subsequent work did not require any change in it.

greater but approximately equal to it, and
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(4) /4069284

The usual process gave 40692847 =2017% + 9954 ; it followed
that
36.995 + 1
36.2.201
and 2017} was an obvious value to take as an approximation
somewhat greater than the left side of the inequality.

2017 + > /4069284 X%,

(5) /349450.

In the case of this and the two following roots an approximation
had to be obtained which was less, instead of greater, than the true
value. Thus Archimedes had to use the second part of the formula

b
20+1"

b -
ats > Ja*tb>axt
a

In the particular case of ,/349450 the integral part of the root is
591, and the remainder is 169. This gave the result

169 e 169

and since 169=13° while 2.591+1=7.13% it resulted without
further calculation that

/349450 > 5911.

Why then did Archimedes take, instead of this approximation,
another which was not so close, viz. 5913? The answer which the
subsequent working and the other approximations in the first part of
the proof suggest is that he preferred, for convenience of calculation,

to use for his approximations fractions of the form 2—1,‘ only. But he
could not have failed to see that to take the nearest fraction of this

form, %3-, instead of % might conceivably affect his final result and
make it less near the truth than it need be. As a matter of fact,
as Hultsch shows, it does not affect the result to take 5911 and to
work onwards from that figure. Hence we must suppose that
Archimedes had satisfied himself, by taking 591} and proceeding on
that basis for some distance, that he would not be introducing any
appreciable error in taking the more convenient though less accurate
approximation 59131,
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(6) /137394333.

In this case the integral portion of the root is 1172, and the
remainder 35932, Thus, if B denote the root,

35932
E=1T245 17911
359 .,
>1172 + sTiae1 @ Jortiori.
Now 2.1172+1=2345; the fraction accordingly becomes 23354%,
and % (:23—551% satisfies the necessary conditions, viz. that it must

be approximately equal to, but not greater than, the given fraction.
Here again Archimedes would have taken 1172} as the approximate
value but that, for the same reason as in the last case, 1172} was
more convenient.

(7) /5472132,
The integral portion of the root is here 2339, and the remainder

1211%, so that, if R is the exact root,

1211
2.2339+1

> 2339%, a fortiori.

A few words may be added concerning Archimedes’ ultimate
reduction of the inequalities

R>2339 +

667% 2841
to the simpler result 3 % >w>3 %) :
1 6674

As a matter of fact 7 , 50 that in the first fraction it was

T 16724

only necessary to make the small change of diminishing the de-

nominator by 1 in order to obtain the simple 3%.
- 284} 1137

As regards the lower limit for =, we see that 20174 ~ 80697 and

Hultsch ingeniously suggests the method of trying the effect of

increasing the denominator of the latter fraction by 1. This
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5070 °F 23(;-7—990, and, if we divide 2690 by 379, the quotient
is between 7 and 8, so that

produces

L S0 1
779690 7 8’
Now it is a known proposition (proved in Pappus vii. p. 689)
LG C a a+c
that, 1fl;>5l, then 5T ird
Similarly it may be proved that
a+e ¢
bvd d

It follows in the above case that

379 379+1 1
2690 2690 +8~ 8’

. . 10 1
which exactly gives F1> g
10, 379 1,
and 7y 18 very much nearer to 3690 than gis

Note on alternative hypotheses with regard to the
approximations to 3.

For a description and esamination of all the various theories put
forward, up to the year 1882, for the purpose of explaining Archimedes’

approximations to 4/3 the reader is referred to the exhaustive paper by
Dr Siegmund Giinther, entitled D7e quadratischen Irrationalititen der Alten
und deren Entwickelungsmethoden (Leipzig, 1882). The same author gives
further references in his Abriss der Geschichte der Mathematik und der Natur-
wissenschayften tm Altertwm forming an Appendix to Vol. v. Pt.1 of Iwan von
Miiller’s Handblich der klassischen Altertums-wissenschaft (Miinchen, 1894).
Giinther groups the different hypotheses under three general heads :

