CHAPTER-l 3

Complex Numbers
and Functions

Complex numbers and their geometric representation in the complex plane are discussed
in Secs. 13.1 and 13.2. Complex analysis is concerned with complex analytic functions
as defined in Sec. 13.3. Checking for analyticity is done by the Cauchy-Riemann
equations (Sec. 13.4). These equations are of basic importance, also because of their
relation to Laplace’s equation.

The remaining sections of the chapter are devoted to elementary complex functions
(exponential, trigonometric, hyperbolic, and logarithmic functions). These generalize the
familiar real functions of calculus. Their detailed knowledge is an absolute necessity in
practical work, just as that of their real counterparts is in calculus.

Prerequisite: Elementary calculus.
References and Answers to Problems: App. 1 Part D, App. 2.

13.1 Complex Numbers. Complex Plane

Equations without real solutions, such as x2 = —1orx%— 10x + 40 = 0, were observed
early in history and led to the introduction of complex numbers.! By definition, a complex
number z is an ordered pair (x, y) of real numbers x and y, written '

z=(x).
x is called the real part and y the imaginary part of z, written
x = Rez, y=1Im z.

By definition, two complex numbers are equal if and only if their real parts are equal
and their imaginary parts are equal.
(0, 1) is called the imaginary unit and is denoted by i,

(4] i=(0,1).

First to use complex numbers for this purpose was the Italian mathematician GIROLAMO CARDANO
(1501-1576), who found the formula for solving cubic equations. The term “complex number” was introduced
by CARL FRIEDRICH GAUSS (see the footnote in Sec. 5.4), who also paved the way for a general use of
complex numbers.
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SEC. 131  Complex Numbers. Complex Plane 603

Addition, Multiplication. Notation z = x + iy

Addition of two complex numbers z; = (x1, y;) and z5 = (X9, Vo) is defined by
(2) 21 T 29 = (0, y1)  (xg, y2) = (X + X, y1 7+ Ya)
Multiplication is defined by
3) 2129 = (X7, y)(xg, yo) = (x1Xp — Y1y, X1y2 T X2¥1).

In particular, these two definitions imply that

(x1, 0) + (x2, 0) = (x1 + X2, 0)
and
(xlﬂ O)(-XZ’ 0) = (X1X2, O)

as for real numbers x;, xo. Hence the complex numbers “extend” the real numbers. We
can thus write

(x, 0) = x. Similarly, ©,y) =1y
because by (1) and the definition of multiplication we have
iy=1(0,y=(, )y,0=@0y—=1:0, 0:0+ 1-y)=1(0,y).

Together we have by addition (x, y) = (x, 0) + (0, y) = x + iy:
In practice, complex numbers z = (x, y) are written

4) =% tiy
orz =x + yi, e.g., 17 + 4i (instead of i4).

Electrical engineers often write j instead if i because they need i for the current.
If x = 0, then z = iy and is called pure imaginary. Also, (1) and (3) give

(%) ==

because by the definition of multiplication, i* = ii = (0, 1)(0, 1) = (=1, 0) = —1.
For addition the standard notation (4) gives [see (2)]

(x1 Fiyy) + (x2 T iye) = (X3 + x9) + i(y; + yo).

For multiplication the standard notation gives the following very simple recipe. Multiply
each term by each other term and use i> = —1 when it occurs [see (3)]:

(x1 T y)(xg + iyg) = X9xg + ixyyg T iyxg + i2}’1)’2
= (XX — y1Y2) T i(X1yg + Xa2¥7).

This agrees with (3). And it shows that x + iy is a more practical notation for complex
numbers than (x, y).
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EXAMPLE 1

EXAMPLE 2

CHAP.13 Complex Numbers and Functions

If you know vectors, you see that (2) is vector addition, whereas the multiplication (3)
has no counterpart in the usual vector algebra.

Real Part, Imaginary Part, Sum and Product of Complex Numbers
Letz; =8 + 3iand zp = 9 — 2i, Then Rez; = 8. Imz; = 3,Rezp = 9, Imzp = —2 and
21 +t22=08+3)+0O—-2)=17+4,

7129 = 8 + 39 —2)) =72+ 6 + i(—16 + 27) =78 + 11i. |

Subtraction, Division

Subtraction and division are defined as the inverse operations of addition and
multiplication, respectively. Thus the difference z = z; — z is the complex number z for
which z; = z + z,. Hence by (2),

(6) 71 — 2z = (0 — x9) T i(y1 — y2)

The quotient z = z1/z, (z5 # 0) is the complex number z for which z; = zz,. If we equate
the real and the imaginary parts on both sides of this equation, setting z = x + iy, we
obtain x; = XoX — Y9, ¥1 = YaX 1 Xxoy. The solution is

Z . XXy + Y1y X — X1y
(7%) ge= L B, f= 2 z }’122 ’ _ 2}’; 122
22 Xg~ + yp Xo© + vy

The practical rule used to get this is by multiplying numerator and denominator of z;/zp
by x, — iy, and simplifiying:

X1ty O+ iy)e —dy)) XXt yiYe | . XeY1 T X1

D z= —— . v i
Xo T iyp (xg + iyg) (X3 — iy2) xz2 o+ }’22 xzz an y22

Difference and Quotient of Complex Numbers
Forz; =8 + 3iandzp =9 — 2iwegetzy — 25 =8 +3i) — (9 — 2i) = —1 + 5i and

0 843 (B+3)(O+2) _ 66+43 _ 66 43

_ _ _ _% _ 8.,
» 9-2  (©-200+2) 8l+4 8 85

Check the division by multiplication to get 8 + 3i. =

Complex numbers satisfy the same commutative, associative, and distributive laws as real
numbers (see the problem set).

Complex Plane

This was algebra. Now comes geometry: the geometrical representation of complex
numbers as points in the plane. This is of great practical importance. The idea is quite
simple and natural. We choose two perpendicular coordinate axes, the horizontal x-axis,
called the real axis, and the vertical y-axis, called the imaginary axis. On both axes we
choose the same unit of length (Fig. 315). This is called a Cartesian coordinate system.
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(Imaginary y
axis)
¥ -
P X
z=x+1iy
1
| (Real
1 x axis)
Fig. 315.  The complex plane Fig. 316. The number 4 — 3jin

the complex plane

We now plot a given complex number z = (x, y) = x + iy as the point P with coordinates
X, y. The xy-plane in which the complex numbers are represented in this way is called the
complex plane.” Figure 316 shows an example.
Instead of saying “the point represented by z in the complex plane” we say briefly and
simply “the point z in the complex plane.” This will cause no misunderstandings.
Addition and subtraction can now be visualized as illustrated in Figs. 317 and 318.

/ —
&=
—z,

Fig. 317.  Addition of complex numbers Fig. 318.  Subtraction of complex numbers

Complex Conjugate Numbers

The complex conjugate 7 of a complex number z = x + iy is defined by
zZ=x—iy.

It is obtained geometrically by reflecting the point z in the real axis. Figure 319 shows
this for z = 5 + 2i and its conjugate 7 = 5 — 2i.

Fig. 319.  Complex conjugate numbers

2Sometimes called the Argand diagram, after the French mathematician JEAN ROBERT ARGAND
(1768-1822), born in Geneva and later librarian in Paris. His paper on the complex plane appeared in 1806,
nine years after a similar memoir by the Norwegian mathematician CASPAR WESSEL (1745-1818), a surveyor
of the Danish Academy of Science.
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The complex conjugate is important because it permits us to switch from complex
to real. Indeed, by multiplication, zZ = x* + y? (verify!). By addition and subtraction,
7+ 7 =2x, z— Z=2iy. We thus obtain for the real part x and the imaginary part y
(not iy!) of z = x + iy the important formulas

1 - 1
S) Rez=x=—(z +72), Imz=y= — (z—2).
2 2i

If 7 is real, z = x, then Z = z by the definition of z, and conversely.
Working with conjugates is easy, since we have

(77 + Zz) =21 T 2o, (Zl - ZZ) =71 — 22
)] _
_ 1 21
(z129) = 71225 (*) = —_ .
29 22

EXAMPLE 3 Illustration of (8) and (9)

Letzy = 4 + 3iand z5 = 2 + 5i. Then by (8),

1 ) _ 3i + 3i
Imzy = o [(4+3) - @4 =3)] = —— =3

Also, the multiplication formula in (9) is verified by

(z329) = (4 + 3DQ2 + 5i) = (=7 + 26i) = =7 — 264,

Z1Zp = (4 — 3)(2 — 5i) = =7 — 26i. |
1. (Powers of i) Show that i = —1,i® = —i, i* = 1, 13. (427 — z9)? 14. 7,/z1, 21/%1
P=icccand Vi= =i, /%=1 Ui =i -"". 15 (z; + 25)/(z1 — 22)

2. (Rotation) Multiplication by i is geometrically a o
counterclockwise I;otation thr};ugh /2 (90°). Verify Let z = x + iy. Find:
this by graphing z and iz and the angle of rotation for ~ 16. Im 2%, (Im z)?
z=2+2i,z=-1—-15i,z=4 - 3i. 17. Re (1/2)
3. (Division) Verify the calculation in (7). 18. Im [(1 + )%z2]
4. (Multiplication) If the product of two complex numbers 19. Re (1/z%)
is zero, show that at least one factor must be zero. . L. ]
5. Show that z = x + iy is pure imaginary if and only 20. (Laws. of addition and multiplication) Derive the
o following laws for complex numbers from the

ding 1 1 bers.
6. (Laws for conjugates) Verify (9) for z; = 24 + 104, corresponding laws for real numbers

7y = 4 + 6i. 71+ 29 = 20 + 21, 2122 = 227y (Commutative laws)
COMPLEX ARITHMETIC Greltamarer 23)(:4 aitite Tawd]

ssociative laws
Letz; = 2 + 3i and z; = 4 — 5i. Showing the details _

2122)23 = 21(222

of your work, find (in the form x + iy): (2122)25 1(2223)
7. (52, + 3z5)? 8. 7172 21(zo + 23) = 7129 + 2123 (Distributive law)
9. Re (1/z,2) 10. Re (z5%), (Re z5)2 Dtz=z+0=g

11. z5/24 12, z1/25, (z1/22) z+(-2)=(-2)+2z=0, z+1 =z
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13.2 Polar Form of Complex Numbers.
Powers and Roots

The complex plane becomes even more useful and gives further insight into the arithmetic
operations for complex numbers if besides the xy-coordinates we also employ the usual
polar coordinates r, 6 defined by
1 X = rcos 6, y= rsin 6.
We see that then z = x + iy takes the so-called polar form

¥

) z = r(cos 0 + i sin ).

ris called the absolute value or modulus of z and is denoted by [z|. Hence

3) ]z|=r=\/x2+y2=\/5.

Geometrically, |z| is the distance of the point z from the origin (Fig. 320). Similarly,
|21 — zo| is the distance between z; and z, (Fig. 321).
6 is called the argument of z and is denoted by arg z. Thus (Fig. 320)

“) 0 = arg z = arctan . (z # 0).
x

Geometrically, 6 is the directed angle from the positive x-axis to OP in Fig. 320. Here, as
in calculus, all angles are measured in radians and positive in the counterclockwise sense.

For z = 0 this angle 6 is undefined. (Why?) For a given z # 0 it is determined only
up to integer multiples of 277 since cosine and sine are periodic with period 2. But one
often wants to specity a unique value of arg z of a given z # 0. For this reason one defines
the principal value Arg z (with capital A!) of arg z by the double inequality

5) —m < Argz = 71,
Then we have Arg z = 0 for positive real z = x, which is practical, and Arg z = 7 (not
—r!) for negative real z, e.g., for z = —4. The principal value (5) will be important in

connection with roots, the complex logarithm (Sec. 13.7), and certain integrals. Obviously,
for a given z # 0 the other values of arg z are arg z = Arg z + 2n7 (n = *1, +2, - - ),

Imaginary
axis

z=x+1y

I

|

|

|

[ .
o) x axis

Real
Fig. 320. Complex plane, polar form Fig. 321. Distance between two
of a complex number points in the complex plane
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EXAMPLE 1

/4

1 X

Fig. 322. Example 1

EXAMPLE 2

CHAP. 13 Complex Numbers and Functions

Polar Form of Complex Numbers. Principal Value Arg z

z =1 + i (Fig. 322) has the polar form z = V2 (cos Lar + i sin §m). Hence we obtain
ll = V2, argz =im = 2nm(n=0,1,--), and Argz = 27 (the principal value).

Similarly, z = 3 + 3\/3i = 6 (cos 37 + i sindm), || = 6, and Arg z = 3. |

CAUTION! 1In using (4), we must pay attention to the quadrant in which z lies, since
tan 6 has period m, so that the arguments of z and —z have the same tangent. Example:
for §, = arg (1 + i) and 6y = arg (—1 — i) we have tan 0, = tan 6, = 1.

Triangle Inequality

Inequalities such as x; < x, make sense for real numbers, but not in complex because
there is no natural way of ordering complex numbers. However, inequalities between
absolute values (which are real!), such as |z;| < |z5| (meaning that z; is closer to the origin
than z,) are of great importance. The daily bread of the complex analyst is the triangle
inequality

(6) et Bl = 5+ el (Fig. 323)

which we shall use quite frequently. This inequality follows by noting that the three points
0, z,, and z; + z are the vertices of a triangle (Fig. 323) with sides |24l |22l and |2y + zal,
and one side cannot exceed the sum of the other two sides. A formal proof is left to the
reader (Prob. 35). (The triangle degenerates if z; and z lie on the same straight line through
the origin.)

Fig. 323. Triangle inequality

By induction we obtain from (6) the generalized triangle inequality
(6%) la+ 2o+t 2l Elhal + el + 0 T Ll

that is, the absolute value of a sum cannot exceed the sum of the absolute values of the
terms.

Triangle Inequality

Ifz; =1+ iand zg = —2 + 3i, then (sketch a figure!)

oy + 2] = |—1 + 4i] = V17 = 4123 < V2 + V13 = 5.020. ]

Multiplication and Division in Polar Form

This will give us a “geometrical” understanding of multiplication and division. Let

2y = ry(cos 6y + isin 6;) and Zo = ro(cOs By + i sin 6y).
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EXAMPLE 3

Multiplication. By (3) in Sec. 13.1 the product is at first
2125 = rira[(cos 0y cos B, — sin 6; sin 6,) + i(sin 6, cos 6, + cos 0; sin 6,)].
The addition rules for the sine and cosine [(6) in App. A3.1] now yield

(7) 2139 = Vll’z[COS (01 + 02) + i sin (01 =+ 62)]

Taking absolute values on both sides of (7), we see that the absolute value of a product
equals the product of the absolute values of the factors,

8) |z122] = |zal|zg)-

Taking arguments in (7) shows that the argument of a product equals the sum of the
arguments of the factors,

9) arg (7129) = argz; + arg z, (up to multiples of 27).

Division. We have z; = (21/2)75. Hence |z)| = [(21/22)z5] = |21/25/|20| and by division
by [z

21

22

_

10$) =
}Zzl

(z9 # 0).

Similarly, arg z; = arg [(21/22)z5] = arg (z;/z5) + arg Z9 and by subtraction of arg z,

<1 .
11 arg Z— = argz; — arg zo (up to multiples of 277).
-2

Combining (10) and (11) we also have the analog of (7),

21 ¥y 0 s
12) — = — [cos (6; — 6y) + isin(6; — 6,)].
22 P

To comprehend this formula, note that it is the polar form of a complex number of absolute
value r1/ry and argument 6; — 6,. But these are the absolute value and argument of z;/z,,
as we can see from (10), (11), and the polar forms of z; and z.

lllustration of Formulas (8)—(11)
Letzy = =2 + 2iand zp = 3i. Then zy25 = —6 — 6i, 21/z2 = 2/3 + (2/3)i. Hence (make a sketch)
1zl = 6V2 = 3V8 = |z, lea/zg] = 2V2/3 = |31z,

and for the arguments we obtain Arg z; = 3m/4, Arg 29 = T2,

3
Arg (z129) = — — = Argz, + Argzy — 2, Arg (z1/z9) = = Argz; — Arg z,. &

4

13
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EXAMPLE 4
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Integer Powers of z. De Moivre’s Formula

From (8) and (9) with z; = zg = z we obtain by induction for n = 0, 1, 2, - - -
13) 7" = r" (cos nb + i sin nh).

Similarly, (12) with z; = 1 and zp = " gives (13) forn = — 1, —2, -+ .Forlz| = r = 1, formula (13) becomes
De Moivre’s formula

(13%) (cos B + i sin B)" = cos nf + i sin nb.

We can use this to express cos 76 and sin n6 in terms of powers of cos 6 and sin 6. For instance, for n = 2 we
have on the left cos? 8 + 2i cos 6 sin 6 — sin? 6. Taking the real and imaginary parts on both sides of (13%)
with n = 2 gives the familiar formulas

cos 26 = cos® 0 — sin® 6, sin 260 = 2 cos 6 sin 6.
This shows that complex methods often simplify the derivation of real formulas. Try n = 3. |
Roots
Ifz=w"@®m=1,2,- "), then to each value of w there corresponds one value of z. We

shall immediately see that, conversely, to a given z # 0 there correspond precisely n
distinct values of w. Each of these values is called an nth root of z, and we write

(14) w=Vz.

Hence this symbol is multivalued, namely, n-valued. The n values of 'z can be obtained
as follows. We write z and w in polar form

7z = r(cos 6 + i sin ) and w = R(cos ¢ + isin ¢).
Then the equation w” = z becomes, by De Moivre’s formula (with ¢ instead of 6)
w" = R™cos n¢ + i sinngd) = z = r(cos O + i sin 6).
The absolute values on both sides must be equal; thus, R™ = r,so that R = \Vr , where
Vris positive real (an absolute value must be nonnegative!) and thus uniquely determined.

Equating the arguments n¢» and 6 and recalling that 6 is determined only up to integer
multiples of 27, we obtain

0 2k
ng = 6 + 2km, thus d=—+ —
n n
where k is an integer. For k = 0,1, -+ -, n — 1 we get n distinct values of w. Further

integers of k would give values already obtained. For instance, k = n gives 2km/n = 2,

3ABRAHAM DE MOIVRE (1667-1754), French mathematician, who pioneered the use of complex numbers
in trigonometry and also contributed to probability theory (see Sec. 24.8).
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POLAR FORM

hence the w corresponding to k = 0, etc. Consequently, \”/2 , for z # 0, has the n distinct
values

n n 0+ 2k 0 + 2k
(15) W = (cos il ——)
n n
where k = 0, 1, - -+, n — 1. These n values lie on a circle of radius V7 with center at

the origin and constitute the vertices of a regular polygon of n sides. The value of V/z
obtained by taking the principal value of arg z and k = 0 in (15) is called the principal
value of w = V7 .

Taking z = 1 in (15), we have [z| = r = 1 and Arg z = 0. Then (15) gives

n 2kar 2k
(16) VT =cos = + isin — k=0,1,-++,n—1.
n n
These n values are called the nth roots of unity. They lie on the circle of radius 1 and
center 0, briefly called the unit circle (and used quite frequently!). Figures 324-326 show
Vi=1,-4+33i V1 ==+l +i and V1.

If w denotes the value corresponding to k = 1 in (16), then the n values of V1 can be
written as

More generally, if wy is any nth root of an arbitrary complex number z (# 0), then the
n values of V7 in (15) are

(17) Wi, Wi, Wi, tes Wyt

s

because multiplying w; by " corresponds to increasing the argument of wy by 2ka/n.
Formula (17) motivates the introduction of roots of unity and shows their usefulness.

