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Among the several new courses added to the BC high school 
curriculum, the History of Mathematics course may raise the 
most eyebrows. Although topics in geometry and statistics are 
often offered in other jurisdictions, the history of mathematics 
seldom exists as its own course except for teacher training in some 
American colleges. Even then, the goal is to provide background 
to help prospective teachers design their mathematics classes, not 
to prepare to teach the subject on its own. Why does the subject 
deserve sustained attention in its own course?

Among many possible answers to this question, I find mine in the 
phrase “humanizing mathematics”. By definition, mathematics is 
an activity performed by humans, intended for a human audience. 
The fact that the phrase exists at all is as clear a sign as can be that 
many students are missing the point of mathematics. To them it 
is a noun—a collection of abstractions—rather than a verb, a kind 
of activity. Laudably, curricula are growing in the ability to pass 
along problem solving strategies to our students. But this is not 
enough. As the new BC math curriculum emphasizes, we need to 
raise with our students the bigger questions. Why is mathematics 
so successful in understanding the physical world? Why did 
we choose to represent unknown quantities with letters? What 
is different about how we use mathematics to affect our world, 
compared to those who went before?

After four years of intense study of undergraduate mathematics, 
I had no idea why the questions my professors were answering in 
their lectures were important. In a sense, then, I chose my career in 
the history of mathematics as an escape from irrelevance. Many of 
our students, especially those not immediately attracted to STEM, 
need a big picture to feel part of the conversation. The questions 
above were not written by me. They are taken from a list of “why” 
questions I solicited from my humanities-oriented history of 
mathematics students at the beginning of my course. They shied 
away from math not just because they don’t feel competent, but 
also because they have not heard answers that are meaningful to 
the way they think.

Why History of Mathematics?

The history of mathematics can reach these students in several 
ways:

Motivation: All mathematical subjects arose due to some need, 
sometimes within mathematics but often from outside of it. 
Students who participate in an environment where the need comes 
first will recognize that what they are doing means something, and 
will be inspired to pursue solutions. In such a setting, it is natural 
to portray mathematics properly as inquiry rather than as edifice. 
Now, the demand for mathematics today is often portrayed to come 
from science and technology, and certainly such motives are more 
than appropriate for the classroom. But let’s broaden the possible 
options with an example from well outside of science—local 
practices of art. From basket weavers in Mozambique to modern 
musicians using 20th century mathematical objects like fractals in 
their compositions, the creative artistic process has often provoked 
mathematical questions. 

One such episode is records of meetings between artisans and 
geometers in late 10th-century Iraq, some written by the great 
mathematician Abū’l-Wafā’. Decorations of walls in palaces were 
not to include images of people or animals, for religious reasons. 
Instead, the local artisans designed elaborate geometric patterns, 
many of which still grace the walls of historic Muslim buildings. 
The most famous example is the spectacular Alhambra, a palace 
in Granada, Spain (see Figure 1). These patterns are born from 
simple geometric constructions that are repeated to tile the entire 
plane. Then, each line segment or arc in the diagram is elaborated 
in some way. The results can be stunning. For instance, Abū’l-
Wafā’ describes how to embed an equilateral triangle in a square, 
as follows (Figure 2): extend the base GD by an equal distance to 
E. Draw a quarter circle with centre G and radius GB; draw a half 
circle with centre D and radius DE. The two arcs cross at Z. Then 
draw an arc with centre E and radius EZ downward, to H. If you 
draw AT = GH and connect B, H, and T, you will have formed the 
equilateral triangle. (If you want to prove it, connect GZ and ZD. 
Consider first the angles in triangle GZD; next, consider the angles 
in triangle BGZ. After that, you’re on your own!)

by Glen Van Brummelen
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Figure 1: A wall at the Alhambra (Granada, Spain)
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Figure 2: Abū’l-Wafā’’s construction of an equilateral triangle in a 
square

Research: Having posed bigger problems, we are responsible to 
provide resources for tackling them. History is an obvious tool here 
as well; after all, Euclid, Newton, Euler and others became who 
they are because of their ability to solve the big problems. We learn 
how to approach problems from those who went before us. Often 
their major insights have involved some sort of leap across the gap 
between the divide in mathematics between arithmetic and 
geometry. For instance, the recognition that the function ( )f x ex=  
is its own derivative allowed Euler and his successors to solve many 
differential equations — and, with the introduction of i 1= - , he 
was able to combine the inherently geometric discipline of 
trigonometry with the algebraic analysis of exponential growth 
into an amazing unity.

