č. 6 Čs.čas,fyz,69(Z019) ;' 401 Od LemaTtra k reliktnímu záření a Jamesi Peeblesovi Jiří Chýla Fyzikální ústav AV ČR, v. v. i, Na Slovance 1999/2,182 21 Praha 8; chyla@fzu.cz Polovina Nobelovy ceny za fyziku pro rok 2019 byla udělena americkému kosmologovi Jamesu Peeblesovi za „teoretické objevy ve fyzikální kosmologii". V tiskové zprávě je tato charakteristika rozvedena slovy: „Peeblesův vhled do fyzikální kosmologie obohatil celý tento obor a během posledních padesáti let položil základy pro transformaci kosmologie ze spekulací na vědu. Teoretický rámec, který vyvinul od poloviny šedesátých let, představuje základ našeho současného chápání vesmíru. Model velkého třesku popisuje vesmír od jeho prvních okamžiků před téměř 14 miliardami let, kdy byl velmi horký a hustý. Od té doby se vesmír rozpíná a chladne. Necelých 400000 let po velkém třesku se vesmír stal pro hmotu průhledným a světelné paprsky mohly cestovat prostorem. I dnes je toto pradávné záření všude kolem nás a zakódováno v něm se skrývá mnoho tajemství vesmíru. S využitím svých teoretických nástrojů a výpočtů James Peebles dokázal interpretovat tyto stopy z doby mládí vesmíru a objevit nové fyzikální procesy." Letošní Nobelova cena za fyziku pro Jamese Peeblese (1935) je již třetí Nobelovou cenou spojenou s objevem a vlastnostmi reliktního záření. Po roce 1978, kdy ji získali Robert Wilson a Arno Penzias„za objev kosmického mikrovlnného reliktního záření" ji v roce 2006 získali John Mather a George Smoot „za objev charakteru a anísotropie kosmického reliktního záření". Smyslem tohoto textu je připomenout, jak model velkého tresku vznikal, kdo a jak se na jeho formulaci podílel, proč právě objev reliktního záření v roce 1965 byl pro jeho přijetí zcela zásadní a jak k němu letošní laureát přispěl. Aby přelomový význam tohoto objevu byl pochopitelný a abychom docenili, jak těžko se rodila myšlenka, že vesmír má počátek v čase, musíme začít před sto lety a připomenout dva klíčové objevy, které objevu reliktního záření předcházely, a několik osobnosti, které při tom hrály klíčové role. Vesmír je přece stálý V roce 1917 aplikoval Einstein svou novou obecnou teorii relativity na idealizovaný případ vesmíru, v němž je hmota rozložena v prostoru homogenně. Předpokládal, že ze svých rovnic dostane stacionární řešení, které by odpovídalo tehdejším znalostem o stavu vesmíru. Protože hmota na sebe působí přitažlivou silou, musel do svých rovnic přidat tzv. kosmologickou konstantu, která přitažlivost hmoty kompenzuje a efektivně působí jako antigravitace. Jeho řešení odpovídalo troj- Obr. 1 James Peebles rozměrnému povrchu čtyřrozměrné koule s konečným poloměrem. S tím byl na čas spokojen. Ale tak to být nemusí V roce 1922 leningradský matematik Alexandr Frid-man (1888-1925) přepsal Einsteinovy rovnice pro homogenní a izotropní vesmír do tvaru, který měl názorný fyzikální význam [1]. V něm vystupuje veličina R(t), která popisuje, jak závisejí na čase vzdálenosti kterékoliv dvojice bodů v trojrozměrném prostoru. Jeho krok lze pro případ kladné křivosti prostoru přiblížit jednoduchou analogií s nafukováním míče na obrázku 3. Metriku na povrchu koule, tj. předpis, jak spočítat vzdálenosti dvou bodů, lze napsat různým způsobem, například pomocí úhlů takto do2 = R2(t)(d62 + sin2É%2) = R\t)díl2 (I) kde R(t) je poloměr koule, který může záviset na čase a0 ct vzdaluje s rychlostí větší, než je rychlost