Fig. 325. V1 Fig.326. V1

2. 26, —2i
Do these problems very carefully since polar forms will be 3. -5 4.1+ iqi
needed frequently. Represent in polar form and graph in 1+ .
the complex plane as in Fig. 322 on p. 608. (Show the 5. l 6. 3V2 + 2i

details of your work.)

=V2 = (2/3)i
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7—6+5i 2 + 3i
' 3i "5+ 4i

PRINCIPAL ARGUMENT

Determine the principal value of the argument.

9, —1 — i 10. =20 + i, =20 — i
11. 4 = 3i 12. — 72

13. 7 = 7i 14. (1 + )2

15. (9 + 9i)®

CONVERSION TO x + iy

Represent in the form x + iy and graph it in the complex

plane.
16. cosim + isin(x3m) 17. 3(cos 0.2 + isin0.2)
18. 4(cosim = isinim)  19. cos (—1) + isin(—1)

20. 12(cos 37 + i sin3m)

21-25| ROOTS

Find and graph all roots in the complex plane.

21. V=i 22. ¥1
23, V-1 24. /3 + 4i
25. V-1

26. TEAM PROJECT. Square Root. (a) Show that
w = V7 has the values

0 0
wlz\/;[cosz-#isin?},

(18) wy = V7r l:cos (g + 77) + isin (g + 'n')]

= —w;.

(b) Obtain from (18) the often more practical formula

19) Vz==+[V3(z| +x + Gsigny)i V3 (2| +x)

where signy = 1ify = 0, signy = —1ify <0,
and all square roots of positive numbers are taken
with positive sign. Hint: Use (10) in App. A3.1 with
x = 0/2.

(¢) Find the square roots of 4i, 16 — 30i, and
9 + 8V7i by both (18) and (19) and comment on the
work involved.

(d) Do some further examples of your own and apply
a method of checking your results.

27-30| EQUATIONS

Solve and graph all solutions, showing the details:

27. 72 — (8 — 5i)z + 40 — 20i = 0 (Use (19).)

28. z4 + (5 — 14i)z2 — (24 + 10i)) = 0

29. 822 — (36 — 6i)z + 42 — 11i =0

30. z* + 16 = 0. Then use the solutions to factor z* + 16
into quadratic factors with real coefficients.

31. CAS PROJECT. Roots of Unity and Their Graphs.
Write a program for calculating these roots and for
graphing them as points on the unit circle. Apply the
program to z" = 1 withn = 2,3, - - -, 10. Then extend
the program to one for arbitrary roots, using an idea
near the end of the text, and apply the program to
examples of your choice.

32-35| INEQUALITIES AND AN EQUATION
Verify or prove as indicated.

32. (Re and Im) Prove |Re z| = |2], [Im z| = |z].
33. (Parallelogram equality) Prove

|Zl + Z2|2 + |Zl - Z2|2 = 2(\Zl|2 + |22|2)~

Explain the name.

34. (Triangle inequality) Verify (6) for z; = 4 + 7i,
9 = 5 + 2i.

35. (Triangle inequality) Prove (6).

13.3 Derivative. Analytic Function

Our study of complex functions will involve point sets in the complex plane. Most
important will be the following ones.

Circles and Disks. Half-Planes

The unit circle |z| = 1 (Fig. 327) has already occurred in Sec. 13.2. Figure 328 shows a
general circle of radius p and center a. Its equation is

le—al=p
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Fig. 327. Unit circle Fig. 328. Circle in the Fig. 329. Annulus in the
complex plane complex plane

because it is the set of all z whose distance [z — a| from the center a equals p. Accordingly,
its interior (“open circular disk™) is given by |z — a| < p, its interior plus the circle itself
(““closed circular disk”) by [z — a| = p, and its exterior by [z — a| > p. As an example,
sketch this for a = 1 + i and p = 2, to make sure that you understand these inequalities.

An open circular disk |z — a| < pis also called a neighborhood of a or, more precisely,
a p-neighborhood of a. And a has infinitely many of them, one for each value of
p (> 0), and « is a point of each of them, by definition!

In modern literature any ser containing a p-neighborhood of « is also called a
neighborhood of a.

Figure 329 shows an open annulus (circular ring) p; < |z — a| < p,, which we shall
need later. This is the set of all z whose distance |z — a| from a is greater than p, but less
than p,. Similarly, the closed annulus p; = |z — a| = p, includes the two circles.

Half-Planes. By the (open) upper half-plane we mean the set of all points z = x + iy
such that y > 0. Similarly, the condition y < 0 defines the lower half-plane, x > 0 the
right half-plane, and x < 0 the left half-plane.

For Reference: Concepts on Sets in the
Complex Plane

To our discussion of special sets let us add some general concepts related to sets that we
shall need throughout Chaps. 13-18; keep in mind that you can find them here.

By a point set in the complex plane we mean any sort of collection of finitely many
or infinitely many points. Examples are the solutions of a quadratic equation, the points
of a line, the points in the interior of a circle as well as the sets discussed just before.

A set § is called open if every point of S has a neighborhood consisting entirely of
points that belong to S. For example, the points in the interior of a circle or a square form
an open set, and so do the points of the right half-plane Re z = x > 0.

A set § is called connected if any two of its points can be joined by a broken line of
finitely many straight-line segments all of whose points belong to S. An open and connected
set is called a domain. Thus an open disk and an open annulus are domains. An open
square with a diagonal removed is not a domain since this set is not connected. (Why?)

The complement of a set S in the complex plane is the set of all points of the complex
plane that do not belong to S. A set S is called closed if its complement is open. For
example, the points on and inside the unit circle form a closed set (“closed unit disk™)
since its complement |z| > 1 is open.

A boundary point of a set S is a point every neighborhood of which contains both
points that belong to § and points that do not belong to S. For example, the boundary
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EXAMPLE 1

EXAMPLE 2
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points of an annulus are the points on the two bounding circles. Clearly, if a set S is open,
then no boundary point belongs to S; if S is closed, then every boundary point belongs to
S. The set of all boundary points of a set S is called the boundary of S.

A region is a set consisting of a domain plus, perhaps, some or all of its boundary
points. WARNING! “Domain” is the modern term for an open connected set.
Nevertheless, some authors still call a domain a “region” and others make no distinction
between the two terms.

Complex Function

Complex analysis is concerned with complex functions that are differentiable in some
domain. Hence we should first say what we mean by a complex function and then define
the concepts of limit and derivative in complex. This discussion will be similar to that in
calculus. Nevertheless it needs great attention because it will show interesting basic
differences between real and complex calculus.

Recall from calculus that a real function f defined on a set S of real numbers (usually
an interval) is a rule that assigns to every x in S a real number f(x), called the value of
f at x. Now in complex, S is a set of complex numbers. And a function f defined on S is
a rule that assigns to every z in S a complex number w, called the value of f at z. We write

w = f(2).

Here z varies in S and is called a complex variable. The set S is called the domain of
definition of f or, briefly, the domain of f. (In most cases S will be open and connected,
thus a domain as defined just before.)

Example: w = f(z) = 22 + 3z is a complex function defined for all z; that is, its domain
S is the whole complex plane.

The set of all values of a function f is called the range of f.

w is complex, and we write w = u + iv, where u and v are the real and imaginary
parts, respectively. Now w depends on z = x + iy. Hence u becomes a real function of x
and y, and so does v. We may thus write

w = f(2) = ulx, y) + iv(x, y).

This shows that a complex function f(z) is equivalent to a pair of real functions u(x, y)
and v(x, v), each depending on the two real variables x and y.

Function of a Complex Variable
Letw = f(z) = 22 + 3z. Find u and v and calculate the value of f at z = 1+ 3i.

Solution. u = Re f(z) = X2 - yz + 3xand v = 2xy + 3y. Also,

f(l+ 3= +3i)2+3(l +3i)=1—-9+6i+3+9=-5+15.
This shows that u(1, 3) = —5 and v(1, 3) = 15. Check this by using the expressions for u and v. g
Function of a Complex Variable

Let w = f(z) = 2iz + 6Z. Find u and v and the value of f atz = 3 + 4i.

Solution. f(z) = 2i(x + iy) + 6(x — iy) gives u(x, y) = 6x — 2y and v(x, y) = 2x — 6y. Also,
FG& + 4i) = 2iG + 4i) + 6G —4) =i—8+3—24i=-5-123

Check this as in Example 1. B
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Remarks on Notation and Terminology

1. Strictly speaking, f(z) denotes the value of f at z, but it is a convenient abuse of
language to talk about the function f(z) (instead of the function f), thereby exhibiting the
notation for the independent variable.

2. We assume all functions to be single-valued relations, as usual: to each z in S there
corresponds but one value w = f(z) (but, of course, several z may give the same value
w = f(z), just as in calculus). Accordingly, we shall not use the term “multivalued
function” (used in some books on complex analysis) for a multivalued relation, in which
to a z there corresponds more than one w.

Limit, Continuity

A function f(z) is said to have the limit / as z approaches a point z,, written

() lim f(z) =1,

if f is defined in a neighborhood of z, (except perhaps at z, itself) and if the values
of f are “close” to [ for all z “close” to zy; in precise terms, if for every positive real e
we can find a positive real § such that for all z # z, in the disk |z — zo| < & (Fig. 330)
we have

) f2) — I < €

geometrically, if for every z # z, in that 6-disk the value of f lies in the disk (2).
Formally, this definition is similar to that in calculus, but there is a big difference.
Whereas in the real case, x can approach an x, only along the real line, here, by definition,
z may approach z, from any direction in the complex plane. This will be quite essential
in what follows.
If a limit exists, it is unique. (See Team Project 26.)

A function f(z) is said to be continuous at z = z, if f(z,) is defined and

3) lim £) = f(z).

Note that by definition of a limit this implies that f(z) is defined in some neighborhood
of 2.
f(z) 1s said to be continuous in a domain if it is continuous at each point of this domain.

N ———— T -
—-—— - s,
-7 N
/ i \
T \
I/ ~0
I fiz)
1 € l 1
\ I
\ /
\ /
/
\\ 7 u
~ -

Fig. 330. Limit
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Derivative

The derivative of a complex function f at a point zq is written f '(z0) and is defined by

f(zo + Az) — f(zo)
Az

@ 7o) = fim,

provided this limit exists. Then f is said to be differentiable at z,. If we write Az =17 2 |
we have z = zo + Az and (4) takes the form ‘

@ e
22 ZSEH 0
Now comes an important point. Remember that, by the definition of limit, f(z) is defined
in a neighborhood of 7z and z in (4") may approach z, from any direction in the complex
plane. Hence differentiability at z, means that, along whatever path z approaches z,, the
quotient in (4") always approaches a certain value and all these values are equal. This is
important and should be kept in mind.

Differentiability. Derivative

The function f(z) = 22 is differentiable for all z and has the derivative f "(z) = 2z because

’ = i (Z+AZ)2722_1_ ZZ+2ZAZ+(AZ)Z*124]_ e ok e 5 .
O T a0 Az T aro Az *AZIEO( Z 7) = 2z.

The differentiation rules are the same as in real calculus, since their proofs are literally
the same. Thus for any analytic functions f and g and constants ¢ we have

) =cf, G+ =4 +g¢. (G0 =fg+fg (g) e gg_zfg

as well as the chain rule and the power rule (z™)" = nz"~! (n integer).
Also, if f(z) is differentiable at zy, it is continuous at z,. (See Team Project 26.)
Z not Differentiable

It may come as a surprise that there are many complex functions that do not have a derivative at any point. For
instance, f(z) = z = x — iy is such a function. To see this, we write Az = Ax + iAy and obtain

fe+A)—f@  G+A)-—z Az Ax—ify

® Az Az Az Ax + iAy -’

If Ay = 0, this is +1. If Ax = 0, this is —1. Thus (5) approaches +1 along path I in Fig. 331 but —1 along
path II. Hence, by definition, the limit of (5) as Az — 0 does not exist at any z. =

Fig. 331. Paths in (5)
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DEFINITION

EXAMPLE 5

Surprising as Example 4 may be, it merely illustrates that differentiability of a complex
function is a rather severe requirement.

The idea of proof (approach of z from different directions) is basic and will be used
again as the crucial argument in the next section.

Analytic Functions

Complex analysis is concerned with the theory and application of “analytic functions,”
that is, functions that are differentiable in some domain, so that we can do “calculus in
complex.” The definition is as follows.

Analyticity

A function f(z) is said to be analytic in a domain D if f(z) is defined and
differentiable at all points of D. The function f(z) is said to be analytic at a point
7 = zo in D if f(z) is analytic in a neighborhood of z,.

Also, by an analytic function we mean a function that is analytic in some domain.

Hence analyticity of f(z) at z, means that f(z) has a derivative at every point in some
neighborhood of zy (including z, itself since, by definition, z, is a point of all its
neighborhoods). This concept is motivated by the fact that it is of no practical interest if
a function is differentiable merely at a single point z, but not throughout some
neighborhood of z,. Team Project 26 gives an example.

A more modern term for analytic in D is holomorphic in D.

Polynomials, Rational Functions

The nonnegative integer powers 1, z, 2 are analytic in the entire complex plane, and so are polynomials,
that is, functions of the form

f(z) = cg + 1z + czz,2 + o4 e
where ¢, - - -, ¢, are complex constants.

The quotient of two polynomials g(z) and h(z),

8(2)
hz) ’

fl@) =

is called a rational function. This f is analytic except at the points where A(z) = 0; here we assume that common
factors of g and & have been canceled.
Many further analytic functions will be considered in the next sections and chapters. &

The concepts discussed in this section extend familiar concepts of calculus. Most important
is the concept of an analytic function, the exclusive concern of complex analysis. Although
many simple functions are not analytic, the large variety of remaining functions will yield
a most beautiful branch of mathematics that is very useful in engineering and physics.

CURVES AND REGIONS OF Z0<|z-1]<1 4. —m<Rez<m
PRACTICAL INTEREST 5. Imz% = 2 6. Rez > —1

Find and sketch or graph the sets in the complex plane given )

by Tolz + 1] =z — 1] 8. |[Argz| = inm

1]z -3-2i=4% 21=z-1+4il=5 9.Rez =Imz¢ 10. Re (1/7) < 1
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11. WRITING PROJECT. Sets in the Complex Plane.
Extend the part of the text on sets in the complex plane
by formulating that part in your own words and
including examples of your own and comparing with
calculus when applicable.

COMPLEX FUNCTIONS AND DERIVATIVES
Function Values. Find Re f and Im f. Also find
their values at the given point z.

12. f =322 -6z +3i,z=2+1i

13. f=z(z+ 1),z=4—5i

. f=1/(1—-2,z=3%+%

15. f = U2, z= 1 + i

Continuity. Find out (and give reason) whether
f(z) is continuous at z = 0 if f(0) = 0 and for z # O the
function f is equal to:
16. [Re (z2)]/]z)?
18. |z|? Re (1/2)

Derivative. Differentiate

20. (z2 — /2 + 1) 21. (2% + i)?
22. 3z + 4i)/(1.5iz — 2)  23.i/(1 — 2)?
24. Z%/(z + i)?

17. [Im (z®)]/|Z]
19. (Im 2)/(1 — |z])

25. CAS PROJECT. Graphing Functions. Find and
graph Re f, Im f, and |f| as surfaces over the z-plane.
Also graph the two families of curves Re f(z) = const
and Im f(z) = const in the same figure, and the curves
|f(z)| = const in another figure, where (a) f(z) = 2%,
(b) f(z) = 1/z, (¢) f(z) = z*

26. TEAM PROJECT. Limit, Continuity, Derivative
(a) Limit. Prove that (1) is equivalent to the pair of
relations

lim Re f(z) = Re, lim Im f(z) = Im L.

=2y z—=Zg

(b) Limit. If lim f(z) exists, show that this limit is
ZﬁZo

unique.

(¢) Continuity. If z;, 75, - * - are complex numbers for

which lim z, = a, and if f(z) is continuous at
n—oc

7z = a, show that lim f(z,)) = f(a).

(d) Continuity. If f(z) is differentiable at zy, show that
f(2) is continuous at Zg.

(e) Differentiability. Show that f(z) = Rez = x is
not differentiable at any z. Can you find other such
functions?

(f) Differentiability. Show that f(z) = |[z[*> is
differentiable only at z = 0; hence it is nowhere analytic.

13.4 Cauchy—Riemann Equations.

Laplace’s Equation

The Cauchy-Riemann equations are the most important equations in this chapter and
one of the pillars on which complex analysis rests. They provide a criterion (a test) for
the analyticity of a complex function

w = f(z) = u(x, y) + iv(x, y).

Roughly, f is analytic in a domain D if and only if the first partial derivatives of u and
v satisfy the two Cauchy—Riemann equations®

(0] Uy = Uy, Uy = U

4The French mathematician AUGUSTIN-LOUIS CAUCHY (see Sec. 2.5) and the German mathematicians
BERNHARD RIEMANN (1826-1866) and KARL WEIERSTRASS (1815-1897; see also Sec. 15.5) are the
founders of complex analysis. Riemann received his Ph.D. (in 1851) under Gauss (Sec. 5.4) at Gottingen, where
he also taught until he died, when he was only 39 years old. He introduced the concept of the integral as it is
used in basic calculus courses, and made important contributions to differential equations, number theory, and
mathematical physics. He also developed the so-called Riemannian geometry, which is the mathematical
foundation of Einstein’s theory of relativity; see Ref. [GR9] in App. 1.
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THEOREM 1

PROOF

everywhere in D; here u, = du/dx and u, = du/dy (and similarly for v) are the usual
notations for partial derivatives. The precise formulation of this statement is given in
Theorems 1 and 2.

Example: f(z) = 72 = x2 — y2 + 2ixy is analytic for all z (see Example 3 in Sec. 13.3),
andu=x*>—yZandv = 2xy satisfy (1), namely, u, = 2x = vyaswell asu, = =2y = —p,.
More examples will follow.

Cauchy-Riemann Equations

Let f(z) = u(x, y) + iv(x, y) be defined and continuous in some neighborhood of a
point 7 = x + iy and differentiable at 7 itself. Then at that point, the first-order
partial derivatives of u and v exist and satisfy the Cauchy—Riemann equations (1).

Hence if f(2) is analytic in a domain D, those partial derivatives exist and satisfy
(D) at all points of D.

By assumption, the derivative f'(z) at z exists. It is given by

, . f@+ A7) - f(2)

@ = e
The idea of the proof is very simple. By the definition of a limit in complex (Sec. 13.3)
we can let Az approach zero along any path in a neighborhood of z. Thus we may choose
the two paths I and IT in Fig. 332 and equate the results. By comparing the real parts we
shall obtain the first Cauchy—Riemann equation and by comparing the imaginary parts the
second. The technical details are as follows.

We write Az = Ax + iAy. Thenz + Az = x + Ax + i(y + Ay), and in terms of u and
v the derivative in (2) becomes

[u(x + Ax, y + Ay) + iv(x + Ax, y + Ay)] — [ulx, y) + iv(x, W]
Ax + iAy

3 f'@ = Jim/

We first choose path I in Fig. 332. Thus we let Ay — 0 first and then Ax — 0. After Ay
is zero, Az = Ax. Then (3) becomes, if we first write the two u-terms and then the two
v-terms,

u(v + Ax, y) —uly) v+ Ax,y) — o(x y)
+ i lim .