(1) those which amount to a more or less disguised use of the
method of continued fractions and under which are included the solutions
of De Lagny, Mollweide, Hauber, Buzengeiger, Zeuthen, P, Tannery (first
solution), Heilermann ;

(2) those which give the approximations in the form of a series

of fractions such as a + L + e + 1

N U2 N19:93
solutions of Radicke, v, Pessl, Rodet (with reference to the Qulvastitras),

Tannery (second solution);

+...; under this class come the
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(3) those which locate the incommensurable surd between a greater
and lesser limit and then proceed to draw the limits closer and closer.
This class includes the solutions of Oppermann, Alexejeff, Schonborn,
Hunrath, though the first two are also connected by Giinther with the
method of continued fractions.

Of the methods so distinguished by Giinther only those need be here
referred to which can, more or less, claim to rest on a historical basis
in the sense of representing applications or extensions of principles laid
down in the works of Greek mathematicians other than Archimedes which
have come down to us. Most of these quasi-historical solutions connect
themselves with the system of side- and diagonal-numbers (wAevpikot and
Siaperpiol dpifpoi) explained by Theon of Smyrna (c. 130 A.p.) in a work
which was intended to give so much of the principles of mathematics as
was necessary for the study of the works of Plato.

The side- and diagonal-numbers are formed as follows. We start with
two units, and () from the sum of them, (b) from the sum of twice
the first unit and once the second, we form two new numbers ; thus

1.1+41=2, 2.1+1=3.

Of these numbers the first is a side- and the second a diagonal-number
respectively, or (as we may say)

=2, dy=3.
In the same way as these numbers were formed from @,=1, d,=1, suc-
cessive pairs of numbers are formed from a,, d,, and so on, in accordance

with the formula
Cps1=0p+d,, Ay i1=20,+dy,
whence we have
0y=1.2+43=5  d;=2.2+3=T7,

ay=1.5+7=12, d,=2.5+7=17,
and so on.
Theon states, with reference to these numbers, the general proposition
which we should express by the equation
dli=2a,2+1.
The proof (no doubt omitted because it was well-known) is simple. For
we have
42— 20,2 =200 1+ dp 1 B~ 2(0nu_y+d,-1)?
=20, % —d,—1?
= —(dp-12— 200 _,?)
= +(d,_o? — 2¢t,-5%), and so on,

while d;2—2a,2= —1 ; whence the proposition is established.

Cantor has pointed out that any one familiar with the truth of this
proposition could not have failed to observe that, as the numbers were
successively formed, the value of d,2/a,? would approach more and more
nearly to 2, and consequently the successive fractions d,/a, would give
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nearer and nearer approximations to the value of 4/2, or in other words that
12 I 11 41
17 27 57 127 29'' "
are successive approximations to 4/2. It is to be observed that the third
of these approximations, g, i8 the Pythagorean approximation which

appears to be hinted at by Plato, while the above scheme of Theon,
amounting to a method of finding all the solutions in positive integers of
the indeterminate equation
202~ yt= 41,

and given in a work designedly introductory to the study of Plato,
distinctly suggests, as Tannery has pointed out, the probability that even
in Plato’s lifetime the systematic investigation of the said equation had
already begnn in the Academy. In this connexion Proclus’ commentary
on Eucl. 1. 47 is interesting. It is there explained that in isosceles
right-angled triangles “it is not possible to find numbers corresponding to
the sides; for there is no square number which is double of a square
except in the sense of approvimately double, e.g. 72 is double of 52 less 1.”
When it is remembered that Theon’s process has for its object the finding
of any number of squares differing only by unity from double the squares
of another series of numbers respectively, and that the sides of the two
sets of squares are called diagonal- and side-numbers respectively, the
conclusion becomes almost irresistible that Plato had such a system in
mind when he spoke of pgnry Siduerpos (ratiornal diagonal) as compared
with dppyros Siduerpos (irrational diagonal) ris meumados (cf. p. Ixxviii above).