Closer to the 11th grade classroom, we turn to ancient Babylonian 
schoolchildren’s solutions to the quadratic equation, which were 
based on “cut-and-paste” geometry. Consider one tablet where a 
child solves x x3

2
12
72 + = . Although his geometry operates below the 

surface of the text, it is clear that the reasoning is as follows: x2  is 
a square whose side is the unknown x; x3

2  is a rectangle with sides  

and x. Combine them (Figure 3a), and the resulting rectangle has 
area 127 . Cut off half the original  rectangle and move it below the 
square. The result is a shape that is almost a square, but with a small 
shaded square left out. Its area is 31 3

1
9
1# = . If we add the shaded 

square, we know that the larger square of Figure 3b has area 
12
7

9
1
36
25+ = , so its side length is 65 . But the side length is also x 3

1+ , 

so x 6
5
3
1
2
1= - = .

Figure 3a: A Babylonian quadratic equation

 

Figure 3b

This process does a lot more than solve a quadratic equation; it 
proves the quadratic formula. Besides gaining the quadratic formula 
as a tool for future use, students learn several significant lessons 
about problem solving. Observing the successes of our predecessors 
can lead to ideas for our own successes as well. Changing the way a 
problem is represented (in this case, from algebra to geometry) can 
lead to surprising insights and novel solutions. Most importantly, 
they see that mathematics moves from the “mess” of the struggle 
to the discovery of paths to resolution.
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Critical Thinking: Every mathematical community makes shared 
decisions about the validity and power of various competing 
approaches. For instance, medieval Indian mathematical 
astronomers were comfortable using iterative solutions to 
equations—a series of guesses or approximations, each one 
improved over the previous one using some procedure. However, 
ancient Greek and medieval Islamic astronomers preferred direct 
arguments and calculations. This may be due to a commitment to 
pure mathematics as the only path to true knowledge, propounded 
by the great astronomer Claudius Ptolemy. It is difficult for modern 
students to understand that such commitments are also present 
today. For instance, we represent geometric magnitudes like 
lengths and areas using numbers—a choice that practitioners of 
the Euclidean tradition rejected. As a result, our mathematics leans 
heavily toward arithmetic and algebra, exploiting the power that 
these algorithmic methods provide. In order to think creatively, one 
needs to make informed judgments about such alternate avenues 
of attack; one must know what the community’s rules are before 
one decides to bend or break them.

Consider, for example, the curious case of 12th-century Iranian 
scholar Ibn Yahyā al-Samaw’al al-Maghribī, who late in his life 
composed Exposure of the Errors of the Astronomers in which he 
pointed out dozens of what he perceived to be mistakes in the 
works of his colleagues and ancestors. One of these episodes 
involved finding a value for sin1o from a given value of sin3o. To 
find a precise solution turns out to require solving a cubic equation, 
and this cannot be done with geometric methods—it is equivalent 
to the problem of trisecting the angle with ruler and compass, now 
known to be impossible. Violating his own commitment to the 
perfection of mathematics, Claudius Ptolemy had been forced into 
approximating (an equivalent of) sin1o. Al-Samaw’al’s creatively 
restored the role of pure mathematics in philosophy by redefining 
the number of degrees in a circle from 360 to 480. The sine of 3° 
becomes the sine of four units, and he can apply the sine half-angle 
formula twice to find the sine of one unit. Sometimes, changing 
the rules of one game allows one to conform better to the rules of 
another.

Implications: Students motivated by humanistic questions admit 
readily that mathematics has had a major effect on our world, 
but usually they can speak only vaguely about its uses in modern 
science and technology. This lack of clarity contributes significantly 
to the widespread misperception that mathematics is only a toolbox 
of algorithms allowing manufacturers and tech firms to build new 
devices. Witnessing the various breakthroughs that have changed 
how people live their lives and perceive their world can bring these 

students to a deeper appreciation of mathematics as much more 
than a calculating machine, but rather a living discipline and driver 
of social change.