Ax Ax—0 Ax

f @ =A1316510

Fig. 332. Paths in (2)
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Since f'(z) exists, the two real limits on the right exist. By definition, they are the partial
derivatives of u and v with respect to x. Hence the derivative f'(z) of f(z) can be written

(4) = iu.

Similarly, if we choose path II in Fig. 332, we let Ax — O first and then Ay — 0. After
Ax is zero, Az = iAy, so that from (3) we now obtain

ur, y + Ay) —ulx,y) vl y+ Ay) — v y)
- + i lim = .
iAy Ay—0 iAy

' T
£'@ = fim,

Since f’(z) exists, the limits on the right exist and give the partial derivatives of u and v
with respect to y; noting that 1/i = —i, we thus obtain

5) {ig) = —iuy; + v

The existence of the derivative f'(z) thus implies the existence of the four partial
derivatives in (4) and (5). By equating the real parts u, and v, in (4) and (5) we obtain
the first Cauchy—Riemann equation (1). Equating the imaginary parts gives the other. This
proves the first statement of the theorem and implies the second because of the definition
of analyticity. &

Formulas (4) and (5) are also quite practical for calculating derivatives f'(z), as we shall
see.

Cauchy—Riemann Equations

flo) = 2 is analytic for all z. It follows that the Cauchy-Riemann equations must be satisfied (as we have
verified above)

For f(z) = 7 = x — iy we have u = x,v = —y and see that the second Cauchy—Riemann equation is satisfied,
Uy = —Ugp = 0, but the first is not: u,, = 1 # v, = —1. We conclude that f(z) = Z is not analytic, confirming
Example 4 of Sec. 13.3. Note the savings in calculation! |

The Cauchy-Riemann equations are fundamental because they are not only necessary
but also sufficient for a function to be analytic. More precisely, the following theorem
holds.

Cauchy—Riemann Equations

If two real-valued continuous functions u(x, y) and v(x, y) of two real variables x
and y have continuous first partial derivatives that satisfy the Cauchy—Riemann
equations in some domain D, then the complex function f(z) = ulx,y) + iv(x, y) is
analytic in D.

The proof is more involved than that of Theorem 1 and we leave it optional (see App. 4).

Theorems 1 and 2 are of great practical importance, since by using the
Cauchy—Riemann equations we can now easily find out whether or not a given complex
function is analytic.
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EXAMPLE 2

EXAMPLE 3

Cauchy—Riemann Equations. Exponential Function

Is f(z) = u(x, y) + iv(x, y) = e*(cosy + i sin y) analytic?

Solution. We have u = ¢¥ cos y, v = ¢* sin y and by differentiation
u, = e cos y, v, = e* cosy

u, = —e’siny, v, = e siny.

Y

We see that the Cauchy-Riemann equations are satisfied and conclude that f(2) is analytic for all z. (f(z) will
be the complex analog of ¢ known from calculus.)

An Analytic Function of Constant Absolute Value Is Constant

The Cauchy-Riemann equations also help in deriving general properties of analytic functions.
For instance, show that if f(z) is analytic in a domain D and |f()| = k = const in D, then f(z) = const in
D. (We shall make crucial use of this in Sec. 18.6 in the proof of Theorem 3.)

Solution. By assumption, [f1* = |u + iv]? = u® + 0% = k2 By differentiation,

utt, + vv, =0,

uity + vv, = 0.
Now use v, = —u, in the first equation and Uy = uy in the second, to get

(a) wu, — vuy, =0,
(6)
(b) utty + viy, = 0.

To get rid of u,, multiply (6a) by u and (6b) by v and add. Similarly, to eliminate Uy, multiply (6a) by —v and
(6b) by u and add. This yields

(uz + vz)ux =0.

W+ Uz)uy =0.
If k% = u® + v*> = 0, then u = v = 0; hence f = 0. If k2 = 42 + o2 = 0, then u, = u, = 0. Hence, by

the Cauchy-Riemann equations, also Uy = vy = 0. Together this implies ¥ = const and v = const; hence

f = const. [ ]

We mention that if we use the polar form z = r(cos® + i sin @) and set
f@) = u(r, 0) + iv(r, ), then the Cauchy-Riemann equations are (Prob. 11)

1
U = — Dy,
r
@) (r>0).
1
Vo= —— Ug
r

Laplace’s Equation. Harmonic Functions

The great importance of complex analysis in engineering mathematics results mainly from
the fact that both the real part and the imaginary part of an analytic function satisfy
Laplace’s equation, the most important PDE of physics, which occurs in gravitation,
electrostatics, fluid flow, heat conduction, and so on (see Chaps. 12 and 18).
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Laplace’s Equation

If f(z) = u(x, y) + iv(x, y) is analytic in a domain D, then both u and v satisfy
Laplace’s equation

8 VU = Uty + uyy = 0
(V2 read “nabla squared”) and

9) V2% = vy, + v, =0,

in D and have continuous second partial derivatives in D.

Differentiating u, = v, with respect to x and u, = —v, with respect to y, we have

(10) Uyy = Uygs Uyy = ~ Uy

Now the derivative of an analytic function is itself analytic, as we shall prove later (in
Sec. 14.4). This implies that u and v have continuous partial derivatives of all orders; in
particular, the mixed second derivatives are equal: vy, = v.,. By adding (10) we thus
obtain (8). Similarly, (9) is obtained by differentiating u, = v, with respect to y and
u, = —v, with respect to x and subtracting, USing Uy, = Uy,. |
Solutions of Laplace’s equation having continuous second-order partial derivatives
are called harmonic functions and their theory is called potential theory (see also
Sec. 12.10). Hence the real and imaginary parts of an analytic function are harmonic
functions.

If two harmonic functions « and v satisfy the Cauchy—Riemann equations in a domain
D, they are the real and imaginary parts of an analytic function f in D. Then v is said to
be a harmonic conjugate function of u in D. (Of course, this has absolutely nothing to
do with the use of “conjugate” for Z.)

How to Find a Harmonic Conjugate Function by the Cauchy—Riemann Equations

2

Verify that u = x° — y2 — y is harmonic in the whole complex plane and find a harmonic conjugate function

v-of u.

Solution. V?u = 0 by direct calculation. Now wu, = 2x and u, = —2y — 1. Hence because of the
Cauchy-Riemann equations a conjugate v of u must satisfy

Uy, = Uy = 2x, Uy = —Uy = 2y + 1.

Integrating the first equation with respect to y and differentiating the result with respect to x, we obtain

= 2xy + h(x) —2+dh
v xy + h(x), vp =2+ o

A comparison with the second equation shows that dh/dx = 1. This gives h(x) = x + ¢. Hence v = 2xy + x + ¢
(c any real constant) is the most general harmonic conjugate of the given u. The corresponding analytic function is

f(Z)=u+iU:xz—y24y+i(2x)r+x+c):z2+iz+ic. |
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Example 4 illustrates that a conjugate of a given harmonic function is uniquely determined
up to an arbitrary real additive constant.

The Cauchy—Riemann equations are the most important equations in this chapter. Their
relation to Laplace’s equation opens wide ranges of engineering and physical applications,
as we shall show in Chap. 18.

CAUCHY-RIEMANN EQUATIONS 22. u = €% cos ay 23. u = sin x cosh cy
Are the following functions analytic? [Use (1) or (7).] 24. u = ax® + by?

2. f(z) = Im (2

4. f(z) = /(1 — 2%

6. f(z) = Arg w2

8. f(z) =1Inlz| +iArgz
10. f(z) = 2% + 1/z®

1L f(z) = z*

3. ¢®®(cos y + i siny)

5. e7%(cos y — i siny)

7. f(z) = Rez + Imz

9. f(z) = ilz®

11. (Cauchy-Riemann equations in polar form) Derive
(7) from (1).

25.

26.

(Harmonic conjugate) Show that if « is harmonic and
v is a harmonic conjugate of u, then u is a harmonic
conjugate of —v.

TEAM PROJECT. Conditions for f(z) = const. Let
f(z) be analytic. Prove that each of the following
conditions is sufficient for f(z) = const.

(a) Re f(z) = const

(b) Im f(z) = const

I 4 =
\‘ HARMONIC FUNCTIONS © fi(2=0

Are the following functions harmonic? If your answer is (@) [f(2)] = const (see Example 3)

yes, find a corresponding analytic function 27. (Two further formulas for the derivative). Formulas

f(2) = ulx, y) + iv(x, y). (4), (5), and (11) (below) are needed from time to time.
| Derive

[ 12. u = xy 13. v = xy
H I;‘ 14. v = —y/(x? + y?) 15. u = In |7 (. f'(z) = u, - iy, ) = Uy T v,
- _ 3 _ 3.2
| 16. v = In 7| 17w = 27 = 3y 28. CAS PROJECT. Equipotential Lines. Writc a
| 18. u = 1/(x* + y?) 19. v = (x* — y?)? program for graphing equipotential lines u = const of
: 20. u = cos x cosh y 21. u = e ¥ sin 2y a harmonic function u and of its conjugate v on the

same axes. Apply the program to (a) u = x2 — y2,
v = 2xy, b)u = x% — 3y v = 3x%y = y?

22-24 Determine a, b, ¢ such that the given functions
(©)u = e cosy, v = e siny.

are harmonic and find a harmonic conjugate.

13.5 Exponential Function

In the remaining sections of this chapter we discuss the basic elementary complex
functions, the exponential function, trigonometric functions, logarithm, and so on. They
will be counterparts to the familiar functions of calculus, to which they reduce when
z = x is real. They are indispensable throughout applications, and some of them have
interesting properties not shared by their real counterparts.

We begin with one of the most important analytic functions, the complex exponential
function

]

e, also written exp z.

The definition of ¢ in terms of the real functions e, cos ¥, and sin y is

D € = e“(cosy + isiny).
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This definition is motivated by the fact the ¢* extends the real exponential function e* of
calculus in a natural fashion. Namely: }‘

(A) & = ¢ for real z = x because cosy = 1 and siny = 0 wheny = 0.
(B) ¢° is analytic for all z. (Proved in Example 2 of Sec. 13.4.)
(C) The derivative of e® is ¢°, that is,

(2) (&) = ¢.
This follows from (4) in Sec. 13.4,
(€®) = (¥ cosy), + i(e“siny), = e* cosy + ie”siny = €.

REMARK. This definition provides for a relatively simple discussion. We could define ¢* by
the familiar series 1 + x + x%2! + x3/3! + - - - with x replaced by z, but we would then have
to discuss complex series at this very early stage. (We will show the connection in Sec. 15.4.)

Further Properties. A function f(z) that is analytic for all z is called an entire function.
Thus, ¢° is entire. Just as in calculus the functional relation

(3) ez1+z2 _ ezlezz
holds for any z; = x; + iy; and zp = xp + iy,. Indeed, by (1),
21 2

&' = " cos y; + isiny;) e (cos vy + i sin yy).

Since ¢ = " for these real functions, by an application of the addition formulas
for the cosine and sine functions (similar to that in Sec. 13.2) we see that

21 29 €x1+xz[ 21tz

e’e cos (y; + yg) +isin(y; + y2)] = e

as asserted. An interesting special case of (3) is z; = x, zp = iy, then
4) & = e%ev.

Furthermore, for z = iy we have from (1) the so-called Euler formula
)] e =cosy t isiny.
Hence the polar form of a complex number, z = r(cos 6 + i sin ), may now be written
6) 7z = re'.

From (5) we obtain
) 2 —

as well as the important formulas (verify!)

(8) ™2 = e™ = —1, e
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EXAMPLE 1

Another consequence of (5) is
) le| = |cosy + isiny] = Vcos?y + sin?y = 1.

That is, for pure imaginary exponents the exponential function has absolute value 1, a
result you should remember. From (9) and (1),

(10) le?| = ¢*. Hence arge®* =y *2nmw (n=0,1,2, ),

since |e*| = e shows that (1) is actually ¢ in polar form.
From |¢*| = ¢ # 0 in (10) we see that

an eE+0 for all z.

So here we have an entire function that never vanishes, in contrast to (nonconstant)
polynomials, which are also entire (Example 5 in Sec. 13.3) but always have a zero, as
is proved in algebra.

Periodicity of ¢* with period 2i,
(12) G = g7 for all z

is a basic property that follows from (1) and the periodicity of cos y and sin y. Hence all
the values that w = ¢* can assume are already assumed in the horizontal strip of width
2w

(13) —r<y=nw (Fig. 333).

This infinite strip is called a fundamental region of ¢*.
Function Values. Solution of Equations.
Computation of values from (1) provides no problem. For instance, verify that
4700 = 1%(cos 0.6 — i sin 0.6) = 4.055(0.8253 — 0.5646i) = 3.347 — 2.289i
1406 = ;L4 _ 4055, Arg 147061 = (6
To illustrate (3), take the product of
" = ¢%(cos 1 + i sin 1) and e* = e*cos 1 — isin 1)

and verify that it equals e2e4(c052 1+ sin?1) = 8 = (2H0+@E=D

Fig. 333.  Fundamental region of the
exponential function e” in the z-plane



CHAP. 13  Complex Numbers and Functions
To solve the equation ¢ = 3 + 4, note first that |¢’| = ¢” = 5, x = In5 = 1.609 is the real part of all
solutions. Now, since e* = 3,
e cosy = 3, e“siny = 4, cosy = 0.6, siny =08, y=0.927.

Ans. z = 1.609 + 0.927i = 2nmi (n = 0, 1, 2, - - ). These are infinitely many solutions (due to the periodicity
of €°). They lie on the vertical line x = 1.609 at a distance 27 from their neighbors.

To summarize: many properties of ¢ = exp z parallel those of e”; an exception is the
periodicity of e* with 27ri, which suggested the concept of a fundamental region. Keep in

mind that ¢? is an entire function. (Do you still remember what that means?)

1. Using the Cauchy-Riemann equations, show that e* is 18-21|  Equations. Find all solutions and graph some of

entire. them in the complex plane.
18. &% = 4 19. ¢ = =2
2-8|  Values of ¢*. Compute ¢ in the form « + iv and 20. ¢F = 2. o = 4 — 3i

|e?|, where z equals:
22. TEAM PROJECT. Further Properties of the

2.3 4w i L sk 2 E tial Functi (a) Analyticity. Sh hat ¢*

1. . xponential Function. (a) Analyticity. Show that e ]
4.V2 -2771 S Fariid . is entire. What about e'/#? ¢*? ¢%(cos ky + i sin ky)? |
6. (1 +i)m 7. 0.8 — 5i (Use the Cauchy-Riemann equations.) |
8. 9mi/2 (b) Special values. Find all z such that (i) ¢ is real, ,

_ @) le7#] < 1, (iii) * = &~

Real and Imaginary Parts. Find Re and Im of: i y
B 10. & (¢) Harmonic function. Show that
. e . e

u = e®¥ cos (x2/2 — y?/2) is harmonic and find a
11. &~ 12. o2 ( y )

conjugate.
(d) Uniqueness. It is interesting that f(z) = e° is

13-17| Polar Form. Write in polar form: . . ;
uniquely determined by the two properties

13. }[’ .1 %+ & f(x +i0) = e"and f'(z) = f(z). where f is assumed
15. Vz 16. 3 + 4 to be entire. Prove this using the Cauchy-Riemann
17. -9 equations.

13.6 Trigonometric and Hyperbolic Functions

Just as we extended the real e® to the complex ¢ in Sec. 13.5, we now want to extend
the familiar real trigonometric functions to complex trigonometric functions. We can do
this by the use of the Euler formulas (Sec. 13.5)

e = cosx + isinux, e ™ = cosx — isinx.

By addition and subtraction we obtain for the real cosine and sine
1 07 —4 i 1 i —i
cosx=5(e + e, smx=7(e“‘—e .,
i

This suggests the following definitions for complex values z = x + iy:
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EXAMPLE 1

o A e :
1) cosz = — (¥ + e %), sinz = — (¥ — e7%).
2 2i

It is quite remarkable that here in complex, functions come together that are unrelated in
real. This is not an isolated incident but is typical of the general situation and shows the
advantage of working in complex.

Furthermore, as in calculus we define

sin z cos
(2) tan z = ; cotz = —;
cos z sin z
and
1 1
3) secz = , csCz = — .
cos Z sin z

Since €° is entire, cos z and sin z are entire functions. tan z and sec z are not entire; they
are analytic except at the points where cos z is zero; and cot z and csc z are analytic except
where sin z is zero. Formulas for the derivatives follow readily from (e°)’ = ¢* and (1)—(3);
as in calculus,

(4) (cosz) = —singz, (sinz)’ = cos z, (tanz)" = sec? z,

etc. Equation (1) also shows that Euler’s formula is valid in complex:
5) e” =cosz +isinz for all z.

The real and imaginary parts of cos z and sin z are needed in computing values, and
they also help in displaying properties of our functions. We illustrate this with a typical
example.

Real and Imaginary Parts. Absolute Value. Periodicity
Show that
(a) cosz = cosxcoshy — isinxsinhy
i (b)  sinz = sinx coshy + i cos x sinh y
and
(a) lcos z? = cos®x + sinh? y
@ (b)  Jsinz® = sin®x + sinh?y

and give some applications of these formulas.
Solution. From (1),
cosz = %(ei(x+iy) + e—i(x+iy))

=4e Y(cos x + i sinx) + 1e¥(cos x — i sinx)

2
=3¥ + e Y) cosx — di(e? — e7Y) sinx.
This yields (6a) since, as is known form calculus,

(3) coshy = (¥ + e7Y), sinhy = 4(e¥ — 7Y,




628

EXAMPLE 2
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(6b) is obtained similarly. From (6a) and cosh? y=1+ sinh® y we obtain
|cos 2|2 = (cos®x) (1 + sinh? y) + sin® x sinh? y.

Since sin® x + cos®x = 1, this gives (7a), and (7b) is obtained similarly.

For instance, cos (2 + 3i) = cos 2 cosh 3 — i sin2 sinh 3 = —4.190 — 9.109i.

From (6) we see that cos z and sin z are periodic with period 2, just as in real. Periodicity of tan z and
cot z with period 7 now follows.

Formula (7) points to an essential difference between the real and the complex cosine and sine; whereas
lcos x| = 1 and |sin x| = 1, the complex cosine and sine functions are no longer bounded but approach infinity
in absolute value as y — o, since then sinh y — ¢ in (7). B

Solutions of Equations. Zeros of cos z and sin z
Solve (a) cos z = 5 (which has no real solution!), (b) cosz = 0, (c) sinz = 0.

Solution. (a) ¢2* — 10¢% + 1 = 0 from (1) by multiplication by ¢**. This is a quadratic equation in &,
with solutions (rounded off to 3 decimals)

e = 7Y = 5 +1/25 —1=9899 and 0.101.

Thus e~ ¢ = 9.899 or 0.101, & =1, y = £2292,x = 2nm. Ans. z = £2nm * 2292i(n=20,1,2,--").
Can you obtain this from (6a)?
(b) cosx = 0, sinhy = 0 by (7a), y = 0. Ans. z = i%(Qn + Dm n=0,1,2,--°).
(c) sinx = 0, sinhy = 0 by (7b). Ans. z = *nm (n =0, 1,2, ). Hence the only zeros of cos z and
sin z are those of the real cosine and sine functions. |

General formulas for the real trigonometric functions continue to hold for complex
values. This follows immediately from the definitions. We mention in particular the
addition rules

I+

cos (z; * Zp) = €OS 74 COS Zy + Sin zy Sin zp

€))

sin (z; = z5) = sin z; €0s Zp * sin zp COS 21
and the formula
(10) cos?z + sin?z = 1.