One supposition then is that, following a similar line to that by which
successive approximations to 4’2 could be obtained from the successive
solutions, in rational numbers, of the indeterminate equations 242 — 2= +1,
Archimedes set himself the task of finding all the solutions, in rational
numbers, of the two indeterminate equations bearing a similar relation
to 4/3, viz.

22 -3yt=1,
22 =3yt=—2.

Zeuthen appears to have been the first to connect, eo nomine, the ancient
approximations to 4/3 with the solution of these equations, which are also
made by Tannery the basis of his first method. But, in substance, the
same method had been used as early as 1723 by De Lagny, whose
hypothesis will be, for purposes of comparison, described after Tannery’s
which it so exactly anticipated.

Zeuthen's solution.
After recalling the fact that, even before Euclid’s time, the solution
of the indeterminate equation #24-y2=2% by means of the substitutions
m2 —n? m2+4n?

zZ=mn, Yy=—pg—, F=—p
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was well known, Zeuthen concludes that there could have been no
difficulty in deducing from Eucl. 11. 5 the identity

m2 — 3p2\2 2.1 3p2\2
3(mn)2+( . ”) =(m + ) ,
from which, by multiplying up, it was easy to obtain the formula
3 (2mn )+ (m? — 3n2)2=(m2+ 3n?)%

If therefore one solution m?— 3n2=1 was known, a second could at once
be found by putting

r=m?+3n?  y=2mn.
Now obviously the equation

m?—3ni=1
is satisfied by the values m=2, n=1; hence the next solution of the
equation

2t -3yi=1
is 3,=2243.1=7, 5,=2.2.1=4;
and, proceeding in like manner, we have any number of solutions as

7,=T04+3.42=97,  y,=2.7.4=56,

2;=97%43 ., 562=18817, Y3=2.97.56=10864,
and so on.

Next, addressing himself to the other equation

72— 3yt= -2,
Zeuthen uses the identity

(m+3n)t—3 (m+n)t= —2 (m?—3n?).

Thus, if we know one solution of the equation m?—3n2=1, we can proceed
to substitute

x=m+3n, y=m+n
Suppose m=2, n=1, as before ; we then have
z =5, h=3.
If we put x,=x,43y,=14, y,=x,+y,=8, we obtain
|
¥y 8 4
(and m="7, n=4 is seen to be a solution of m?—3n2=1).

Starting again from z,, ,, we have
2,=38, Y3=22,

7519
and 7. 11
(m=19, n=11 being a solution of the equation m?—3n2=—2);
Xy= 104, y4=60,

whence 26

Yy 16
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(and m=26, n=15 satisfies m?-3n2=1),
7, =284, y,=164,

or oy 7L
ys 417
.. Zg_97 2y _ 265
Similarly 70" 56° y7_~*153’ and so on.

This method gives all the successive approximations to 4/3, taking
account as it does of both the equations
22 -3y=1,
22— 3yt= -2,

Tonnery's first solution.

Tannery asks himself the question how Diophantus would have set
about solving the two indeterminate equations. He takes the first equation
in the generalised form

rr—ay?=1,
and then, assuming one solution (p, ¢) of the equation to be known, he
supposes
n=nz-p, ¢=%+¢

Then P2 —agi=mi? - 2mpx +p? — as’—2aqx — ag?=1,
whence, since p?—ag?=1, by hypothesis,
pmg. EXO
md—a

(m2+a) p +2amg 2mp+(m2+-a) q

sothat P G
and p2—ag?=1.