světla, a v dů- Obr. 4 Georges E. Lemaitre (1894-1966) a Albert Einstein. https://ccf.fzu.cz » 0 čtyři roky později Lemaitre přišel s ještě revolučnější hypotézou, když formuloval základní myšlenku modelu velkého třesku, W I 404 Aktuality » Objev reliktního záření zasadil smrtelnou ránu konkurenčnímu modelu ustáleného vesmíru a znamenal také konec pochybnosti o realitě rozpínání vesmíru. W • • JT ^ i • • S HSThNOL Obr. 5 Závislost rychlosti vzdalování galaxií na jejich vzdálenosti z původní práce E. Hubblea [5]. sledku toho s námi může komunikovat stále větší objem prostoru. Pro exponenciální závislost škálovacího faktoru je ovšem Hubbleův poloměr v čase konstantní, takže vzdalující se galaxie spojitě mizi nenávratně za horizontem. Místo nich se ovšem v prostoru mezi nimi rodí hmota, z níž podle Hoyleho vznikají nové galaxie, a díky tomu vesmír vypadá pořád stejně. Tato myšlenka nebyla sice absurdní, ale konkrétní mechanismus, jak k tomu dochází, však Hoyle nedokázal specifikovat. Hoyle jé také autorem názvu „velký třesk" (Big Bang). V pořadu BBC 28. 3. 1949 Hoyle popsal podstatu svého modelu ustáleného vesmíru a konfrontoval ho s „hypotézou, že všechna hmota ve vesmíru vznikla v jednom velkém třesku ve vzdálené minulosti", kterou považoval za „nepřijatelnou z fyzikálních i filosofických důvodu'. Jak (ne)vznikaly prvky Jeden z mála, kdo bral myšlenky Fridmana a Lemaitra 0 rozpínání vesmíru vážně, byl rusko-americký teoretický jaderný fyzik George Gamow (1904-1968), který byl krátkou dobu i Fridmanovým žákem. Společně se svým doktorandem Ralphem Alpherem a Robertem Hermanem se v letech 1946-1950 zabývali otázkou, jak ve vesmíru vznikly prvky, z nichž se časem vyvinuly celé galaxie. Nezajímalo je, jak konkrétně vesmír vznikl, ale přijali základní rámec Lemaitrova modelu a předpokládali, že vesmír byl v prvních okamžicích své existence zaplněn „polévkou" (vysoce stlačeným a horkým plynem) složenou z neutronů, které se rozpadaly na protony a elektrony, a ta v důsledku rozpínání prostoru chladla [9]. Kromě hmoty bylo přítomno 1 záření (fotony), které interagovalo s elektrony a protony. Je zajímavé, že používali Fridmanovy rovnice, ale ve všech svých pracích se odkazovali na pozoruhodnou monografii amerického fyzikálního chemika a matematika Richarda Tolmana Relativita, termodynamika a kosmologie z roku 1934 [10], jejíž část je věnována velmi podrobnému popisu Lemaitrových prací. Gamow se původně domníval, že během tohoto procesu postupným záchytem neutronů na protonech vzniknou všechny prvky ve vesmíru, ale později se ukázalo, že tímto způsobem mohlo vzniknout jen několik nejlehčích prvků, především deuterium a helium, zatímco těžší jádra vznikala až ve hvězdách. V práci [11] Alpher s Hermanem vyšetřovali v rámci modelu rozpínajícího se vesmíru časový vývoj systému hmoty a záření od počátku až po současnou dobu a došli k závěru, že záření, tedy světlo pocházející z té doby, by dnes mělo mít teplotu kolem 5 kelvinu. Odhad byl správný, ale argumenty nikoliv. Tato éra vývoje vesmí- ru je popsána ve skvělé knížce Stevena Weinberga První tři minuty [12], kde je také vysvětleno, proč v husté polévce první etapy vývoje vesmíru nemohla vzniknout těžší jádra, proč a kdy se z této polévky oddělilo reliktní záření a jak tyto skutečnosti citlivě závisejí na vlastnostech jader a atomu vodíku a pravděpodobnosti srážek protonů a neutronů při nízkých