Some further useful formulas are included in the problem set.

Hyperbolic Functions

The complex hyperbolic cosine and sine are defined by the formulas
a1 coshz = 3(e° + %), sinh z = 3(&* — 7).

This is suggested by the familiar definitions for a real variable [see (8)]. These functions
are entire, with derivatives

(12) (cosh z)' = sinh z, (sinh z)' = cosh z,

as in calculus. The other hyperbolic functions are defined by
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i‘ sinh cosh z
‘ tanh z = ; cothz = — ,
! cosh z sinh z
(13)
h ! h .
= , cschz = — :
seei cosh z ¢ sinh z

Complex Trigonometric and Hyperbolic Functions Are Related. 1f in (11), we replace
z by iz and then use (1), we obtain

(14) cosh iz = cos z, sinh iz = i sin z.

Similarly, if in (1) we replace z by iz and then use (11), we obtain conversely

a5) cos iz = cosh z, sin iz = i sinh z.

Here we have another case of unrelated real functions that have related complex analogs,
pointing again to the advantage of working in complex in order to get both a more unified

formalism and a deeper understanding of special functions. This is one of the main reasons
for the importance of complex analysis to the engineer and physicist.

1. Prove that cosz, sinz, coshz, sinhz are entire 14. sinh (4 — 3i) 15. cosh (4 — 67i)
functions.
2. Verify by differentiation that Re cos z and Im sin z are 16. (Real and imaginary parts) Show that
harmonic. .
sin x cos x
FORMULAS FOR HYPERBOLIC FUNCTIONS REEne= oz % mulfy
Show that

sinh y cosh y

Imtan z = 2_4-.7 .
3. cosh z = coshx cosy + i sinh x sin y CoF & T BL ¥
sinh z = sinh x cos y + 7 cosh x sin y. 17-21|  Equations. Find all solutions of the following
equations.
4. cosh (z; + z5) = cosh z; cosh z, + sinh z; sinh z, 17. coshe =0 18. sinz = 100
. . . 19. cosz = 2i 20. coshz = —1
sinh (z; + z5) = sinh z; cosh zo + cosh z; sinh z,. 21. sinhz =0
5. cosh®z — sinh%z = 1 22. Find all z for which (a) cos z, (b) sin z has real values.
2 P B 5
6. cosh”z + sinh® z = cosh 2z 23-25| Equations and Inequalities. Using the

. . . definitions, prove:
Function Values. Compute (in the form u + iv) . . .
23. cosz is even, cos (—z) = cosz, and sinz is odd,

7. cos (1 + i) 8. sin (1 + i) sin (—z) = —sin z.

9. sin 5i, cos 5i 10. cos 3i 24. |sinh y| = |cos z| = cosh y, [sinh y| = |sin z| = cosh y.
11. cosh (=2 + 3i), cos (=3 — 2i) Conclude that the complex cosine and sine are not
12. —i sinh (—7 + 2i), sin (2 + i) bounded in the whole complex plane.

13. cosh 2n + Dwi,n=1,2, - -+ 25. sinz; cos z, = 3[sin (z; + z5) + sin (z1 — 29)]
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13.7 Logarithm. General Power

We finally introduce the complex logarithm, which is more complicated than the real
logarithm (which it includes as a special case) and historically puzzled mathematicians
for some time (so if you first get puzzled—which need not happen!—be patient and work
through this section with extra care).

The natural logarithm of z = x + iy is denoted by In z (sometimes also by log z) and
is defined as the inverse of the exponential function; that is, w = Inz is defined for
z # 0 by the relation

e’ =z

(Note that z = 0 is impossible, since ¢ # 0 for all w; see Sec. 13.5.) If we set
w = u + iv and z = re'’, this becomes

e = eu+iv — reiﬁ
Now from Sec. 13.5 we know that ¢“* has the absolute value ¢* and the argument v.
These must be equal to the absolute value and argument on the right:

et =, v =0.

e“ = r gives u = Inr, where In r is the familiar real natural logarithm of the positive
number r = |z|. Hence w = u + iv = In z is given by

§)) Inz=Inr+ i6 (r=1lz >0, 6= argz).

Now comes an important point (without analog in real calculus). Since the argument of
z is determined only up to integer multiples of 27, the complex natural logarithm In z
(z # 0) is infinitely many-valued.

The value of In z corresponding to the principal value Arg z (see Sec. 13.2) is denoted
by Ln z (Ln with capital L) and is called the principal value of In z. Thus

#)) Inz=Inle riArpz (z # 0).

The uniqueness of Arg z for given z (# 0) implies that Ln z is single-valued, that is, a
function in the usual sense. Since the other values of arg z differ by integer multiples of
247, the other values of In z are given by

&) Inz=1Inz * 2nmi n=12--".

They all have the same real part, and their imaginary parts differ by integer multiples of 277.

If z is positive real, then Arg z = 0, and Ln z becomes identical with the real natural
logarithm known from calculus. If z is negative real (so that the natural logarithm of
calculus is not defined!), then Arg z = 7 and

Lnz =Inlg + mi (z negative real).
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From (1) and ¢™ " = r for positive real » we obtain
(4a) emE =g
as expected, but since arg (¢°) = y = 2n7r is multivalued, so is

(4b) In (¢*) = z = 2ni, n=0,1,---

EXAMPLE 1 Natural Logarithm. Principal Value

In 1 =0, +2mi, +dmi, - Lnl=0
In4 = 1.386 294 = 2nmi Ln4 = 1386 294
In(=1) = *mi, *3mi, +5mi, - - - Lo(=1) = mi
| In (—4) = 1.386.294 * 2n + )i Ln (—4) = 1.386 294 + mi
? Ini= mif2, —3m/2, Smil2, - - - Lai = wif2
| In4i = 1.386 294 + mi/2 * 2nmi Lndi = 1.386.294 + mil2
In (—4i) = 1.386 294 — mi/2 + 2nmi Ln (—4i) = 1386 294 — mi/2
In(3 — 4) = In5 + i arg 3 — 4i) Ln (3 — 4i) = 1.609 438 — 0.927 295
= 1.609 438 — 0.927 295i = 2ni (Fig. 334) [ |
| L
—09+6nfF .
~0.9+4n |- ¢
-09+2r +I
Y] e o
—09-2nf 6:

Fig. 334. Some values of In (3 — 4i) in Example 1

The familiar relations for the natural logarithm continue to hold for complex values,
that is,

(5) (@ In(z25) = Inz; + Inz, (b) In(z1/z5) = Inz; — Inzy

but these relations are to be understood in the sense that each value of one side is also
contained among the values of the other side; see the next example.

"EXAMPLE 2 Illustration of the Functional Relation (5) in Complex

Let

If we take the principal values

Lnz; = Lnze = i,
1 2

then (5a) holds provided we write In (z125) = In 1 = 2mi; however, it is not true for the principal value,
Ln(z325) = Lnl = 0.
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PROOF
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Analyticity of the Logarithm

For every n = 0, =1, £2, - - - formula (3) defines a function, which is analytic,
except at 0 and on the negative real axis, and has the derivative

1
6) (nz) = — (z not O or negative real).
z

We show that the Cauchy—Riemann equations are satisfied. From (1)—(3) we have
, 1 2 L 2y y
Inz=1Inr+i0+c) = Eln(x + y“) + ilarctan — + ¢
X

where the constant ¢ is a multiple of 27. By differentiation,

X 1 1
ux:—zv = — ¢ —

X2+ y? Y1+ (W) x

oy, (>
Yoox24+y? * 1+ (y/x)? 2]

Hence the Cauchy—-Riemann equations hold. [Confirm this by using these equations in
polar form, which we did not use since we proved them only in the problems (to
Sec. 13.4).] Formula (4) in Sec. 13.4 now gives (6),

(In 2’ & E_ L 1 y x — 0y 1 -
n = v — 1 —_ —— = —n = —
Z Uy LU, xz + y2 1+ (y/x)Z x2 x2 + y2 z

Each of the infinitely many functions in (3) is called a branch of the logarithm. The
negative real axis is known as a branch cut and is usually graphed as shown in Fig. 335.
The branch for n = 0 is called the principal branch of In z.

—ggix

Fig. 335. Branch cut for Inz

General Powers

General powers of a complex number z = x + iy are defined by the formula
@) 2o s (¢ complex, z # 0).

Since In z is infinitely many-valued, z¢ will, in general, be multivalued. The particular
value
Zc = ¢ Ln z

is called the principal value of z°.
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EXAMPLE 3

9.1 —1

10. In 1

Ifc =n=1,2,- -, then z" is single-valued and identical with the usual nth power
of z. If c = —1, —2, - - -, the situation is similar.
If c = 1/n, where n = 2, 3, - - -, then
¢ = Vg = gamn - # 0.

the exponent is determined up to multiples of 27i/n and we obtain the n distinct values
of the nth root, in agreement with the result in Sec. 13.2. If ¢ = p/q, the quotient of two
positive integers, the situation is similar, and z° has only finitely many distinct values.
However, if ¢ is real irrational or genuinely complex, then z° is infinitely many-valued.

General Power

i* 2n77i)i| = g~ HDEIT

Y]

it= "M% = exp(ilni) = exp l:l(

All these values are real, and the principal value (n = 0) is 2,

Similarly, by direct calculation and multiplying out in the exponent,
A+ 9> =exp[@—DIn(l + )] =exp[2 — i) (In V2 + tmri = 2nmi}]

=22 [in (A In 2) + i cos (& 1n 2)]. 5

It is a convention that for real positive z = x the expression z¢ means ¢° '™ * where In x
is the elementary real natural logarithm (that is, the principal value Ln z (z = x > 0) in
the sense of our definition). Also, if z = e, the base of the natural logarithm, z¢ = ¢° is
conventionally regarded as the unique value obtained from (1) in Sec. 13.5.

From (7) we see that for any complex number a,

(8) & = etna

We have now introduced the complex functions needed in practical work, some of them
(€%, cos z, sin z, cosh z, sinh z) entire (Sec. 13.5), some of them (tan z, cot z, tanh z, coth 7)
analytic except at certain points, and one of them (In z) splitting up into infinitely many
functions, each analytic except at 0 and on the negative real axis.

For the inverse trigonometric and hyperbolic functions see the problem set.

1-9|  Principal Value Ln z. Find Ln z when z equals: 12. Ine 13. In (—6)

1. —10 2.2+ 2i 14. In (4 + 3i) 15. In(—e™?)

3.2-2i 4. =5 + 0.1 16. In (e3%)

5. =3 -4 6. —100

7. 0.6 + 0.8i 8. —ei 17. Show that the set of values of In (i2) differs from the

set of values of 2 In i.

10-16]  All Values of Inz. Find all values and graph ~ L.o—21 Equations. Solve for z:

some of them in the complex plane. 18. Inz= Q2 — 3w 19. Inz =03 + 0.7

11. In (=1) 20. nz=e — mi 21. Inz =2 + Lmi
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22-28| General Powers. Showing the details of your
work, find the principal value of:

22. %, (2i) 23, 4371

24. (1 — 25. (1 + )t

26, (— 1 27. {2

28. (3 — 43

29. How can you find the answer to Prob. 24 from the

30.

8. Are

answer to Prob. 257

TEAM PROJECT. Inverse Trigonometric and
Hyperbolic Functions. By definition, the inverse sine
w = arcsin z is the relation such that sin w = z. The
inverse cosine w = arccos z is the relation such that
cosw = z. The inverse tangent, inverse cotangent,
inverse hyperbolic sine, etc., are defined and denoted
in a similar fashion. (Note that all these relations are
multivalued.) Using sinw = (¢! — ¢~")/(2i) and
similar representations of cos w, etc., show that

(a) arccosz = —iln(z + Vz2 — 1)
(b) arcsinz = —iln(iz + V1 — z?)

(¢) arccoshz =1In(z + V2 — 1)
(@ arcsinhz = In(z + V22 + 1)
i i+z
(e) arctanz = — In -
2. i—2z
1 1+z
(f) arctanh z = 5 In =

(g) Show that w = arcsin z is infinitely many-valued,
and if wy is one of these values, the others are of the
form wy = 2nmand 7 — wy * 2nm, n=0,1, - - .
(The principal value of w = u + iv = arcsin z is
defined to be the value for which —7/2 = u = 7/2
ifv=0and —7/2 < u < w/2ifv <O0.)

“QUESTIONS AND PROBLEMS

. Add, subtract, multiply, and divide 26 — 7i and

3 + 4i as well as their complex conjugates.

. Write the two given numbers in Prob. 1 in polar form.

Find the principal value of their arguments.

. What is the triangle inequality? Its geometric meaning?

Its significance?

. If you know the values of %, how do you get from

them the values of ¥z for any z?

. State the definition of the derivative from memory. It

looks similar to that in calculus. But what is the big
difference?

. What is an analytic function? How would you test for

analyticity?

. Can a function be differentiable at a point without being

analytic there? If yes, give an example.

7
<

, Z, Re z, Im z analytic? Give reason.

9. State the definitions of €%, cos z, sin z, cosh z, sinh z and

10.

11.
12.
13.

14.
15.

the relations between these functions. Do these relations
have analogs in real?

What properties of ¢* are similar to those of e* ? Which
one is different?

What is the fundamental region of e® ? Its significance?
What is an entire function? Give examples.

Why is In z much more complicated than In x? Explain
from memory.

What is the principal value of In z?

How is the general power z¢ defined? Give examples.

16-21| Complex Numbers. Find, in the form x + iy,
showing the details:

16. (1 + H'? 17. (=2 + 6i)?
18. 1/(3 — 7i) 19. (1 — D/ + )2
20. V-5 —12i 21. (43 — 19)/(8 + i)

22-26 Polar Form. Represent in polar form, with the
principal argument:

22,1 — 3i 23. —6 + 6i
24. V20/(4 + 2i) 25. —12i

26. 2 + 2i

Roots. Find and graph all values of
27. V3i 28. V256

29, V-1 30. V32 — 24i

31-35|  Analytic Functions. Find f(z) = u(x,y) + iv(x, y)

with u or v as given. Check for analyticity.
31 u = x/(x% + y?) R.v =
B.ou=x2-2xy—y*> 34 u-=

35. v = ¥ sin 2xy

e~ 3% sin 3y

cos 2x cosh 2y

36-39| Harmonic Functions. Are the following
functions harmonic? If so, find a harmonic conjugate.

36. x2y? 37. xy

38. ¢e=%2 cos iy 39. x2 + y2

Special Function Values. Find the values of
40. sin (3 + 4i) 41. sinh 47

42. cos (57 + 2i) 43. Ln (0.8 + 0.67)

44. tan (1 + i) 45. cosh (1 + i)
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= SUMMARY OF CHAPTER
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For arithmetic operations with complex numbers
(1) z=x+iy = re" = r(cos 6 + i sin 6),

r =l = Vx® + y%, 6 = arctan (y/x), and for their representation in the complex
plane, see Secs. 13.1 and 13.2.

A complex function f(z) = u(x, y) + iv(x, y) is analytic in a domain D if it has
a derivative (Sec. 13.3)

fz + A2 — f(z)
Az

@ @ = fim,

everywhere in D. Also, f(z) is analytic at a point 7 = 7, if it has a derivative in a
neighborhood of z, (not merely at z, itself).

If f(z) is analytic in D, then u(x, y) and v(x, y) satisfy the (very important!)
Cauchy-Riemann equations (Sec. 13.4)

ou ov ou v
3) -5 =
0x dy dy dx

everywhere in D. Then « and v also satisfy Laplace’s equation
4) Upe T 1ty = 0, Uge T 0y =0

everywhere in D. If u(x, y) and v(x, y) are continuous and have continuous partial
derivatives in D that satisfy (3) in D, then f(z) = u(x, y) + iv(x, y) is analytic in
D. See Sec. 13.4. (More on Laplace’s equation and complex analysis follows in
Chap. 18.)

The complex exponential function (Sec. 13.5)

%) e =expz=e"(cosy + isiny)

reduces to e” if z = x (y = 0). It is periodic with 27ri and has the derivative ¢%.
The trigonometric functions are (Sec. 13.6)

1 ) .
cos z = EX (e + e7™) = cosx coshy — i sin x sinh y
(6)

| ,
sin z = % (e — e™*) = sinx coshy + i cos x sinh y
i

and, furthermore,

tan z = (sin z)/cos z, cotz = l/tanz, etc.
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The hyperbolic functions are (Sec. 13.6)
(7) coshz =1(ef + ™) = cos iz, sinhz = 4(¢* — ™) = —isiniz

etc. The functions (5)—(7) are entire, that is, analytic everywhere in the complex
plane.
The natural logarithm is (Sec. 13.7)

(8) Inz=1Inlz +iargz=1Inlz + i Argz = 2nmi

where z # 0O and n = 0, 1, - - - . Arg z is the principal value of arg z, that is,
—a < Arg z = 7. We see that In z is infinitely many-valued. Taking n = 0 gives
the principal value Ln z of Inz; thus Lnz = In |z| + i Arg z.

General powers are defined by (Sec. 13.7)

© = clnz (c complex, z # 0).




CHAPTER] 4

Complex Integration

Two main reasons account for the importance of integration in the complex plane. The
practical reason is that complex integration can evaluate certain real integrals appearing
in applications that are not accessible by real integral calculus. The theoretical reason is
that some basic properties of analytic functions are difficult to prove by other methods.
A striking property of this type is the existence of higher derivatives of an analytic function.

Complex integration also plays a role in connection with special functions, such as the
gamma function (see [GR1], p. 255), the error function, various polynomials (see [GR10])
and others, and the application of these functions in physics.

In this chapter we define and explain complex integrals. The most important result in
the chapter is Cauchy’s integral theorem or the Cauchy-Goursat theorem, as it is also
called (Sec. 14.2). It implies Cauchy’s integral formula (Sec. 14.3), which in turn implies
the existence of all higher derivatives of an analytic function. Hence in this respect,
complex analytic functions behave much more simply than real-valued functions of real
variables, which may have derivatives only up to a certain order.

A further method of complex integration, known as integration by residues, and its
application to real integrals will need complex series and follows in Chap. 16.

Prerequisite: Chap. 13
References and Answers to Problems: App. 1 Part D, App. 2.

14.1 Line Integral in the Complex Plane

As in calculus we distinguish between definite integrals and indefinite integrals or
antiderivatives. An indefinite integral is a function whose derivative equals a given
analytic function in a region. By inverting known differentiation formulas we may find
many types of indefinite integrals.

Complex definite integrals are called (complex) line integrals. They are written

J 1@

Here the integrand f(z) is integrated over a given curve C or a portion of it (an arc, but
we shall say “curve” in either case, for simplicity). This curve C in the complex plane is
called the path of integration. We may represent C by a parametric representation

(@))] z(t) = x(¢) + iy(2) (a=t=0D).

637
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The sense of increasing ¢ is called the positive sense on C, and we say that C is oriented
by (1).

For instance, z(f) = ¢ + 3it (0 =t = 2) gives a portion (a segment) of the line y = 3x.
The function z(f) = 4 cos t + 4i sint (—7 = t = ) represents the circle |z| = 4, and so
on. More examples follow below.