The values of p,, ¢, so found are rational but not necessarily integral ;

if integral solutions are wanted, we have only to put

Pr= (4 + ov®) p+2auvg, Q1 =2puv+ (2 +ar?) g,
where (u, v) is another integral solution of #% — ay2=1.
Generally, if ( p, ¢) be a known solution of the equation
22— ay?=r,
suppose p,=ap+8g, ¢;=yp+ 8¢, and “il suffit pour déterminer q, 3,7y, & de
connaitre les trois groupes de solutions les plus simples et de résoudre
deux couples d’équations du premier degré i deux inconnues.” Thus
(1) for the equation
22— 32=1,
the first three solutions are
(p=1,¢=0), (p=2,9=1), (p=7,9=4),
2=a 7=2a+3}
1=‘Y} and 4=2y48f
so that a=2, =3, y=1, §=2,

whence
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and it follows that the fourth solution is given by
p=2.7+3.4=26,
g=1.74+2.4=15;
(2) for the equation 22 —3y?= -2,
the first three solutions being (1, 1), (5, 3), (19, 11), we have
5=a+B d 19=5a+3/3
3=y+38 11=>5y+38)°
whence a=2, 8=3, y=1, 8=2, and the next solution is given by
»=2.19+3.11=71,
g=1.1942.11=41,
and so on.
Therefore, by using the two indeterminate equations and proceeding as
shown, all the successive approximations to ~/3 can be found.
Of the two methods of dealing with the equations it will be seen that

Tannery’s has the advantage, as compared with Zeuthen’s, that it can be
applied to the solution of any equation of the form #2— ay2=7r.

De Lagny’s method.

The argument is this. If v3 could be exactly expressed by an im-
proper fraction, that fraction would fall between 1 and 2, and the square of
its numerator would be three times the square of its denominator. Siuce
this is impossible, two numbers have to be sought such that the square of
the greater differs as little as possible from 3 times the square of the
smaller, though it may be either greater or less. De Lagny then evolved
the following successive relations,

90=3.1241, 52=3.32-9, T2=3.42+1, 19°=3.112-2,
262=3.1524+1, 712=3.412-9, etc.
From these relations were derived a series of fractions greater than ~/3,
e 2726
“1’4°15°

R i—?, —i—, etc. The law of formation was found in each case to be that, if

etc., and another series of fractions less than /3, viz.

-7

Ry 9l e

was one fraction in the series and ;l, the next, then

r _ 2p+3q
9 prt+%
This led to the results

2_7_26_97_362_ 13561 —
17175756 206 780 >3,

5 19 71 265 989 3691
and §<ﬁ<ﬁ<lﬁ<5—71<2—r31'"<~/§’
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while the law of formation of the successive approximations in each series
is precisely that obtained by Tannery as the result of treating the two
indeterminate equations by the Diophantine method.

Heilermann’s method.

This method needs to be mentioned because it also depends upon a
generalisation of the system of side- and diagonal-numbers given by Theon
of Smyrna.

Theon’s rule of formation was

8=8pu1+Dn-yy  Dp=28,1+Dpy;
and Heilermann simply substitutes for 2 in the second relation any
arbitrary number a, developing the following scheme,

8, =8+Dy, Dy=aS+ Dy,
Sy=8,+ Dy, Dy=a8,+ D,
8;=8,+D,, Dy=al;+D,,

8,=8 1+ Dyyy D=8+ Dy;.
It follows that
aSt=a8, *+2a8, Dy +aD,
D 2=a?8,-2+2a8, D+ D, %
By subtraction, D2—aS2=(1-a)(Dy,%~aS,4%
=(1—a)? (Dpg?— aS,—%), similarly,

=(1-a)* (Dg*~ asSe?).
This corresponds to the most general form of the * Pellian” equation
2% — ay?=(const.).
If now we put D,=S8,=1, we have
D2 (1—ay*1
from which it appears that, where the fraction on the right-hand side
approaches zero as n increases, % is an approximate value for va.
Clearly in the case where a=3, n1)(,=2, S,==1 we have