energiích. Štěstí přeje připraveným Počátkem 60. let minulého století existovaly minimálně dva konkurenční modely vesmíru, ale prakticky žádná data, která by rozhodla o tom, zda některý, resp. který je blíže skutečnosti. A do této situace přišel objev záření, které svou anténou v roce 1964 pozorovali dva američtí radioastronomové Robert Wilson a Arno Pen-zias z Bellových laboratoří a jehož původu nerozuměli. Jejich anténa byla vyladěna na detekci elektromagnetických vln s vlnovou délkou 7 cm a šum, který zaznamenávali, i když odstranili všechny známé možné zdroje pozadí, odpovídal intenzitou teplotě 3,5±1 K. Po roce marného hledání příčiny šumu se obrátili na skupiny fyziků na nedaleké Princetonské univerzitě, kterou vedl Robert Dicke a jejímž členem byl i mladý teoretik James Peebles. Podobně jako Alpher s Hermanem i Peebles s Dickem uvažovali rozpínající se horkou polévku, které říkali „prvotní ohnivá koule (fireball)", a nezávisle na nich došli k závěru, že by po této etapě ve vesmíru mělo zůstat svědectví ve formě elektromagnetického záření s vlastnostmi záření absolutně černého tělesa o teplotě maximálně 40 K. Dickeho skupina proto připravovala anténu pro měření takového záření při vlnové délce 3 cm. Po informaci o výsledku měřeni Wilsona a Penziase Dicke s Peeblesem okamžitě pochopili, že detekovali to, co hledali i oni. Výsledkem diskuze obou skupin byly dva články, které vyšly hned za sebou. Je zajímavé, že nejdříve vyšel článek Dickeho skupiny o teoretické interpretaci [13], a teprve po něm Wilsonův a Penziasův o výsledcích jejich měření [14]. Objev reliktního záření zasadil smrtelnou ránu konkurenčnímu modelu ustáleného vesmíru a znamenal také konec pochybností o realitě rozpínání vesmíru. Na druhé straně tento objev byl jen začátkem cesty k podrobnému zkoumání vlastností reliktního záření a jejich využití pro pochopení vzniku a vývoje vesmíru. Předně bylo třeba prokázat, že reliktní záření má opravdu charakter záření absolutně černého tělesa, jehož hustota u{v) závisí na frekvenci v podle Planckovy formule dít dv 8nvz hv hv / e ikT-i Penzias a Wilson detegovali reliktní záření při jediné vlnové délce 7 cm, a proto bylo velmi důležité, že měření Dickeho skupiny při vlnové délce 3 cm již v roce 1966 leželo na stejné křivce, odpovídající teplotě 3,5 K jako měření Wilsona a Penziase. Všechna měření, která od té doby proběhla v širokém rozsahu frekvencí, tuto klíčovou vlastnost reliktního záření potvrdila. Návrat éteru Měření Wilsona a Penziase pokrývalo jen část nebeské sféry a při uvedené přesnosti nevykazovalo žádnou závislost na směru, odkud záření přicházelo. Na tomto místě je třeba připomenout jednu důležitou vlastnost modelu rozpínajícího se vesmíru: Fyzikální procesy můžeme popisovat v libovolném referenčním systému, https://ccf.fzu.cz č. 6 II Čs. čas. fyz 69(2019)1 405 ale vztahy (2-7) platí v jediném, který do jisté míry připomíná absolutní prostor Newtona. Na pozadí rozpínajícího se prostoru (například povrchu nafukovaného míče na obr. 3) se mohou pohybovat objekty, ale v referenčních soustavách spojených s nimi nebude platit Hubbleův-Lemaitrův zákon, například některé blízké galaxie se k nám mohou přibližovat. Tak je tomu i ostatně i na obrázku 5. Stanovit rychlost pohybu naší Země, resp. Sluneční soustavy vůči této referenční soustavě měřením rudého posuvu je prakticky nemožné, protože galaxie se vůči němu pohybují. Potřebné