We assume C to be a smooth curve, that is, C has a continuous and nonzero derivative

. dz . .
z(n = o x() + iy()

at each point. Geometrically this means that C has everywhere a continuously turning
tangent, as follows directly from the definition

2(t + A — z(b)

20 = lim N (Fig. 336).

Here we use a dot since a prime ' denotes the derivative with respect to z.

Definition of the Complex Line Integral

This is similar to the method in calculus. Let C be a smooth curve in the complex plane
given by (1), and let f(z) be a continuous function given (at least) at each point of C. We
now subdivide (we “partition”) the interval @ = t = b in (1) by points

tO (: a)» tls T, t’n—l’ tn (: b)
where 7y < t; < - - - < t,,. To this subdivision there corresponds a subdivision of C by
points
Zoo 215 s Zp—1> Zn (: Z) (Flg 337),

Fig. 336. Tangent vector z(t) of a curve C in the Fig. 337. Complex line integral
complex plane given by z(t). The arrowhead on the
curve indicates the positive sense (sense of increasing t).

where z; = z(t;). On each portion of subdivision of C we choose an arbitrary point, say,
a point {; between z, and z; (that is, {; = z(t) where 7 satisfies 1o = 1 = 1), a point {5
between z; and z,, etc. Then we form the sum

2) S, =2 f(lw) Az, where AZp = Zm = Zm-1-
m=1

We do this for each n = 2, 3, - - - in a completely independent manner, but so that the
greatest |At,,| = |t,, — t,,_1| approaches zero as n — . This implies that the greatest
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|Az,,| also approaches zero. Indeed, it cannot exceed the length of the arc of C from z,,,_;
to z,, and the latter goes to zero since the arc length of the smooth curve C is a continuous
function of ¢. The limit of the sequence of complex numbers Sy, Ss, - - - thus obtained is
called the line integral (or simply the integral) of f(z) over the path of integration C with
the orientation given by (1). This line integral is denoted by

3) @@ by $r0d

if Cis a closed path (one whose terminal point Z coincides with its initial point zq, as for
a circle or for a curve shaped like an 8).

General Assumption. All paths of integration for complex line integrals are assumed to
be piecewise smooth, that is, they consist of finitely many smooth curves joined end to end.

Basic Properties Directly Implied by the Definition

1. Linearity. Integration is a linear operation, that is, we can integrate sums term by
term and can take out constant factors from under the integral sign. This means that
if the integrals of f, and f5 over a path C exist, so does the integral of kyf; + kof5
over the same path and

@ [ hQ + kefa@lde =k [ 1@ dz+ ks [ fodz
C C C

2. Sense reversal in integrating over the same path, from z, to Z (left) and from Z to
7o (right), introduces a minus sign as shown,

(5) £ Zf(z) dz = — f:f(z) dz.

3. Partitioning of path (see Fig. 338)

(©) | r@rd: = | s@de+ | fed

Fig. 338. Partitioning of path [formula (6)]

Existence of the Complex Line Integral

Our assumptions that f(z) is continuous and C is piecewise smooth imply the existence
of the line integral (3). This can be seen as follows.
As in the preceding chapter let us write f(z) = u(x, y) + iv(x, y). We also set

b = & + iM, and Az, = Ax,, + iAy,,.
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Then (2) may be written
(7 S, = > (u+ iv)Ax,, + iAy,,)

where u = u({,,, ), U = (. M) and we sum over m from 1 to n. Performing the
multiplication, we may now split up S,, into four sums:

SnZEqum—EvAym+i[2uAym+EvAxm].

These sums are real. Since f is continuous, u# and v are continuous. Hence, if we let n
approach infinity in the aforementioned way, then the greatest Ax,,, and Ay,, will approach
zero and each sum on the right becomes a real line integral:

®) lim s, = fcf(z) de = fcu die — fcv dy 4+ i [ fcu &y + Lv dx:l .

This shows that under our assumptions on f and C the line integral (3) exists and its value
is independent of the choice of subdivisions and intermediate points (. |

First Evaluation Method:
Indefinite Integration and Substitution of Limits

This method is the analog of the evaluation of definite integrals in calculus by the
well-known formula

b
ff(x) dx = F(b) — F(a) [F'(x) = f).

It is simpler than the next method, but it is suitable for analytic functions only. To formulate
it, we need the following concept of general interest.

A domain D is called simply connected if every simple closed curve (closed curve
without self-intersections) encloses only points of D.

For instance, a circular disk is simply connected, whereas an annulus (Sec. 13.3) is not
simply connected. (Explain!)

Indefinite Integration of Analytic Functions

Let f(z) be analytic in a simply connected domain D. Then there exists an
indefinite integral of f(z) in the domain D, that is, an analytic function F(2) such that
F'(z) = f(2) in D, and for all paths in D joining two points zo and z; in D we have

) [ @ dz = Feep) — Fizo) [F' ) = fl

(Note that we can write zy and z, instead of C, since we get the same value for all
those C from zg to z;.)
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EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

EXAMPLE 4

THEOREM 2

PROOF

This theorem will be proved in the next section.
Simple connectedness is quite essential in Theorem 1, as we shall see in Example 5.
Since analytic functions are our main concern, and since differentiation formulas will often
help in finding F(z) for a given f(z) = F'(z), the present method is of great practical interest.
If f(z) is entire (Sec. 13.5), we can take for D the complex plane (which is certainly
simply connected).

[ 2 2
f Pdi= B =+ 4+ ]
. 3° |, 3 33
f coszdz = sinz = 2sin 7 = 2i sinh 7 = 23.097i 5]
—mi —ari
8=3md 8—3mi
f 2 gy = 242 = Q(A3TIZ _ Armil2) _
8+ i 8+mi
since ¢° is periodic with period 27ri. ]

' im im . . . .
— =Lni—Ln(—i) = 5 T\ 7) Here D is the complex plane without 0 and the negative
—; <2

real axis (where Ln z is not analytic). Obviously, D is a simply connected domain. |

Second Evaluation Method:
Use of a Representation of a Path

This method is not restricted to analytic functions but applies to any continuous complex
function. '

Integration by the Use of the Path

Let C be a piecewise smooth path, represented by z = z(t), where a =t < b. Let
f(2) be a continuous function on C. Then

: d
10) fcf(Z) dz = ff[z(t)]z(z) dt (2 _ ﬁ) ‘

The left side of (10) is given by (8) in terms of real line integrals, and we show that the
right side of (10) also equals (8). We have z = x + iy, hence 7 = X + iy. We simply
write u for ulx(r), y()] and v for v[x(r), y(1)]. We also have dx = % dr and dy = y dt.
Consequently, in (10)

b b
[ iz di = [ @+ i) + i) de
=f[udx —vdy + i(udy + v dx)]
e

=f(udx—vdy)+if(udy+udx). E
C C
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EXAMPLE 5

EXAMPLE 6

CHAP.14 Complex Integration

COMMENT. 1In (7) and (8) of the existence proof of the complex line integral we referred
to real line integrals. If one wants to avoid this, one can take (10) as a definition of the
complex line integral.

Steps in Applying Theorem 2

(A) Represent the path C in the form z(r) (a = t = b).

(B) Calculate the derivative z(f) = dz/dt.

(C) Substitute z(7) for every z in f(z) (hence x(¢) for x and y(¢) for y).
(D) Integrate f[z(1)]z(¢) over ¢ from a to b.

A Basic Result: Integral of 1/z Around the Unit Circle

We show that by integrating 1/z counterclockwise around the unit circle (the circle of radius 1 and center 0; see
Sec. 13.3) we obtain

(11) ﬂ = 2 (C the unit circle,

o 7 counterclockwise).

This is a very important result that we shall need quite often.

Solution. (A) We may represent the unit circle C in Fig. 327 of Sec. 13.3 by

t

z(t):cost+isint=ei O=r=2m,

so that counterclockwise integration corresponds to an increase of ¢ from 0 to 2.
(B) Differentiation gives z(f) = i oMt (chain rule!).
(C) By substitution, f(z(£)) = 1/z(1) = e~

(D) From (10) we thus obtain the result
27 27

d. i
ﬂg 2= f e et dr = if dt = 2.
c ?

0 0

Check this result by using z(r) = cost + isint.

Simple connectedness is essential in Theorem 1. Equation (9) in Theorem 1 gives O for any closed path
because then z; = zg, so that F(z;) — F(zg) = 0. Now 1/z is not analytic at z = 0. But any simply connected
domain containing the unit circle must contain z = 0, so that Theorem 1 does not apply—it is not enough that
1/z is analytic in an annulus, say, 3 < 7| < 2 because an annulus is not simply connected! 2]

Integral of 1/z"™ with Integer Power m

Let f(z) = (z — zo)"* where m is the integer and z a constant. Integrate counterclockwise around the circle C
of radius p with center at zq (Fig. 339).

x

Fig. 339. Path in Example 6
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EXAMPLE 7

Solution. We may represent C in the form

() = z9 + p(cost + isint) = zg + peit O=t=2m.
Then we have
(z = 20)™ = p"e™, dz = ipe'tdr
and obtain
27 27
3g(z —z0)"dz = f P ipett dr = it f St gy
c 0 0

By the Euler formula (5) in Sec. 13.6 the right side equals

27 27
g+l J cos (m + Dyrdt + ij sin(m + Dtdt | .
(0)

0

If m = —1, we have pm+1 =1,cos0 =1, sin 0 = 0. We thus obtain 2. For integer m # 1 each of the two

integrals is zero because we integrate over an interval of length 277, equal to a period of sine and cosine. Hence
the result is

277 (m = —1),
(12) - zomdz = _ m
c 0 (m # —1 and integer).

Dependence on path. Now comes a very important fact. If we integrate a given function
f(z) from a point z, to a point z; along different paths, the integrals will in general have
different values. In other words, a complex line integral depends not only on the endpoints
of the path but in general also on the path itself. The next example gives a first impression
of this, and a systematic discussion follows in the next section.

Integral of a Nonanalytic Function. Dependence on Path

Integrate f(z) = Re z = x from 0 to 1 + 2i (a) along C* in Fig. 340, (b) along C consisting of C; and Cs.

Fig. 340. Paths in Example 7

Solution. (a) C* can be represented by z(r) = ¢ + 2it (0 =t = 1). Hence z(r) = 1 + 2i and f[z(1)] = x(t) = ¢
on C*. We now calculate
1

f Rezdz = f t(1 + 2i)dt = 3(1 + 2[):%-"- i
. 0

(b) We now have

Cy:z(t) =1, () =1, fz@®) = x(t) =t O=r=1
Co:z(t) = 1 + it, () = i, fz®) = x(t) = 1 0=r=2).
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PROOF

EXAMPLE 8

1

Fig. 341. Pathin
Example 8

CHAP.14 Complex Integration

Using (6) we calculate

1 2

fRezdz:fRezdz+fRezdz=ftdt+f1'idt=%+2i.
c Gy G 0 0
Note that this result differs from the result in (a). |

Bounds for Integrals. ML-Inequality

There will be a frequent need for estimating the absolute value of complex line integrals.
The basic formula is

13)

f f(z)dz| = ML (ML-inequality);
c

L is the length of C and M a constant such that |f(z)| = M everywhere on C.

Taking the absolute value in (2) and applying the generalized inequality (6*) in Sec. 13.2,
we obtain

> ) Az,

m=1

1Sal =

=D fGn)| Azl =M 2 |Az,|.
m=1

m=1

Now |Az,,| is the length of the chord whose endpoints are z,,—; and z,, (see Fig. 337 on
p. 638). Hence the sum on the right represents the length L* of the broken line of chords
whose endpoints are zg, 21, * * * » 2, (= Z). If n approaches infinity in such a way that the
greatest |At,,| and thus |Az,,| approach zero, then L* approaches the length L of the curve
C, by the definition of the length of a curve. From this the inequality (13) follows. M

We cannot see from (13) how close to the bound ML the actual absolute value of the
integral is, but this will be no handicap in applying (13). For the time being we explain
the practical use of (13) by a simple example.

Estimation of an Integral

Find an upper bound for the absolute value of the integral

f 2dz, C the straight-line segment from 0 to 1 + i, Fig. 341.
c
Solution. L =\2and |f(z)] = |z% = 2 on C gives by (13)

fzz dz

C

=2V2 = 2.8284.

2 2 2
The absolute value of the integral is |— 3 + 3 i’ = 3 2 = (0.9428 (see Example 1). |

Summary on Integration. Line integrals of f(z) can always be evaluated by (10), using
a representation (1) of the path of integration. If f(z) is analytic, indefinite integration by
(9) as in calculus will be simpler.
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1-9| PARAMETRIC REPRESENTATIONS
Find and sketch the path and its orientation given by:

1.
2.

FCIE-CTREN TN N R SN

10-18

=>0+3i(1=t=4
() =5=2it(=3=r=3)

Lzt =4+i+ 3" 0=r=2m
L =1+i+e ™ 0=r=2)
L=t 0=r=m

L) =3+ 4i+ 5N (m=1=2m

() =6cos2t +5isin2t(0=1=m)

L) =1+ 2t + 8> (m1=1= 1)
L =t + it (-1 =1r=2)

PARAMETRIC REPRESENTATIONS

Sketch and represent parametrically:

10. Segment from 1 + ito 4 — 2i

11. Unit circle (clockwise)

12. Segment from a + ib to ¢ + id

13. Hyperbola xy = 1 from 1 + ito 4 + 4i
14. Semi-ellipse x%a® + y?/b2 =1,y = 0
15. Parabolay =4 — 4x2 (-1 =x = 1)
16. |z — 2 + 3i| = 4 (counterclockwise)
17. |z + a + ib| = r (clockwise)

18. Ellipse 4(x — 1)> + 9(y + 2)® = 36

INTEGRATION

Integrate by the first method or state why it does not apply
and then use the second method. (Show the details of your
work.)

19. fRe z dz, C the shortest path from O to 1 + i
c

20

21.

22.

23.

24.

25,

b fRez dz, C the parabola y = x* from 0 to | + i
c
f e* dz, C the shortest path from i to 27ri
¢

f sin z dz, C any path from 0 to 2i
©

jcos2 z dz from —ri along |z| = 7 to i in the right
c
half-plane

f (z + 771 dz, C the unit circle (counterclockwise)
c

fcosh 4z dz, C any path from —i/8 to i/
c

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

645

f% dz, C from —1 + i along the parabola y = x? to
c

I+

fsec2 z dz, C any path from 7/4 to mi/4
c

f Im z2 dz counterclockwise around the triangle with
c

vertices z = 0, 1, i

f 2672 dz, C from i along the axes to 1
c

(Sense reversal) Verify (5) for f(z) = z2, where C is
the segment from —1 —ito | + i

(Path partitioning) Verify (6) for f(z) = 1/z and C,
and C, the upper and lower halfs of the unit circle

(ML-inequality) Find an upper bound of the absolute
value of the integral in Prob. 19.

(Linearity) Illustrate (4) with an example of your own.
Prove (4).

TEAM PROJECT. Integration. (a) Comparison.
Write a short report comparing the essential points of
the two integration methods.

(b) Comparison. Evaluate f f(z) dz by Theorem 1
o]
and check the result by Theorem 2, where:

() f(z) = z*and Cis the semicircle |z| = 2 from
—2i to 2i in the right half-plane,

(i) f(z) = % and C is the shortest path from 0
tol + 2i.

(¢c) Continuous deformation of path. Experiment
with a family of paths with common endpoints, say,
() =t +iasint, 0 = t = m, with real parameter a.
Integrate nonanalytic functions (Re z, Re (z2), etc.) and
explore how the result depends on a. Then take analytic
functions of your choice. (Show the details of your
work.) Compare and comment.

(d) Continuous deformation of path. Choose
another  family, for example, semi-ellipses
z(t) = acost + isint, —mw/2 = t = w2, and
experiment as in (c).

CAS PROJECT. Integration. Write programs for the
two integration methods. Apply them to problems of
your choice. Could you make them into a joint program
that also decides which of the two methods to use in a
given case?
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14.2 Cauchy’s Integral Theorem

We have just seen in Sec. 14.1 that a line integral of a function f(z) generally depends
not merely on the endpoints of the path, but also on the choice of the path itself. This
dependence often complicates situations. Hence conditions under which this does not
occur are of considerable importance. Namely, if f(z) is analytic in a domain D and D is
simply connected (see Sec. 14.1 and also below), then the integral will not depend on the
choice of a path between given points. This result (Theorem 2) follows from Cauchy’s
integral theorem, along with other basic consequences that make Cauchy’s integral
theorem the most important theorem in this chapter and fundamental throughout complex
analysis.

Let us begin by repeating and illustrating the definition of simple connectedness
(Sec. 14.1) and adding some more details.

1. A simple closed path is a closed path (Sec. 14.1) that does not intersect or touch
itself (Fig. 342). For example, a circle is simple, but a curve shaped like an 8 is not

simple.
Simple Simple Not simple Not simple

Fig. 342. Closed paths

2. A simply connected domain D in the complex plane is a domain (Sec. 13.3) such
that every simple closed path in D encloses only points of D. Examples: The interior
of a circle (“open disk™), ellipse, or any simple closed curve. A domain that is not
simply connected is called multiply connected. Examples: An annulus (Sec. 13.3),
a disk without the center, for example, 0 < |z| < 1. See also Fig. 343.

Simply Simply Doubly Triply
connected connected connected connected

Fig. 343. Simply and multiply connected domains

More precisely, a bounded domain D (that is, a domain that lies entirely in some circle about the origin) is
called p-fold connected if its boundary consists of p closed connected sets without common points. These sets
can be curves, segments, or single points (such as z = 0 for 0 < lz| < 1, for which p = 2). Thus, D has p — 1
“holes”, where “hole” may also mean a segment or even a single point. Hence an annulus is doubly connected
(p=2).
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EXAMPLE 2

EXAMPLE 3

EXAMPLE 4
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Cauchy’s Integral Theorem

If f(2) is analytic in a simply connected domain D, then for every simple closed path
Cin D,

@® 9€cf(z) dz =.0. See Fig. 344.

_——-_~___—‘)
< -
\\—.k—”

Fig. 344. Cauchy’s integral theorem

Before we prove the theorem, let us consider some examples in order to really understand
what is going on. A simple closed path is sometimes called a contour and an integral over
such a path a contour integral. Thus, (1) and our examples involve contour integrals.

No Singularities (Entire Functions)

&ezdz=0, #cosde:O, %zndz=0 n=0,1,--+)
c c e,

for any closed path, since these functions are entire (analytic for all z). |

Singularities Outside the Contour

dz
seczdz = 0, > =0
c cz"+4
where C is the unit circle, sec z = 1/cos z is not analytic at z = * /2, =37/2, - - -, but all these points lie
outside C; none lies on C or inside C. Similarly for the second integral, whose integrand is not analytic at
7 = *2i outside C. B
Nonanalytic Function
27

%Zdz = f e et dt = 2
c 0

where C: z(1) = ' is the unit circle. This does not contradict Cauchy’s theorem because f(z) = Z is not
analytic.

Analyticity Sufficient, Not Necessary

dz
— =
cX

where C is the unit circle. This result does not follow from Cauchy’s theorem, because flz) = 1/z2 is not analytic
at z = 0. Hence the condition that f be analytic in D is sufficient rather than necessary for (1) to be true. M
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Simple Connectedness Essential

dz
— = 277

C

for counterclockwise integration around the unit circle (see Sec. 14.1). C lies in the annulus 3 < |z| < 3 where
1/z is analytic, but this domain is not simply connected, so that Cauchy’s theorem cannot be applied. Hence the
condition that the domain D be simply connected is essential.