Dy_2 D,_5 D, 14 7 D, 19 D, 52 26
S, 1'% 35, 8 4§ 11’ S, 30 15’
D,_7L Dy 194_97 D;_265
S, 41’ S, 1127 56 S, 153’
and so on.
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But the method is, as shown by Heilermann, more rapid if it is used to
find, not 4/a, but b+/a, where b is so chosen as to make b% (which takes

the place of @) somewhat near to unity. Thus suppose a=§%, 80 that

Va =§ /3, and we then have (putting Dy=S;=1)

52 — 5 26 26
8,=2, Dl=2—5, and V3N§.2—5, or 75
102 54452 106 — 5 106 265
8y="gr Do=—g5— =35> and ¥3eog. oo, or [,
208 102.27 106 5404
Ss=95+ D=%5.25 t 25 “25. 25

= 5404 5
V3 1351

N25.208°3 % Teo

This is one of the very few instances of success in bringing out the two
Archimedean approximations in immediate sequence without any foreign
values intervening. No other methods appear to connect the two values
in this direct way except those of Hunrath and Hultsch depending on the
formula

and

b —
A e )
wik Na xb>ato

We now pass to the second class of solutions which develops the
approximations in the form of the sum of a series of fractions, and under
this head comes

Tannery's second method.

This may be exhibited by means of its application (1) to the case of the
square root of a large number, e.g. /349450 or 4/571%+ 23409, the first of
the kind appearing in Archimedes, (2) to the case of 4/3.

(1) Using the formula

e b
‘\/a2+bNa+%,

we try the effect of putting for A/5712+ 23409 the expression

23409
571 + iz -

It turns out that this gives correctly the integral part of the root, and we
now suppose the root to be

571420+ X 2
m
Squaring and regarding 7% as negligible, we have

57124400 + 22840 + 1—:7;124. %’:571%23409,
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1182

whence — =169,
m
and 1 = o9 >l
m 11827 7°
so that /349450 >591 % .

(2) Bearing in mind that

—— b
2
e +bNa+2a 1

N — 2
3_ /12 2

we have N3=+1 +2N1+2.1+1
o1 2 9 ?
+§, r 3.

Assuming then that +/3 = (g + 7%) , squaring and neglecting mlz , We obtaln

25 10
T
whence m=15, and we get as the second approximation
5 1 26
3 + 15 °F 1%
We have now 262-3.152=1,

and can proceed to find other approximations by means of Tannery’s first
method.

Or we can al ut 1+2+1 12—3
r W 80 P 3 -13+£ =3,

and, neglecting %2, we get
262 52
RS T
whence = —15.52= — 780, and

= 2 1 1 1351
V3o (143415~ 7= 180 )

It is however to be observed that this method only connects —l,%)—l with
26 and not with the intermediate approximation 3 to obtain which

15 153’
Tannery implicitly uses a particular case of the formula of Hunrath and
Hultsch.

Rodet’s method was apparently invented to explain the approximation
in the Qulvasttras*

_ 11 1
Ve ldat s -3 i30

* See Cantor, Vorlesungen iiber Gesch. d. Math. p. 600 sq.
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but, given the approximation g,
indicated by the formula can be obtained by the method of squaring just
described * without such elaborate work as that of Rodet, which, when

applied to 4/3, only gives the same results as the simpler method.

the other two successive approximations

Lastly, with reference to the third class of solutions, it may be
mentioned
(1) that Oppermann used the formula
a+b
2

2ab

>\/ab >m,

. . 2 =
which gave successively 1 >4/3 >g E

7 5 12
i > \/ 3> T
168
97’
but only led to one of the Archimedean approximations, and that by
combining the last two ratios, thus
97+168 _ 265
56497 153’
(2) that Schonborn came somewhat near to the formula successfully used
by Hunrath and Hultsch when he proved+ that
b

Zaix/z'

97 —
5—6>«/3>

aj—_£>«/a2il§>a+
2a =

* Cantor had already pointed this out in his first edition of 1880.
t Zeitschrift fur Math. w. Physik (Hist. litt. Abtheilung) xxvim. (1883),
p. 169 sq.

g2