The biggest driver of social change these days in fact a calculating 
machine, the computer. In both the 19th and 20th centuries, 
mathematicians studied algorithms themselves, recognizing both 
their power and their limitations. The person usually considered to 
be the first to compose an algorithm implementable on a computer 
was Ada Lovelace (1815-1852), daughter of poet Lord Byron. She 
maintained a working relationship with Charles Babbage, whose 
Analytical Engine would have been easily the first real computer, if 
it had ever been built. Lovelace gave a prescription for computing 
Bernoulli numbers (fundamental in number theory), and was one 
of the few at this time to consider the possibility that the Analytical 
Engine or a machine like it could do much more than just 
calculation—although she rejected the possibility of true artificial 
intelligence. This remarkably early analysis of algorithms reached 
an extraordinary conclusion with the work of Julia Robinson 
(1919-1985), an important figure in the resolution of Hilbert’s 
tenth problem. This problem asked whether a computer algorithm 
can be written to determine whether a Diophantine equation has 
any integer solutions. The answer, “no”, implies that as powerful 
as computers are, there are some things—meaningful things—that 
they simply cannot do.

Many of the changes brought about by mathematics were not in 
the realm of science and technology. Consider the birth of non-
Euclidean geometry. In the early 19th century, after dozens of failed 
attempts to prove statements equivalent to the assertion that the 
angles of a triangle sum to 180°, three separate mathematicians 
considered the unthinkable: what if it’s false? Carl Friedrich 
Gauss, Nicolai Lobachevsky, and János Bolyai discovered that 
a new and consistent geometry may be born from denying this 
assumption. Through this bold step, they created “worlds out of 
nothing”: elliptical and hyperbolic geometry. These non-Euclidean 
geometries remained creations of the mind for decades, but starting 
in the early 20th century they have become candidate models for 
the geometry of the universe in which we live. This episode reveals 
that seemingly obvious assumptions that have stood for millennia 
are not necessarily on solid ground.

Students aware of cosmic shifts like these participate in a rich 
educational experience. They are able to orient themselves within 
the intellectual landscape, and are can act in their profession with 
reflectiveness and purpose.
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Communication: The rich settings exemplified here provide 
ample opportunity for our students to expand their options for 
writing and otherwise presenting ideas in a mathematics class. 
History encompasses entire narratives from initial conception to 
final product and societal impact, providing rich opportunities 
for interpretive short answers and essays that can go far beyond 
learning how to write up an effective solution.

Diversity: Attempts to improve intercultural understanding, 
including with indigenous societies, have been spreading 
throughout the school curriculum. Mathematics poses a unique 
quandary for these efforts, since most popular accounts send 
the message that mathematics is separate from culture. “Isn’t  for 
everyone?” Curricular projects have been helping to bring to the 
classroom certain examples of indigenous mathematics realized in 
daily life, extending the project of ethnomathematics that has been 
working on such matters for a few decades. However, history also 
can help to deepen considerably our questioning of how culture 
affects mathematics. Why are western cultures the only ones to use 
axiomatic-deductive systems to verify mathematical knowledge? 
Are other ways of knowing mathematics possible or desirable? Can 
one think differently than we do now?

A simple example of a positive answer to this question comes from 
pre-modern China. Figure 4a is a standard diagram representing 
two similar triangles; we all recognize that b

a
d
c= . Chinese 

geometers and surveyors rarely used this ubiquitous tool. Rather, 
they relied on the in-out complementarity principle. In Figure 4b, 
the large rectangle is cut by a diagonal line. At any point on the 
diagonal, draw vertical and horizontal lines. The reader might 
pause here to consider why the two shaded rectangles have the 
same area … Now that you have paused, we see that the two 
rectangles’ areas are ad bc= , which of course is equivalent to b

a
d
c= . 

The two methods are able to accomplish the same geometric goals, 
but using the in-out complementarity principle can lead to 
diagrams and thought processes that look very different from those 
produced by the use of similar triangles.