In other words, by Cauchy’s theorem, if f(z) is analytic on a simple closed path C and everywhere inside C,
with no exception, not even a single point, then (1) holds. The point that causes trouble here is z = 0 where 1/z
is not analytic. H

Cauchy proved his integral theorem under the additional assumption that the derivative
f'(z) is continuous (which is true, but would need an extra proof). His proof proceeds as
follows. From (8) in Sec. 14.1 we have

fﬁf(z)dz :%(udx— vdy) + ijg(udy + v dx).
c c c

Since f(z) is analytic in D, its derivative f'(z) exists in D. Since f’(z) is assumed to be
continuous, (4) and (5) in Sec. 13.4 imply that u and v have continuous partial derivatives
in D. Hence Green’s theorem (Sec. 10.4) (with # and —v instead of F; and F5) is applicable
and gives

where R is the region bounded by C. The second Cauchy—Riemann equation (Sec. 13.4)
shows that the integrand on the right is identically zero. Hence the integral on the left is
zero. In the same fashion it follows by the use of the first Cauchy—Riemann equation that
the last integral in the above formula is zero. This completes Cauchy’s proof. &

Goursat’s proof without the condition that f'(z) is continuous' is much more
complicated. We leave it optional and include it in App. 4.

Independence of Path

We know from the preceding section that the value of a line integral of a given function
f(z) from a point z; to a point zo will in general depend on the path C over which we
integrate, not merely on z; and z,. It is important to characterize situations in which this
difficulty of path dependence does not occur. This task suggests the following concept.
We call an integral of f(z) independent of path in a domain D if for every z;, z5 in D
its value depends (besides on f(z), of course) only on the initial point z; and the terminal
point z,, but not on the choice of the path C in D [so that every path in D from z; to z,
gives the same value of the integral of f(z)].

'EDOUARD GOURSAT (1858-1936), French mathematician. Cauchy published the theorem in 1825. The
removal of that condition by Goursat (see Transactions Amer. Math. Soc., vol. 1, 1900) is quite important, for
instance, in connection with the fact that derivatives of analytic functions are also analytic, as we shall prove
soon. Goursat also made important contributions to PDEs.
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THEOREM 2

PROOF

Independence of Path

If f(z) is analytic in a simply connected domain D, then the integral of f(z) is
independent of path in D.

Let z; and z, be any points in D. Consider two paths C; and C, in D from z; to z, without
further common points, as in Fig. 345. Denote by C35 the path C, with the orientation
reserved (Fig. 346). Integrate from z; over C; to z5 and over C3 back to z;. This is a
simple closed path, and Cauchy’s theorem applies under our assumptions of the present
theorem and gives zero:

2" fle dz + fc fdz =0, thus fCIf = — fcf dz.

But the minus sign on the right disappears if we integrate in the reverse direction, from
71 10 zp, which shows that the integrals of f(z) over C; and C, are equal,

2 ]C f)dz = fc f(2)dz (Fig. 345).

This proves the theorem for paths that have only the endpoints in common. For paths that
have finitely many further common points, apply the present argument to each “loop”
(portions of C; and C, between consecutive common points; four loops in Fig. 347). For
paths with infinitely many common points we would need additional argumentation not
to be presented here. |

G

Fig. 345. Formula (2) Fig. 346. Formula (2,) Fig. 347. Paths with more
common points

Principle of Deformation of Path

This idea is related to path independence. We may imagine that the path C, in (2) was
obtained from C; by continuously moving C; (with ends fixed!) until it coincides with
C,. Figure 348 shows two of the infinitely many intermediate paths for which the integral
always retains its value (because of Theorem 2). Hence we may impose a continuous
deformation of the path of an integral, keeping the ends fixed. As long as our deforming
path always contains only points at which f(z) is analytic, the integral retains the same
value. This is called the principle of deformation of path.
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Fig. 348. Continuous deformation of path

A Basic Result: Integral of Integer Powers
From Example 6 in Sec. 14.1 and the principle of deformation of path it follows that
2i (m=—1)
(3) §’ (2—zg)dz= )
0 (m # —1 and integer)

for counterclockwise integration around any simple closed path containing z in its interior.
Indeed, the circle |z — zo| = p in Example 6 of Sec. 14.1 can be continuously deformed in two steps into a path
as just indicated, namely, by first deforming, say, one semicircle and then the other one. (Make a sketch). |

Existence of Indefinite Integral

We shall now justify our indefinite integration method in the preceding section [formula
(9) in Sec. 14.1]. The proof will need Cauchy’s integral theorem.

Existence of Indefinite Integral

If f(2) is analytic in a simply connected domain D, then there exists an indefinite
integral F(2) of f(z) in D—thus, F'(z) = f(z)—which is analytic in D, and for all
paths in D joining any two points zo and z; in D, the integral of f(z) from zg to z3
can be evaluated by formula (9) in Sec. 14.1.

The conditions of Cauchy’s integral theorem are satisfied. Hence the line integral of f(z)

from any z, in D to any z in D is independent of path in D. We keep z, fixed. Then this
integral becomes a function of z, call if F(z),

) FG) = [ fe) der

which is uniquely determined. We show that this F(z) is analytic in D and F'(z) = f(z).
The idea of doing this is as follows. Using (4) we form the difference quotient

Fle o & _F | ZrAz 2 1 z+Az
o T L [ [ reae - [ ren dz*:| =] e

20 2

We now subtract f(z) from (5) and show that the resulting expression approaches zero as
Az — 0. The details are as follows.
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We keep z fixed. Then we choose z + Az in D so that the whole segment with
endpoints z and z + Az is in D (Fig. 349). This can be done because D is a domain,
hence it contains a neighborhood of z. We use this segment as the path of integration
in (5). Now we subtract f(z). This is a constant because z is kept fixed. Hence we can
write

2+Az Z+Az z+Az

l
| todr=io [ w=foan e fo=4- [ jod

2 z

By this trick and from (5) we get a single integral:

z+Az

1
f0=5- [ e - sl

z

Fiz + A2) — Fz)
Az

Since f(z) is analytic, it is continuous. An € > 0 being given, we can thus find a § > 0
such that [f(z*) — f(z)] < € when |z* — z| < §. Hence, letting |Az| < 8, we see that the
ML-inequality (Sec. 14.1) yields

z+Az

[ e - fords

z

F(z + Az) — F(2)
Az

1
= — €Az =e

|Az]

. )|_;
f@| = A

By the definition of limit and derivative, this proves that

F(z + A7) — F(2)
Az

= f(@).

/ T
Fe = fim,

Since z is any point in D, this implies that F(z) is analytic in D and is an indefinite integral
or antiderivative of f(z) in D, written

Fo = [f@ d.

Also, if G'(z) = f(z), then F'(z) — G'(z) = 0 in D; hence F(z) — G(z) is constant in D
(see Team Project 26 in Problem Set 13.4). That is, two indefinite integrals of f(z) can
differ only by a constant. The latter drops out in (9) of Sec. 14.1, so that we can use any
indefinite integral of f(z). This proves Theorem 3. |

Fig. 349. Path of integration
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Cauchy’s Integral Theorem for
Multiply Connected Domains

Cauchy’s theorem applies to multiply connected domains. We first explain this for a
doubly connected domain D with outer boundary curve C; and inner Cy (Fig. 350). If

a function f(z) is analytic in any domain D* that contains D and its boundary curves, we
claim that

©) § ferd = 1 (Fig. 350)

both integrals being taken counterclockwise (or both clockwise, and regardless of whether
or not the full interior of Cy belongs to D*).

Fig. 350. Paths in (5)

By two cuts C, and C, (Fig. 351) we cut D into two simply connected domains D, and
D, in which and on whose boundaries f(z) is analytic. By Cauchy’s integral theorem the
integral over the entire boundary of D; (taken in the sense of the arrows in Fig. 351) is
zero, and so is the integral over the boundary of Ds, and thus their sum. In this sum the
integrals over the cuts C, and C, cancel because we integrate over them in both
directions—this is the key—and we are left with the integrals over Cy (counterclockwise)
and C, (clockwise; see Fig. 351); hence by reversing the integration over Cy (to
counterclockwise) we have

$ fdz—¢ fdz=0
&y Cy
and (6) follows. |

For domains of higher connectivity the idea remains the same. Thus, for a triply connected
domain we use three cuts C 1 52, C 5 (Fig. 352). Adding integrals as before, the integrals
over the cuts cancel and the sum of the integrals over C; (counterclockwise) and Cs, Cs
(clockwise) is zero. Hence the integral over C; equals the sum of the integrals over Cy
and Cj, all three now taken counterclockwise. Similarly for quadruply connected domains,
and so on.

1
Fig. 351. Doubly connected domain Fig. 352. Triply connected domain
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14.

15.

16.

17.

18.

SEC. 142 Cauchy’s Integral Theorem

CAUCHY’S INTEGRAL THEOREM

APPLICABLE?

Integrate f(z) counterclockwise around the unit circle,
indicating whether Cauchy’s integral theorem applies.
(Show the details of your work.)

1.
3.
5.
7.
9.
11.

f(z) = Rez 2. f(z) = 1/(3z — i)
f@) = &2 4. f) = 112

f(z) = tan 6. f(z) = sec (z/2)
f2) = 1% - 12) 8. f(z) = U4z — 3)
£ = QP 10. f(z) = z°

f(z) = 2% cot z

COMMENTS ON TEXT AND EXAMPLES
12.

(Singularities) Can we conclude in Example 2 that
the integral of 1/(z> + 4) taken over (a) |z — 2| = 2,
(b) |z = 2| = 3 is zero? Give reasons.

(Cauchy’s integral theorem) Verify Theorem | for
the integral of z® over the boundary of the square
with vertices 1 + i, =1 + i, —1 — i, and 1 —
(counterclockwise).

(Cauchy’s integral theorem) For what contours C will
it follow from Theorem 1 that

dz cos z
(a) f— =0, (b) 9€ 7 5 dz =0,
c < cZ — 2

el/z
———dz=0?
(©) 3€C 210 %

(Deformation principle) Can we conclude from
Example 4 that the integral is also zero over the contour
in Problem 13?

(Deformation principle) If the integral of a function
f(z) over the unit circle equals 3 and over the circle
z] = 2 equals 5, can we conclude that f(z) is analytic
everywhere in the annulus 1 < |z] < 2?

(Path independence) Verify Theorem 2 for the
integral of cos z from O to (1 + i) (a) over the shortest
path, (b) over the x-axis to 7 and then straight up to
(1 + i)y

TEAM PROJECT. Cauchy’s Integral Theorem.
(a) Main Aspects. Each of the problems in Examples
1-5 explains a basic fact in connection with Cauchy’s
theorem. Find five examples of your own, more
complicated ones if possible, each illustrating one of
those facts.

(b) Partial fractions. Write f(z) in terms of partial
fractions and integrate it counterclockwise over the unit
circle, where

653

W 0= 5 i) fo =

=—— ii =
; : 2+ % . 2+ 2
(c) Deformation of path. Review (c) and (d) of Team
Project 34, Sec. 14.1, in the light of the principle of
deformation of path. Then consider another family of
paths with common endpoints, say, z(r) = ¢ + ia(t — 12),
0 =1 =1, and experiment with the integration of analytic
and nonanalytic functions of your choice over these paths
(e.g., z,Imz, 7% Re 72, Im 22, etc).

19-30| FURTHER CONTOUR INTEGRALS

Evaluate (showing the details and using partial fractions if
necessary)

d.
19. 35 = -, C the circle |z] = 3 (counterclockwise)
0§ 2% — i
20. jgtanhz dz. C the circle |z — 3| = 3 (clockwise)
c

21. %Re 2z dz, C as shown
c
y
ﬂ\
1 1
Tz —6
22. 3€ 5 dz, C as shown
cq — 2z
y
C
2 X

dz
23.3§ 5 , C as shown
c? -1
y
C//\h

622
24. f e dz, C consists of |z| = 2 (clockwise) and || = 2
c

X

(counterclockwise)
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Cos 7 . .
25. 3‘; dz, C consists of lzl = 1 (counterclockwise) 28. 35
c <

CHAP.14 Complex Integration

sz+va~'(a) lz+i=1 ®lz-il=

and |z| = 3 (clockwise) (counterclockwise)

26. éLn (2 + z)dz, C the boundary of the square with
c

vertices =1, =i

d
27. izzjl L C@ 2l =4 bz - i =% 30 ﬂ;c -

sin z .
29. 35 dz, C: |z — 4 — 2i] = 5.5 (clockwise)

tan (z/2)

“ 16 dz, C the boundary of the square with

(counterclockwise) vertices =1, *i (clockwise)

14.3 Cauchy’s Integral Formula

THEOREM 1

PROOF

The most important consequence of Cauchy’s integral theorem is Cauchy’s integral
formula. This formula is useful for evaluating integrals, as we show below. Even more
important is its key role in proving the surprising fact that analytic functions have
derivatives of all orders (Sec. 14.4), in establishing Taylor series representations
(Sec. 15.4), and so on. Cauchy’s integral formula and its conditions of validity may be
stated as follows.

Cauchy’s Integral Formula

Let {(2) be analytic in a simply connected domain D. Then for any point zq in D
and any simple closed path C in D that encloses zo (Fig. 353),

o & G Ot (Cauchy’s integral formula)
c< %o

the integration being taken counterclockwise. Alternatively (for representing f(zo)
by a contour integral, divide (1) by 2i),

1
(1%) =

29 Yel =

dz (Cauchy’s integral formula).

By addition and subtraction, f(z) = f(zo) + [f(z) — f(z0)]- Inserting this into (1) on the
left and taking the constant factor f(zo) out from under the integral sign, we have

_f@) (z) f@) — f(zo) )
@) T d = f 35 -+ :
c g Z— 2o
The first term on the right equals f(zo) - 27 (see Example 6 in Sec. 14.2 with m = —1).

This proves the theorem, provided the second integral on the right is zero. This is what
we are now going to show. Its integrand is analytic, except at zo. Hence by (6) in
Sec. 14.2 we can replace C by a small circle K of radius p and center z, (Fig. 354), without
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-

-

L=

- - -

< - -

‘ =
. . -
—_———-

Fig. 353. Cauchy’s integral formula Fig. 354. Proof of Cauchy’s integral formula

altering the value of the integral. Since f(z) is analytic, it is continuous (Team Project 26,
Sec. 13.3). Hence an € > 0 being given, we can find a 6 > 0 such that |f(z) — fzo)| < €
for all z in the disk |z — zo| < 8. Choosing the radius p of K smaller than §, we thus have
the inequality

f@) — f(zo)

Z — 2o

€
<_
p

at each point of K. The length of K is 27rp. Hence, by the ML-inequality in Sec. 14.1,

@) ~ fzo0) dz‘ < E 2mp = 2me.

K <7 2

Since € (> 0) can be chosen arbitrarily small, it follows that the last integral in (2) must
have the value zero, and the theorem is proved. £

" EXAMPLE 1 Cauchy’s Integral Formula

4

e

3€ dz = 2mie® = 2mie? = 46.4268i
c z—2 =2

for any contour enclosing zy = 2 (since ¢ is entire), and zero for any contour for which zo = 2 lies outside (by
Cauchy’s integral theorem). 5]

EXAMPLE 2 Cauchy’s Integral Formula

C

=2m7i[iz3 -3

[2 ] z=1/2

™ i s

= o 67 (z9 = 3! inside C). El

EXAMPLE 3 Integration Around Different Contours
Integrate
241 241

M= 2y “krhe- 10

counterclockwise around each of the four circles in Fig. 355.
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Solution. g(z) is not analytic at —1 and 1. These are the points we have to watch for. We consider each
circle separately.

(a) The circle |z — 1| = 1 encloses the point zg = | where g(z) is not analytic. Hence in (1) we have to
write
2+1 2+

g2 = 21 =T 1 T
thus
12+1
f@) = e+ 1

and (1) gives

3€z2+ld 2mif(l) = 2mi 12+1j| 2
sz—l 7 = 2mif(l) = 2mi 1 | i,

(b) gives the same as (a) by the principle of deformation of path.

(c) The function g(z) is as before, but f(z) changes because we must take zo = —1 (instead of 1). This gives
a factor z — zg = z + 1 in (1). Hence we must write

2+1 1
8@ = 1 Ta1
thus
Azz+l
f@) = p—

Compare this for a minute with the previous expression and then go on:

2+1 2+1
5 dz = 2mif(— 1) = 2mi — = —2mi.
=1 2= 1 |,=01

C

(d) gives 0. Why? =

Fig. 355. Example 3

Multiply connected domains may be handled as in Sec. 14.2. For instance, if f(z) is
analytic on C; and C, and in the ring-shaped domain bounded by C; and C, (Fig. 356)
and z, is any point in that domain, then

1 1
3) fag) = —— f@) do 4+ f@)

X < .
2mi Yo 2 2 2mi Yo,z 20

dz,

where the outer integral (over C;) is taken counterclockwise and the inner clockwise, as
indicated in Fig. 356.




circle:
Llz—il=2
3.z +3i]=2

z+2
5. $ d, Cile—1]=2
cz—2

e3z
6. 3€ ~dz, Cilzl =1
c31*1
sinh 77z
7. % > dz, C:lz=1
e~ 32
dz
s.fﬁ = , Cilz=1=m2
c? =1
9

dz
- $ LGzt =1
. 1

Z2

eZ
10. f# - dz, C: |z - 2i1 =4
o% = 2i

Ccos z
11. ?g dz, C:lz| =4
c &

ct i
vertices 0 and *1 + 2i

SEC. 143 Cauchy’s Integral Formula

CONTOUR INTEGRATION
Integrate (z2 — 4)/(z% + 4) counterclockwise around the

2. z—-1=2
4. |z = w2

CONTOUR INTEGRATION

Using Cauchy’s integral formula (and showing the details),
integrate counterclockwise (or as indicated)

tan z
12. % dz, C the boundary of the triangle with

657

C

1

Fig. 356. Formula (3)

13.

14.

15.

16.

17.

18.

19.

20.

Our discussion in this section has illustrated the use of Cauchy’s integral formula in
integration. In the next section we show that the formula plays the key role in proving
the surprising fact that an analytic function has derivatives of all orders, which are thus

analytic functions themselves.

e—31rz
3€ - dz, C the boundary of the square with
c2z+i

vertices *1, *+i
Ln(z + 1)
c 22+ 1
(counterclockwise) and |z — 2i| = % (clockwise)
9€ Ln(z—1)
z2—35

dz, C consists of |z — 2i| =2

dz, C:lz—4l=2
&
sin z . )
9€ —— - dz, Cconsists of | 7| = 3 (counterclockwise)
cZ — 2z
and |z] = 1 (clockwise)

cosh? z )
ig ——————5 dz, CasinProb. 16
ce—1-0z

Show that 35 (z = 21)7Mz — 25) "  dz = 0 for a simple
C:

closed path C enclosing z; and z,, which are arbitrary.
CAS PROJECT. Contour Integration. Experiment
to find out to what extent your CAS can do contour
integration (a) by using the second method in Sec. 14.1,
(b) by Cauchy’s integral formula.