stabilní okolí však poskytuje právě reliktní záření, které se šířilo rozpínajícím se prostorem téměř volně od okamžiku, kdy se oddělilo od nabitých částic, a mělo by mít ve všech směrech přesně stejné vlastnosti, tedy teplotu. Referenční systém, v němž je reliktní záření přesně izotropní (dále „reliktní pozadí") je analog éteru 19. století, v němž se podle představ fyziků 19. století mělo šířit světlo, tak jako se zvuk šíří vzduchem. Nalézt projevy pohybu objektů vůči éteru se Michelsonovi a dalším fyzikům nepodařilo a Einstein na základě toho vytvořil speciální teorii relativity. James Peebles jako jeden z prvních pochopil, že je-li představa o první etapě vývoje vesmíru správná, mělo by být možné detegovat projevy pohybu naší Země vůči reliktnímu pozadí, a proto by neměla být teplota reliktního záření úplně stejná ve všech směrech. V práci z roku 1968 [15] odvodil vztah pro závislost teploty reliktního záření na směru v důsledku pohybu Země vůči reliktnímu pozadí, která měla charakter dipólu, tj. vyšší teplota v jednom směru a nižší v opačném. Změření této závislosti bylo pro potvrzení modelu klíčové. Je dobré připomenout, že rychlost oběhu Země kolem Slunce je 30 km za vteřinu a rychlost oběhu Slunce kolem středu Mléčné dráhy je asi 300 km za vteřinu. Trvalo ovšem zhruba deset let, než se přesnost měření teploty reliktního záření dostala na úroveň milikelvinů a efekt byl potvrzen: naše Sluneční soustava se pohybuje vůči reliktnímu pozadí rychlostí cca 370 km/s zhruba ve směru souhvězdí Lva a celá naše Galaxie rychlostí cca 600 km/s ve směru souhvězdí Hydry. Moderní vizualizace tohoto efektu, jak ho změřila sonda COBE v roce 1992, je na obr. 6, kde je zachycena teplota mikrovlnného záření přicházející z celé nebeské sféry v tzv. Mollweidově projekci, v niž pravý a levý okraj elipsy na sebe navazují. Zlatý důl Otázka, jak se z prvotní husté polévky zrodila dnešní struktura vesmíru, tedy hvězdy, galaxie a jejich shluky, sice stále zůstala nezodpovězena, ale bylo zřejmé, že odpověďspočívá v tom, že se již v prvotní husté polévce -3354 3354uK_CMB Obr. 6 Dipólová anizotropie reliktního záření, jak ji změřila sonda COBE. Červená barva představuje směry, odkud přichází záření s vyšší teplotou, než je průměrná, modrá s nižší. Obr. 7 Mapy anizotropie reliktního záření změřené sondami COBE, WMAP a Plaňek. v raném stadiu vývoje vesmíru nějakým mechanismem vytvořily nehomogenity hustoty hmoty, které se staly zárodky pro vznik struktur v dnešním, na první pohled velmi nehomogenním vesmíru. Zlatým dolem při hledání odpovědi na tuto otázku se ukázalo být ještě přesnější měření teplotních anizo-tropií reliktního záření, které provedly tři sondy: COBE v roce 1992, WMAP v roce 2003 a PLANCK v roce 2013. Obrázky zachycující mapy těchto anizotropií ve zmíněné projekci jsou na obr. 7. Je zjevné, že mapy jsou s postupem doby podrobnější a přesnější: uvnitř spojitě červených nebo modrých oblastí na mapě COBE rozeznaly WMAP a PLANCH jemnější struktury, které se od střední hodnoty 2,725 K liší zhruba o desetitisícinu, tj. jsou asi desetkrát citlivější než mapa COBE. Na všech třech mapách byla dipólová anizotropie odečtena. Předpoklad, že vesmír byl na začátku homogenní a izotropní, se zdá přirozený, ale ve skutečnosti to v případě rozpínajícího se vesmíru předpokládá velmi speciální počáteční podmínky. Problém lze ilustrovat právě na téměř přesné izotropii