Figure 4a: Similar triangles

Figure 4b: The in-out complementarity principle

Of course, who has the opportunity to do the thinking is just as 
important as how the thinking is done. In this respect, the human 
race does not have a very good track record in allowing equal 
participation for everyone in all societal endeavours, including 
mathematics. It is an uncomfortable but unavoidable fact, for 
instance, that that very few women have been in a position 
to be able to contribute to pushing forward the boundaries of 
mathematical knowledge until quite recently (and even now, 
equality has not yet close). A history of mathematics course can 
engage in these issues readily. One approach that historians are 
starting to take to help bring female stories to the forefront is 
to illuminate their experiences with mathematics in other ways, 
especially in their education. This broadens what we mean by “the 
history of mathematics”, making it more inclusive of all aspects of 
human experience. This approach is in its early stages, but see pp. 
59-68 of Jacqueline Stedall’s The History of Mathematics: A Very 
Short Introduction for a good start.

My colleague Clemency Montelle (University of Canterbury, NZ) 
and I are working on a book to bring episodes like these to the 
classroom and to the general public. In the meantime, we conclude 
with a list of resources for teachers to help design interesting and 
effective lesson plans.
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Resources:

This list is not intended to be comprehensive. There are a 
number of general textbooks in the history of mathematics; 
some are more appropriate than others for a high school course.

Berlinghoff, William; and Gouvea, Fernando. Math Through 
the Ages: A Gentle History for Teachers and Others, 2nd edition, 
Farmington, ME: Oxton House, 2014.

 » A compact and accessible, yet surprisingly deep text. Contains a 
nutshell history of the subject and 30 short episodes appropriate 
for the high school classroom. An expanded edition published 
by the Mathematical Association of America contains 60 extra 
pages of questions and projects.

Katz, Victor. A History of Mathematics, 3rd edition, Boston: Addison 
Wesley, 2009.

 » At a higher level, but as authoritative as history of mathematics 
textbooks get.

Barrow-Green, June; Gray, Jeremy; and Wilson, Robin. The History 
of Mathematics: A Source-Based Approach, 2 vols., Washington, 
DC: MAA Press, 2019 (due to appear in May).

 » A comprehensive text that emphasizes working with original 
historical materials.

Shell-Gellasch, Amy; and Thoo, John B. Algebra in Context: 
Introductory Algebra from Origins to Applications. Baltimore: Johns 
Hopkins University Press, 2015.

 » Contains a wealth of historical episodes from number systems 
to number theory.

Stedall, Jacqueline. The History of Mathematics: A Very Short 
Introduction. Oxford, UK: Oxford University Press, 2012.

 » Not a survey of historical developments in mathematics, but 
rather a short statement of recent approaches to the subject 
that are opening up the history of mathematics to new ways 
of thinking.

Joseph, George Gheverghese. The Crest of the Peacock: Non-
European Roots of Mathematics, 3rd edition, Princeton, NJ: 
Princeton University Press, 2011.

 » The most comprehensive general source for the mathematics 
of non-western civilizations.

Shell-Gellasch, Amy; and Jardine, Dick, eds. The Courses of History: 
Ideas for Developing a History of Mathematics Course, Washington, 
DC: MAA Press, 2017.

 » A varied collection of approaches to designing a history of 
mathematics course.

MAA Convergence, https://www.maa.org/press/periodicals/
convergence

 » A high quality free online journal designed “to help you teach 
mathematics using its history”. Geared to 8th grade through 
undergraduate.

The Story of Maths, BBC/Open University, 2008.

 » This comprehensive four-part documentary series takes a 
multi-cultural approach. Its last episode, uniquely, takes on 
the implications of mathematical developments from the 20th 
century to almost the present day.

Transformational Instruction in Undergraduate Mathematics via 
Primary Historical Sources (TRIUMPHS), https://blogs.ursinus.
edu/triumphs/

 » A five-year National Science Foundation-funded project to 
develop teaching modules for the undergraduate mathematics 
curriculum based on original sources. Some of the units deal 
with high school mathematics as well. They are looking for site 
testers at the moment.