TEAM PROJECT. Cauchy’s Integral Theorem.
Gain additional insight into the proof of Cauchy’s
integral theorem by producing (2) with a contour
enclosing zy (as in Fig. 353) and taking the limit as in
the text. Choose

@ ¢ Z:__
C

and (c) two other examples of your choice.

6 sin z
T dz; (b) f]g T dz,
L c Z T 3T
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14.4 Derivatives of Analytic Functions

In this section we use Cauchy’s integral formula to show the basic fact that complex
analytic functions have derivatives of all orders. This is very surprising because it differs
strikingly from the situation in real calculus. Indeed, if a real function is once
differentiable, nothing follows about the existence of second or higher derivatives. Thus,
in this respect, complex analytic functions behave much more simply than real functions
that are once differentiable.

The existence of those derivatives will result from a general integral formula, as follows.

THEOREM 1 Derivatives of an Analytic Function

If f() is analytic in a domain D, then it has derivatives of all orders in D, which
are then also analytic functions in D. The values of these derivatives at a point zg
in D are given by the formulas

’ ' _ 1 f2)
(1) f(ZO)_z—’TTijgc(z——zo)z

" ” 2! )
(" f(z(»:ﬁj@c(z’i#dz
and in general

!
1 F™(z,) = En;; é —(% dz n=1,2-");
c 0

here C is any simple closed path in D that encloses zo and whose full interior belongs
to D; and we integrate counterclockwise around C (Fig. 357).

S -

——

Fig. 357. Theorem 1and its proof

COMMENT. For memorizing (1), it is useful to observe that these formulas are obtained

formally by differentiating the Cauchy formula (1*), Sec. 14.3, under the integral sign
with respect to z,.
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PROOF We prove (1 . starting from the definition of the derivative

f(zo + Az) — f(zo)
Az '

! o
f'(eo) = Jim,
On the right we represent f(z, + Az) and f(zy) by Cauchy’s integral formula:

fao + A2 — fzo) _ 1 [35 @) dz_jg @) dz]
C

Az © 2miAz c2— (zp + A2) Z— 2

We now write the two integrals as a single integral. Taking the common denominator
gives the numerator f(z){z — zo — [z — (2o + A2)]} = f(z) Az, so that a factor Az drops
out and we get

fo+ A2 = fz) 1 § /@)

Az  2mi c@— 20 — Az — 2p) “

Clearly, we can now establish (1') by showing that, as Az — 0, the integral on the right
approaches the integral in (1"). To do this, we consider the difference between these two
integrals. We can write this difference as a single integral by taking the common
denominator and simplifying the numerator (as just before). This gives

g @) i § G ! £(2) Az

c @A) " T -0 ¢ (-2 - Az - 20

We show by the ML-inequality (Sec. 14.1) that the integral on the right approaches zero
as Az — 0.

Being analytic, the function f(z) is continuous on C, hence bounded in absolute value,
say, |f(z)] = K. Let d be the smallest distance from z, to the points of C (see Fig. 357).
Then for all z on C,

1 1
_ 2 = g2
z— Z0° = d*, hence —— I e
| o lz = zf* — 4

Furthermore, by the triangle inequality for all z on C we then also have
d=z—z| =|z— 20— Az + A7 = |z — 79 — A7 + |AZ].
We now subtract [Az| on both sides and let |Az| = d/2, so that —|Az] = —d/2. Then

1 2

li=d—|A7 =1z — 7z — Az Hence - = =
2 | | I 0 I |Z_ZO_AZI d

Let L be the length of C. If |Az| = d/2, then by the ML-inequality

f(2Az 2
dz| = KL |Azl — - — .
fﬁc (z — 2o — Az)(z — 29)? ¢ Azl d d?
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EXAMPLE 1

EXAMPLE 2

EXAMPLE 3
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This approaches zero as Az — 0. Formula (1) is proved.

Note that we used Cauchy’s integral formula (1*), Sec. 14.3, but if all we had known
about f(zo) is the fact that it can be represented by (1*), Sec. 14.3, our argument would
have established the existence of the derivative f'(z) of f(z). This is essential to the
continuation and completion of this proof, because it implies that (1" can be proved by
a similar argument, with f replaced by f ' and that the general formula (1) follows by
induction. [ |

Evaluation of Line Integrals

From (1"), for any contour enclosing the point 7i (counterclockwise)

cos z ) ,
——— dz = 2i(cos 2)

5 = —2mi sin wi = 2 sinh 7, |
c (@ — i)

z=1ri

From (1"), for any contour enclosing the point —i we obtain by counterclockwise integration

4 L
77 =32+ 6
% = mi(* 32 +6)

Gt P = 7il122% — 6],__; = —18mi. [ |
(3]

z=—1

By (1"), for any contour for which 1 lies inside and *+2i lie outside (counterclockwise),

§ ez d 2 .( eZ )’
o= D’ +4) M P

z=1
P+ 4 — 2z
@+ 4?7

6
= 2T~ 2.050i. (]
z=1 25

Cauchy’s Inequality. Liouville’s and Morera’s Theorems

As a new aspect, let us now show that Cauchy’s integral theorem is also fundamental in
deriving general results on analytic functions.

Cauchy’s Inequality. Theorem 1 yields a basic inequality that has many applications.
To get it, all we have to do is to choose for C in (1) a circle of radius r and center z, and
apply the ML-inequality (Sec. 14.1); with |f(2)] = M on C we obtain from (1)

n! @ n! 1
o = — ——dz| = — M 2arr.
|f( (ZO)I 2ar §c (Z _ Z0)11,+1 Z 20 rn+1 wr,
This gives Cauchy’s inequality
n!M
2 If@) = —
o

To gain a first impression of the importance of this inequality, let us prove a famous
theorem on entire functions (definition in Sec. 13.5). (For Liouville, see Sec. 5.7.)
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THEOREM 2

PROOF

THEOREM 3

PROOF

Liouville’s Theorem

If an entire function is bounded in absolute value in the whole complex plane, then
this function must be a constant.

By assumption, |f(z)| is bounded, say, |f(z)] < K for all z. Using (2), we see that
If'(zo)| < KI/r. Since f(z) is entire, this holds for every r, so that we can take r as large
as we please and conclude that f'(zo) = 0. Since z is arbitrary, f'(z) = u, + v, = 0
for all z (see (4) in Sec. 13.4), hence u,, = v, = 0, and u,, = v,, = 0 by the Cauchy—Riemann
equations. Thus u = const, v = const, and f = u + v = const for all z. This completes
the proof. 2]

Another very interesting consequence of Theorem 1 is

Morera’s> Theorem (Converse of Cauchy’s Integral Theorem)

If f(z) is continuous in a simply connected domain D and if

3 $ @) dz = 0
C

for every closed path in D, then f(z) is analytic in D.

In Sec. 14.2 we showed that if f(z) is analytic in a simply connected domain D, then
ra
FQ = [ fe*)der
20

is analytic in D and F'(z) = f(z). In the proof we used only the continuity of f(z) and the
property that its integral around every closed path in D is zero; from these assumptions
we concluded that F(z) is analytic. By Theorem 1, the derivative of F(z) is analytic, that
is, f(z) is analytic in D, and Morera’s theorem is proved. [ |

CONTOUR INTEGRATION ¢ cos 2 cos z
Integrate counterclockwise around the circle |z| = 2. (n is (z = m2? e
a positive integer, a is arbitrary.) Show the details of your sinh az Ln(z + 3) + cos z
work. 7> ’ (z + 1)?
cosh 3z sin z " e
1- 5 . 7.4 70 ﬁ .
z (z — mil2) (z — a) (z — a)"

2GIACINTO MORERA (1856-1909), Italian mathematician who worked in Genoa and Turin.
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m INTEGRATION AROUND DIFFERENT
CONTOURS

Integrate around C. Show the details.

(1 + 2z) cosz

2 T C the unit circle, counterclockwise
- —

sin 4z

0. ——
(=4

and |z — 3] = 3 (clockwise)

C consists of |z = 5 (counterclockwise)

tan 7z .
11. —Z C the ellipse 16 x> + y* = 1, counterclockwise

62z

12. ———— , Cconsists of Iz —i | = 3 (counterclockwise)
2(z — 2i)

and |z = 1 (clockwise)

z/2

13. ———,
(z— a*

Cthe circle |z — 2 — i| = 3, counterclockwise

1. What is a path of integration? What did we assume
about paths?
2. State the definition of a complex line integral from
memory.
3. What do we mean by saying that complex integration
is a linear operation?
4. Make a list of integration methods discussed. Illustrate
each with a simple example.
5. Which integration methods apply to analytic functions
only?
6. What value do you get if you integrate 1/z
counterclockwise around the unit circle? (You should
memorize this basic result) If you integrate 1/22,
1 /ZS, smwd
7. Which theorem in this chapter do you regard as most
important? State it from memory.
8. What is independence of path? What is the principle of
deformation of path? Why is this important?
9. Do not confuse Cauchy’s integral theorem and Cauchy’s
integral formula. State both. How are they related?
10. How can you extend Cauchy’s integral theorem to
doubly and triply connected domains?

11. If integrating f(z) over the boundary circles of an
annulus D gives different values, can f(z) be analytic
in D? (Give reason.)

Lf(z) dz

bound for the integral on the left?

12. Is

= f | ()| dz? How would you find a
c

EW QUESTIONS AND PROBLEMS

14. TEAM PROJECT. Theory on Growth

(a) Growth of entire functions. If f(z) is not a
constant and is analytic for all (finite) z, and R and M
are any positive real numbers (no matter how large),
show that there exist values of z for which |z| > R and
|f@)] > M.

(b) Growth of polynomials. If f(z) is a polynomial
of degree n > 0 and M is an arbitrary positive real
number (no matter how large), show that there exists
a positive real number R such that |f()| > M for all
lz] > R. Py

(¢) Exponential function. Show that f(z) = € has
the property characterized in (a) but does not have that
characterized in (b).

(d) Fundamental theorem of algebra. If f(2) is a
polynomial in z, not a constant, then f(z) = 0 for at
least one value of z. Prove this, using (a).

15. (Proof of Theorem 1) Complete the proof of Theorem
1 by performing the induction mentioned at the end.

13. Is Re f fldz = f Re f(z) dz? Give examples.
c c

14. How did we use integral formulas for derivatives in
integration?

15. What is Liouville’s theorem? Give examples. State
consequences.

INTEGRATION

Integrate by a suitable method:

16. 473 + 2z from —i to 2 + i along any path

17. 5z — 3/z counterclockwise around the unit circle
18. z + 1/z counterclockwise around |z + 3i | =2

19. ¢% from —2 + 3mi along the straight segment to
—2 + S

20. ¢*’/(z — 1)? counterclockwise around |z| = 2

21. z/(z% + 1) clockwise around |z + i = 1

22. Re z from 0 to 4 and then vertically up to 4 + 3i

23. cosh 4z from 0 to 2i along the imaginary axis

24. ¢*/7 over C consisting of |z = 1 (counterclockwise) and
|z] = £ (clockwise)

25. (sin z)/z clockwise around a circle containing z = 0 in
1ts 1nterior

26. Tm 7 counterclockwise around |z| = r

27. (Ln2)/(z — 2i)? counterclockwise around |z —2il=1

28. (tan mz)/(z — 1)2 counterclockwise around z—1=02

29. |z| + z clockwise around the unit circle

30. (z — i)73(z® + sinz) counterclockwise around any
circle with center i
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= SUMMARY OF CHAPTER 14
Complex Integration

The complex line integral of a function f(z) taken over a path C is denoted by

1) [f@dz or.if Cis closed, also by $f)  (Sec. 141),
C (82

If f(z) is analytic in a simply connected domain D, then we can evaluate (1) as in
calculus by indefinite integration and substitution of limits, that is,

@) [ $)dz = Fzp) — Fizy) [F'() = £)]
G

for every path Cin D from a point z, to a point z; (see Sec. 14.1). These assumptions
imply independence of path, that is, (2) depends only on z, and z; (and on f(2),
of course) but not on the choice of C (Sec. 14.2). The existence of an F(z) such that
F'(z) = f(z) is proved in Sec. 14.2 by Cauchy’s integral theorem (see below).

A general method of integration, not restricted to analytic functions, uses the
equation z = z(¢) of C, where a = ¢t = b,

’ d
3) fcf () dz = fa F®)z(t) dt (2 = ?j) _

Cauchy’s integral theorem is the most important theorem in this chapter. It states
that if f(z) is analytic in a simply connected domain D, then for every closed path
Cin D (Sec. 14.2),

4) $ sy dz = 0.
C

Under the same assumptions and for any z, in D and closed path C in D containing
Zp in its interior we also have Cauchy’s integral formula

1
) fz) = — ¢ 1@

Z.
27 Yoz — 2

Furthermore, under these assumptions f(z) has derivatives of all orders in D that

are themselves analytic functions in D and (Sec. 14.4)

|
©) F(zg) = —— 1)

—d =1,2,---).
2mi 45 (g — Byt ¢ )
This implies Morera’s theorem (the converse of Cauchy’s integral theorem) and
Cauchy’s inequality (Sec. 14.4), which in turn implies Liouville’s theorem that an
entire function that is bounded in the whole complex plane must be constant.




CHAPTER.I 5

Power Series, Taylor Series

Complex power series, in particular, Taylor series, are analogs of real power and Taylor
series in calculus. However, they are much more fundamental in complex analysis than
their real counterparts in calculus. The reason is that power series represent analytic
functions (Sec. 15.3) and, conversely, every analytic function can be represented by power

series, called Taylor series (Sec. 15.4).
Use Sec. 15.1 for reference if you are familiar with convergence tests for real series—
in complex this is quite similar. The last section (15.5) on uniform convergence is optional.

Prerequisite: Chaps. 13, 14.
Sections that may be omitted in a shorter course: 14.1, 14.5.
References and Answers to Problems: App. 1 Part D, App. 2.

15.1 Sequences, Series, Convergence Tests

In this section we define the basic concepts for complex sequences and series and discuss
tests for convergence and divergence. This is very similar to real sequences and series in
calculus. If you feel at home with the latter and want to take for granted that the ratio
test also holds in complex, skip this section and go to Sec. 15.2.

Sequences

The basic definitions are as in calculus. An infinite sequence or, briefly, a sequence, is
obtained by assigning to each positive integer n a number z,,, called a term of the sequence,
and is written

Zis Zop * ¢ * or {21, 29, " " °} or briefly {z,.}.

We may also write zg, 21, * * * OF Zp, Z3, * * * Or start with some other integer if convenient.
A real sequence is one whose terms are real.

Convergence. A convergent sequence z;, Zo, - * - is one that has a limit c, written
lim z, =c¢ or simply Zp —> C-
n—oc

By definition of limit this means that for every € > 0 we can find an N such that

(1) |z, — c| < € for all n > N;
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‘ EXAMPLE 1

EXAMPLE 2

THEOREM 1

Sequences, Series, Convergence Tests

665

geometrically, all terms z,, with n > N lie in the open disk of radius € and center ¢

(Fig. 358) and only finitely many terms do not lie in that disk. [For a real sequence, (1)

gives an open interval of length 2€ and real midpoint ¢ on the real line; see Fig. 359.]
A divergent sequence is one that does not converge.

— | |
E c-€ @

c+e x

Fig. 358. Convergent complex sequence Fig. 359. Convergent real sequence

Convergent and Divergent Sequences

The sequence {i"/n} = {i, —1/2, —i/3, 1/4, - - -} is convergent with limit 0.
The sequence {i"} = (i, —1, =i, 1, - - -} is divergent, and so is {z,,} with z,, = (1 + i)™ ]

Sequences of the Real and the Imaginary Parts

The sequence {z,,} With z,, = x,, + iy, = 1 — 1/n® + i(2 + 4/n) is 6i, 3/4 + 4i, 8/9 + 10i/3, 15/16 + 3i, - - -.
(Sketch it.) It converges with the limit ¢ = 1 + 2i. Observe that {x,,} has the limit I = Re ¢ and {y,,} has the
limit 2 = Imc. This is typical. It illustrates the following theorem by which the convergence of a complex
sequence can be referred back to that of the two real sequences of the real parts and the imaginary parts. [l

Sequences of the Real and the Imaginary Parts

A sequence zi, 7, ***, Ty, * - Of complex numbers z,, = x, + iy, (where
n=12--+)convergestoc = a+ ib if and only if the sequence of the real parts
Xy, Xp, ** converges to a and the sequence of the imaginary parts yq, Vo, * * *
converges to b.

Convergence z,, — ¢ = a + ib implies convergence x,, — a and y,, — b because if
|z, — ¢| < € then z, lies within the circle of radius € about ¢ = a + ib, so that
(Fig. 360a)

lx, —a|l <e, v, — b <e
y y
b+er——
=4
b+§w
b~ bl-Ld-oe
i
(3
| | b-3r T
b-e—+—= | | 1
I L
| | | /I 1 I\
a-—e€ a a+e x a x
€ &
a-3 a+s

Fig. 360. Proof of Theorem 1
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Conversely, if x, — a and y,, — b as n — =, then for a given € > 0 we can choose N
so large that, for every n > N,

€ €

Ixn_a|<5’ |yn_b|<2

These two inequalities imply that z,, = x,, + iy, lies in a square with center ¢ and side

€. Hence, z,, must lie within a circle of radius € with center ¢ (Fig. 360b). =
Series
Given a sequence 7y, 7o, * * * » Zms * * ° » We may form the sequence of the sums

51 =21 Sy =21 T 2o, $53 =21 T 22 1 23,

and in general
(2) S =21t 2+t "+ 2z, n=12--).

s,, is called the nth partial sum of the infinite series or series

[o.0]
3) Dim=atntoc.
m=1
The zy, 29, * + - are called the terms of the series. (Our usual summation letter is n,

unless we need n for another purpose, as here, and we then use m as the summation
letter.)
A convergent series is one whose sequence of partial sums converges, say,

oo
lim s, = s. Then we write s=2zm=zl+zz+---
m=1

n—oo

and call s the sum or value of the series. A series that is not convergent is called a divergent
series.
If we omit the terms of s,, from (3), there remains

@) R, = Zpt1 T Znia t Zneg + 00

This is called the remainder of the series (3) after the term z,,. Clearly, if (3) converges
and has the sum s, then

s =5, +t R, thus R, =15 — s,

Now s,, — s by the definition of convergence; hence R,, — 0. In applications, when s is
unknown and we compute an approximation s,, of s, then |R,| is the error, and R,, — 0
means that we can make |R,,| as small as we please, by choosing n large enough.

An application of Theorem 1 to the partial sums immediately relates the convergence
of a complex series to that of the two series of its real parts and of its imaginary parts:
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THEOREM 2

THEOREM 3

PROOF

THEOREM 4

Real and Imaginary Parts

A series (3) with z,, = X, + iy, converges and has the sum s = u + iv if and only
if x; + xg + - -+ converges and has the sum u and y, + y5 + - - - converges and
has the sum v.

Tests for Convergence and Divergence of Series

Convergence tests in complex are practically the same as in calculus. We apply them
before we use a series, to make sure that the series converges.
Divergence can often be shown very simply as follows.

Divergence

If a series 7y + z9 + + + - converges, then lim z,, = 0. Hence if this does not hold,
the series diverges. "

If z; + z5 + - - - converges, with the sum s, then, since z,, = S, — Sy—1
lim z,, = lim (s, — §,,_y) = lim s, — lim s,,_; = s — s = 0. ®
mM—o0 mM—oo m—oo mMm—o0

CAUTION!  z,,— 0is necessary for convergence but not sufficient, as we see from the
harmonic series 1 + 4 + % + 1 + - - -, which satisfies this condition but diverges, as is
shown in calculus (see, for example, Ref. [GR11] in App. 1).