reliktního záření. Ve vesmíru je asi miliarda fotonů na jeden proton (toto číslo je velmi důležité, ale jeho vysvětlení je mimo rámec tohoto článku) a při tomto poměru ztratily fotony schopnost rozbíjet atomy vodíku, které vznikaly spojením elektronů a protonů při teplotě cca 3 000 K a dál se mohly šířit téměř volně. Teplota dnešních reliktních fotonů znamená, že se vesmír zvětšil od okamžiku, kdy se fotony oddělily od neutrálních atomů asi 1000krát. Standardní výpočty chladnutí prvotní polévky složené z hmoty a záření dávají pro tento okamžik čas cca 400 tisíc let od počátku, aniž specifikujeme, co konkrétně jím bylo. Oblasti prostoru, které mohly v té době spolu komunikovat, tzn. byly uvnitř Hubbleova poloměru a mohly tedy mít stejnou teplotu, by dnes na tps://ccf.f zu.cz 406 Aktuality yy Po vice než padesáti letech můžeme říci, že reliktní záření hraje pro pochopení vývoje a současného stavu vesmíru podobnou roli, jako měla Rosettská deska pro rozluštěni egyptských hieroglyfů. nebeské sféře zabíraly maximálně 2 prostorové stupně. Skutečnost, že reliktní záření je tak izotropní ve všech směrech, bylo proto tehdy nepochopitelné a vyžadovalo tzv. jemné naladění počátečních podmínek. To nemají fyzikové rádi. Návrh řešení tohoto a dalších problémů tehdejší standardní kosmologie (založené na Fridmanových rovnicích pro vesmír s hmotou a zářením) přinesla myšlenka z přelomu 70. a 80. let minulého století, že v počáteční fázi prostor prošel velmi krátkou dobou extrémně rychlého rozpínání, během níž se nafoukl o několik desítek řádů. V důsledku toho oblasti, které podle standardních představ o vývoji vesmíru spolu při vzniku reliktního záření komunikovat nemohly a jejichž vlastnosti by tedy neměly být stejné, byly před inflací uvnitř Hubbleova poloměru a komunikovat spolu mohly. Toto prudké nafouknutí, kterému se říká kosmologická inflace a které lze označit za „velký třesk" velkého třesku, také „narovnalo" prostor, takže dnes se jeví jako plochý. A také vygenerovalo z kvantových fluktuací nehomogenity hustoty hmoty. Všechny tyto skutečnosti se obtiskly do vlastností reliktního záření, především jeho jemné anizotropie. Podrobná a netriviální analýza map anizotropií změřených sondami COBE, WMAP a Plaňek svědčí o tom, že současný vesmír má tyto vlastnosti: ■ prostor je plochý; ■ známé baryony (protony a neutrony) představují asi 4% celkové hustoty energie; ■ kromě těchto baryonů musí být přítomna i tzv. temná hmota, tj. částice, které zatím neznáme a jež činí cca 23 % hustoty energie; ■ zbytek, tj. cca 73% současné hustoty energie, nese tzv. temná energie, jejíž působení odpovídá kosmologické konstantě, ale o jejíž podstatě nevíme nic; ■ dnešní struktura vesmíru na velkých vzdálenostech je důsledkem nehomogenit hustoty hmoty, které vznikly v prvních cca 400 tisících letech po inflačním stadiu vývoje vesmíru. James Peebles a současná kosmologie Po více než padesáti letech můžeme říci, že reliktní záření hraje pro pochopení vývoje a současného stavu vesmíru podobnou roli, jako měla Rosettská deska pro rozluštění egyptských hieroglyfů. Rozluštění tajemství skrytého v reliktním záření bylo výsledkem kombinace přesných měření a výrazného pokroku v teoretickém popisu vývoje prvotní polévky, která připravila podmínky a stavební kameny pro tvorbu hvězd a galaxií. James Peebles k tomu přispěl v téměř všech klíčových aspektech a svými pracemi během uplynulých více než padesáti let zásadním způsobem přispěl k transformaci kosmologie z oblasti spekulací na skutečnou vědu. Jeho monografie Physical Cosmology z roku 1972 a výrazně doplněné Principles of Physical Cosmology z roku 1993 se staly biblí moderní kosmo- logie. O dipólové anizotropii reliktního záření jsem se již zmínil, o dalších jen krátce. ■ Peebles jako první kvantitativně ukázal, že v prvotní polévce mohly vzniknout jen lehké prvky. Jeho výpočet z roku 1966, že 26-30 % procent hmotnosti vesmíru je tvořeno héliem, je až překvapivě blízko dnešním hodnotám. ■ Zabýval se vlivem reliktního záření na formaci galaxií. ■ Přispěl zásadním způsobem ke kvantitativnímu pochopení šíření nehomogenit hustoty hmoty v prvotní polévce a ukázal, jak by se měly tyto nehomogenity projevit v anizotropii reliktního záření. ■ Zabýval se možnou dominancí temné hmoty na teplotní anizotropie reliktního záření a nehomogenit „normální" hmoty, z níž vznikaly galaxie. ■ Jako jeden z prvních uvažoval scénář, v němž je současný vesmír dominován vlivem kosmologické konstanty. Je zajímavé, že v jedné své práci na toto téma citoval práci Lemaítra z roku 1933. Podrobnější komentář k zásadním pracím Jamese Peeblese je v materiálu Scientific Background on the Nobel Prize in Physics 2019 [16], vydaném Švédskou akademií věd k uděleným cenám. Díky Peeblesovi toho o vzniku a vývoji vesmíru víme hodně, ale dvě klíčové otázky zůstávají stále nezodpovězené: co tvoří temnou hmotu a co je podstatou temné energie? James Peebles má stále o čem přemýšlet. Literatura [1] A. Friedman: „Über die Krümmung des Raumes", Z. Phys. 10, 377 (1922). [2] A. Einstein: „Bemerkungen zu der Arbeit von A. Friedman .Über die Krümmung des Raumes'", Z. Phys.l 1, 326 (1922). [3] A. Einstein: „Notiz zu der Arbeit von A. Friedman .Über die Krümmung des Raumes'", Z. Phys. 16, 228 (1922). [4] G. Lemaitre: „Un Univers homogene de masse constant et de rayon croissant, rendant compte de la vitesse radiale des nébuleuse extra-galactiques", Ann. Soc. Sei. Bruxelles 47A, 49 (1927), anglický překlad: G. Lemaitre: „A homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae", M.N.R.A.S. 41, 483 (1931). [5] E. A. Hubble: „ A relation between distance and radial velocity among extra-galactic nebulae", PNAS 15,168-173 (1929). [6] G. Lemaitre: „The beginning of the world from the point of view of quantum theory", Nature 127, 706 (1931). [7] G. Lemaitre: „Evolution of the expanding universe", M.N.R.A.S. 20, 12(1934). [8] F. Hoyle: „A new model for the expanding universe", M.N.R.A.S. 108, 372(1948) [9] R. Alpher, H. Bethe, G. Gamow: „The Origin of'Chemical Elements", Phys. Rev. 73, 803 (1948). [10] R. Tolman: Relativity, Thermodynamics and Cosmology. Clarendon Press, Oxford 1934. [11] R. Alpher, R. Herman: „Remarks on the Evolution of the Expanding Universe", Phys. Rev. 74, 1089 (1949). [12] S. Weinberg: První tři minuty. Mladá fronta, Edice Kolumbus, Praha 1998. [13] R. H. Dicke, P. J. E. Peebles, P. G. Roll a D. T. Wilkinson: „Cosmic black-body radiation", Astrophys. J. 142,414 (1965). [14] A. A. Penzias a R. W. Wilson: „A measurement of excess antenna temperature at 4080 Mc/s", Astrophys. J. 142,419 (1965). [15] P. J. E. Peebles, D. Wilkinson: „CommentontheAnisot.ro-py of the Primeval Fireball", Phys. Rev. 174, 174 (1968). [16] https://www.nobelprize.org/uploads/2019/10/advanced--physicsprize2019-3.pdf https://tcf.fzu,cz