The practical difficulty in proving convergence is that in most cases the sum of a series
is unknown. Cauchy overcame this by showing that a series converges if and only if its
partial sums eventually get close to each other:

Cauchy’s Convergence Principle for Series

A series 7y + zo + - -+ is convergent if and only if for every given € > 0 (no matter
how small) we can find an N (which depends on e, in general) such that

5) 2ns1 + Znsa + o0 F Zpapl <€ foreveryn>Nandp =1,2,- -

The somewhat involved proof is left optional (see App. 4).

Absolute Convergence. A series z; + z, + - - * is called absolutely convergent if the
series of the absolute values of the terms

2 Jaml = laal + Jzof + - -
m=1

is convergent.
If 7y + 25 + - - - converges but [z;| + |z5| + - - - diverges, then the series z; + 2 + - - -
is called, more precisely, conditionally convergent.
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EXAMPLE 3 A Conditionally Convergent Series

The series 1 — 3 + % — 14+ — ... converges, but only conditionally since the harmonic series diverges, as
mentioned above (after Theorem 3).

If a series is absolutely convergent, it is convergent.

This follows readily from Cauchy’s principle (see Team Project 30). This principle also
yields the following general convergence test.

THEOREM 5 Comparison Test
If a series 7, + zo + + * - is given and we can find a convergent series by + by + + * -
with nonnegative real terms such that 21| = by, |z2] = bo, - - -, then the given series

converges, even absolutely.

PROOF By Cauchy’s principle, since by + by + - - - converges, for any given € > 0 we can find
an N such that

bpoqt ot by, <€ foreveryn > Nandp =1,2, - -.

From this and |z3] = by, |za| = by, - -+ we conclude that for those n and p,

lZn+1‘ +oot lzn+p| Ebpr T T by <€

Hence, again by Cauchy’s principle, |z, + [zo| + - - - converges, so that z; + zp + -~
is absolutely convergent. [ |

A good comparison series is the geometric series, which behaves as follows.

THEOREM 6 Geometric Series

The geometric series

(6%) > -1 0 g

m=0

converges with the sum 1/(1 — q) if |q| < 1 and diverges iflql = 1.

PROOF If|g| = 1, then g™ = 1 and Theorem 3 implies divergence.
Now let |g| < 1. The nth partial sum is

s, =1+qg+ - +qg"
From this,

qs, = q+...+qn+qn+1.

On subtraction, most terms on the right cancel in pairs, and we are left with

n+1

Sn =g =1 —@s, =1-¢
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THEOREM 7

PROOF

Now 1 — ¢ # 0O since ¢ # 1, and we may solve for s, finding

= qn+1 1 qn+1
(6) 8 = - - ;
1=y l-gq 1 9

Since |g| < 1, the last term approaches zero as n — . Hence if |g| < 1, the series is

convergent and has the sum 1/(1 — ¢). This completes the proof. |
Ratio Test
This is the most important test in our further work. We get it by taking the geometric
series as comparison series b; + by + - - - in Theorem 5:

Ratio Test

If a series z; + zo + -+ - withz, # 0 (n = 1, 2, - - ) has the property that for
every n greater than some N,

In+1
n

(7 =¢g<1 (n>N)

(where q < 1 is fixed), this series converges absolutely. If for every n > N,

In+1

Zn

(8) = (n > N),

the series diverges.

If (8) holds, then |z,,,1| = |z,,| for n > N, so that divergence of the series follows from
Theorem 3.
If (7) holds, then |z, ;1| = |z, ¢ for n > N, in particular,

lznsal = lznt1lgs lenal = lznsalg = |aneald? etc.,

and in general, |zy,| = |2y, 1|¢” " Since ¢ < 1, we obtain from this and Theorem 6

1
lenal + laneal + lawasl + 0 Shanedl A+ g+ 6% + -+ 2) = oy E

Absolute convergence of z; + z5 + - - - now follows from Theorem 5. =

CAUTION! The inequality (7) implies |z,.1/z,] < 1, but this does not imply
convergence, as we see from the harmonic series, which satisfies z,,.1/z, = n/(n + 1) < 1
for all n but diverges.

If the sequence of the ratios in (7) and (8) converges, we get the more convenient
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THEOREM 8 Ratio Test
. . : Z
If a series 7y + 25+ * - withz, # 0(n = 1,2, - - *) is such that lim |22 | =L,
then: Tl in

(@) If L < 1, the series converges absolutely.
(b) If L > 1, the series diverges.

(¢) IfL = 1, the series may converge or diverge, so that the test fails and
permits no conclusion.

PROOF (a) We write k,, = |2,.1/2,/ and let L = 1 — b < 1. Then by the definition of limit, the
k,, must eventually get close to 1 — b, say, k, =¢q =1 — 1b < 1 for all n greater than

some N. Convergence of z; + z5 + -+ - now follows from Theorem T

(b) Similarly, for L =1 + ¢ > 1 we have k,, = 1 + %c > 1 for all n > N* (sufficiently
large), which implies divergence of z; + z5 + - - - by Theorem 7.

(¢) The harmonic series 1 + % + % + -+« has z,.1/2, = n/(n + 1), hence L = 1, and

diverges. The series

2
In+1 n
TR has ntl =

1
1+ —+ — + — s,
25 Zn (n+ 1

J’_

1 1 1
4 9 16

hence also L = 1, but it converges. Convergence follows from (Fig. 361)

s

g +1<1+fndx—2 :
‘n 4 L2 n H

n®> =

so that s,, So, * - + is a bounded sequence and is monotone increasing (since the terms of
the series are all positive); both properties together are sufficient for the convergence of
the real sequence sy, So, * - - . (In calculus this is proved by the so-called integral test,
whose idea we have used.) [ |

Fig. 361. Convergence of the series 1+ +§ + 5 + -+

EXAMPLE 4 Ratio Test

Is the following series convergent or divergent? (First guess, then calculate.)

(100 + 75i)"

n!

M8

1
:1+(1OO+75i)+;(100-&-751')2‘*"‘

3
Il
=]
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EXAMPLE 5

THEOREM 9

PROOF

THEOREM 10

Solution. By Theorem 8, the series is convergent, since

100 + 75 Yn + 1! [100 + 751 125 Lo -
T 00 + 75iYml a1l a1l -

in+1

in

Theorem 7 More General than Theorem 8

Leta, = i/23™ and b, = 1/23"*1 I the following series convergent or divergent?

1 i 1 i 1

ag+bgtag+b+ =it —+ -+ —+—+ — +

0 PR T L 2 8 16 64 128
Solution. The ratios of the absolute values of successive terms are %, 111... Hence convergence follows
from Theorem 7. Since the sequence of these ratios has no limit, Theorem 8 is not applicable. |

Root Test

The ratio test and the root test are the two practically most important tests. The ratio test
is usually simpler, but the root test is somewhat more general.

Root Test
If a series 7y + zo + - - - is such that for every n greater than some N,
©) VEkd=qg<1 (n>N)

(where q <1 is fixed), this series converges absolutely. If for infinitely many n,
(10) VIl = 1,

the series diverges.

If (9) holds, then |z,,| = ¢™ < 1 for all n > N. Hence the series |z;| + |z| + - - - converges

by comparison with the geometric series, so that the series z; + zo + - -+ converges
absolutely. If (10) holds, then |z,,| = 1 for infinitely many n. Divergence of z; + zo + -« -
now follows from Theorem 3. 8]

CAUTION! Equation (9) implies V |z,] < 1, but this does not imply convergence, as
we see from the harmonic series, which satisfies V1/n < 1 (for n > 1) but diverges.
If the sequence of the roots in (9) and (10) converges, we more conveniently have

Root Test

If a series z; + 75 + + + - is such that lim m = L, then:
(a) The series converges absolutelynij_;f < 1.
(b) The series diverges if L > 1.
(¢) If L = 1, the test fails; that is, no conclusion is possible.
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The proof parallels that of Theorem 8.

(a) Let L =1 — a* < 1. Then by the definition of a limit we have
V lz,l <g=1 - 1a* < 1 for all n greater than some (sufficiently large) N*. Hence

|zn] < g™ < 1 for all n > N*. Absolute convergence of the series z; + 25 + =~

now

follows by the comparison with the geometric series.
(b) If L > 1, then we also have |z, > 1 for all sufficiently large n. Hence |z > 1

for those 7. Theorem 3 now implies that z; + zo + - - - diverges.
(¢c) Both the divergent harmonic series and the convergent series
1 +1+3+ &+ +---giveL = 1. This can be seen from (In n)/n — 0 and
Wt 1 L Wit 1t 1 g
n gl T minn - o> 2 g T @mn 0

1-10| SEQUENCES

Are the following sequences 2y, 2, * * " s Zno * bounded?
Convergent? Find their limit points. (Show the details of
your work.)
1oz, = (D" +i2" 2, z, = "TYE
3.z, =(D"(n + 1) 4, 7z, =1+ )"
5. z,=Ln(2 + )" 6. 7, = (3 + 4)"/n!
7. 2, = sin (na/d) + i® 8. z, = [(1 + 3DV10]"
9.z,=(09+0.1)>" 10.z, =G +5)7"
11. Illustrate Theorem 1 by an example of your own.
12. (Uniqueness of limit) Show that if a sequence
converges, its limit is unique.
13. (Addition) If z;, 7o, * - - converges with the limit [ and
2%, z9%, + -+ - converges with the limit I*, show that
71 + 21%, 2o + z5%, - - - converges with the limit 7 + 1.
14. (Multiplication) Show that under the assumptions of
Prob. 13 the sequence z,2;%, 2222™, * * * converges
with the limit /™.
15. (Boundedness) Show that a complex sequence is

bounded if and only if the two corresponding sequences
of the real parts and of the imaginary parts are bounded.

SERIES

Are the following series convergent or divergent? (Give a
reason.)

= (10 — 15i)" (=11 + 20"+

Qn + D!

[u—y
N
M8

3
I
=]
3
I
=]

3
I
(=]
3
Il
-

Mg
IS
SR é‘_-

3
Il
N
3
I
-

22.

24.

25.

26.
27.

28.

29.

30.

n—1i
3n + 2i

oo Uﬂ)3 o o
> Gl (1+1) 23. >,

n=0 n=0
S ()
22l =
n=1 (3
What is the difference between (7) and just stating

lzn+1/Zn| <1?

Ilustrate Theorem 2 by an example of your choice.

For what n do we obtain the term of greatest absolute
value of the series in Example 4?7 About how big is it?
First guess, then calculate it by the Stirling formula in
Sec. 24.4.

Give another example showing that Theorem 7 is more
general than Theorem 8.

CAS PROJECT. Sequences and Series. (a) Write a
program for graphing complex sequences. Apply it to
sequences of your choice that have interesting
“geometrical” properties (e.g., lying on an ellipse,
spiraling toward its limit, etc.).

(b) Write a program for computing and graphing
numeric values of the first n partial sums of a series
of complex numbers. Use the program to experiment
with the rapidity of convergence of series of your
choice.

TEAM PROJECT. Series. (a) Absolute convergence.
Show that if a series converges absolutely, it is
convergent.

(b) Write a short report on the basic concepts and
properties of series of numbers, explaining in each case
whether or not they carry over from real series
(discussed in calculus) to complex series, with reasons
given.
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(c) Estimate of the remainder. Let |z,,,1/z,| = ¢ < 1,
so that the series z; + z5 + - - - converges by the ratio
test. Show that the remainder R,, = z,,,1 + 249 + * - -
satisfies the inequality |R,,| = |z,,, /(1 — ¢).

(d) Using (c), find how many terms suffice for
computing the sum s of the series

673

n+i

2"n

oCc
>
n=1

with an error not exceeding 0.05 and compute s to this
accuracy.

(e) Find other applications of the estimate in (c).

15.2 Power Series

Power series are the most important series in complex analysis because we shall see that
their sums are analytic functions, and every analytic function can be represented by power
series (Theorem 5 in Sec. 15.3 and Theorem 1 in Sec. 15.4).

A power series in powers of 7 — z, is a series of the form

oo

(D Dz — 29" = ag + ay(z — z) + an(z — o) + -+ - -

n=0

where z is a complex variable, aq, ay, * * + are complex (or real) constants, called the
coefficients of the series, and z, is a complex (or real) constant, called the center of the
series. This generalizes real power series of calculus.

If zo = 0, we obtain as a particular case a power series in powers of z:

oc
2 D wrar et

n=0

Convergence Behavior of Power Series

Power series have variable terms (functions of z), but if we fix z, then all the concepts
Jfor series with constant terms in the last section apply. Usually a series with variable
terms will converge for some z and diverge for others. For a power series the situation is
simple. The series (1) may converge in a disk with center z, or in the whole z-plane or
only at zo. We illustrate this with typical examples and then prove it.

EXAMPLE 1 Convergence in a Disk. Geometric Series

The geometric series

converges absolutely if [/ < 1 and diverges if |z| Z 1 (see Theorem 6 in Sec. 15.1). L

EXAMPLE 2 Convergence for Every z

The power series (which will be the Maclaurin series of ¢” in Sec. 15.4)

" 2 ZS
11!71+Z+ +§+“.

Jz\:

Ms

(3]

n=0
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is absolutely convergent for every z, In fact, by the ratio test, for any fixed z,

n+1

n+1

Y+ D!
n = l —~ 0 as n—o ]
z"In!

EXAMPLE 3 Convergence Only at the Center. (Useless Series)

The following power series converges only at z = 0, but diverges for every z # 0, as we shall show.
oo
St =14+ 226+
n=0

In fact, from the ratio test we have

(n+ DIt

s =+l —» o as n— o (z fixed and # 0). B
n'z

THEOREM 1 r Convergence of a Power Series

(a) Every power series (1) converges at the center 2.
(b) If (1) converges at a point z = 2y # zq, it converges absolutely for every z
closer to 7o than 7y, that is, |z — Zol < lz1 — 2o|- See Fig. 362.

(¢) If (1) diverges at a z = 2y, it diverges for every z farther away from zg
than zs. See Fig. 362. J

———

~ .
7
v <X Divergent

Fig. 362. Theroem 1

PROOF (a) For z = 7, the series reduces to the single term ay.

(b) Convergence at z = z; gives by Theorem 3in Sec. 15.1 a,(z; — 29)" — 0 as n — .
This implies boundedness in absolute value,

lan(za — 20| <M foreveryn =0, 1, -.
Multiplying and dividing a,(z — 20)" by (z1 — 20)" we obtain from this

n
Z— 2o

an(z1 — 20)" (Z — Z—)
1 0

n
Z— 20

lan(z — 20)" = =M

721~ 20
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Summation over n gives

n
Z 7 20

21~ 2o

n=1

3) > anz — )" =M D,
n=1

Now our assumption |z — z¢| < |z; — zo| implies that |(z — z¢)/(z; — zo)| < 1. Hence the
series on the right side of (3) is a converging geometric series (see Theorem 6 in
Sec. 15.1). Absolute convergence of (1) as stated in (b) now follows by the comparison
test in Sec. 15.1.

(c) If this were false, we would have convergence at a z3 farther away from z, than z,.
This would imply convergence at zy, by (b), a contradiction to our assumption of
divergence at z,. El

Radius of Convergence of a Power Series

Convergence for every z (the nicest case, Example 2) or for no 7 # g, (the useless case,
Example 3) needs no further discussion, and we put these cases aside for a moment. We
consider the smallest circle with center z, that includes all the points at which a given
power series (1) converges. Let R denote its radius. The circle '

lz =zl = R ' (Fig. 363)

is called the circle of convergence and its radius R the radius of convergence of (1).
Theorem 1 then implies convergence everywhere within that circle, that is, for all z for
which

) |z — zo| <R

(the open disk with center zq and radius R). Also, since R is as small as possible, the series
(1) diverges for all z for which

5) 2 — 20| > R.
No general statements can be made about the convergence of a power series (1) on the
circle of convergence itself. The series (1) may converge at some or all or none of these

points. Details will not be essential to us. Hence a simple example may just give us the
idea.

Divergent

x

Fig. 363.  Circle of convergence
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EXAMPLE 4

THEOREM 2

PROOF

CHAP. 15 Power Series, Taylor Series

Behavior on the Circle of Convergence

On the circle of convergence (radius R = 1 in all three series),
S 2"n? converges everywhere since = 1/n® converges,
> z"™n  converges at —1 (by Leibniz’s test) but diverges at 1,

>z"  diverges everywhere. [ |
Notations R = « and R = 0. To incorporate these two excluded cases in the present
notation, we write

R = « if the series (1) converges for all z (as in Example 2),

R = 0 if (1) converges only at the center z = z, (as in Example 3).

These are convenient notations, but nothing else.

Real Power Series. In this case in which powers, coefficients, and center are real,
formula (4) gives the convergence interval |[x — xo| < R of length 2R on the real line.

Determination of the Radius of Convergence from the Coefficients. For this
important practical task we can use '

Radius of Convergence R

Suppose that the sequence |a, 1/a,|, n = 1,2, -+ -, converges with limit L If
L* = 0, then R = ; that is, the power series (1) converges for all z. If L* # 0
(hence L* > 0), then

Ay

1
6) R=— = lim (Cauchy-Hadamard formula®).
L n—x | Ap41

If |ay+1/ap| — o0, then R = 0 (convergence only at the center z).

For (1) the ratio of the terms in the ratio test (Sec. 15.1) is

1

an(z - Zo)n

a
Gotl) o~ g Thelimitis L= L¥z — z.

n

Let L* # 0, thus L* > 0. We have convergence if L = L¥|z — zo| < 1, thus |z — zo| < I/L*,
and divergence if |z — zo| > 1/L*. By (4) and (5) this shows that 1/L* is the convergence
radius and proves (6).

If L* = 0, then L = 0 for every z, which gives convergence for all z by the ratio test.
If |, 1/a,] — <, then |a,,,1/a,|lz — zo| > 1 for any z # z, and all sufficiently large n.
This implies divergence for all z # zq by the ratio test (Theorem 7, Sec. 15.1). E |

INamed after the French mathematicians A. L. CAUCHY (see Sec. 2.5) and JACQUES HADAMARD
(1865-1963). Hadamard made basic contributions to the theory of power series and devoted his lifework to
partial differential equations.
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Formula (6) will not help if L™ does not exist, but extensions of Theorem 2 are still
possible, as we discuss in Example 6 below.

EXAMPLE 5 Radius of Convergence

) & @)t
By (6) the radius of convergence of the power series Z — lg— 8"
n=0 tal)
@n)! / @n + 2)! ) 2n)! ((n + D (n+ 172 1
R = lim 5 /3% | = lim s B =lim 0 = —.
n—oo| (nh)” / ((n + 1Y) n—oo | (2n + 2)! (n!) n—ow 2n +2)2n+ 1) 4
The series converges in the open disk |z — 3i| < % of radius 1 and center 3i. ]
o EXAMPLE 6 Extension of Theorem 2
Find the radius of convergence R of the power series
§1+(1)+l LIS L I L P
=R — et = — Z =] 2 — 2 = g7 v
=~ | 2" 4)° T 8" 16 )°
Solution. The sequence of the ratios 1/6, 2(2 + %), 1/(8(2 + %)), - - - does not converge, so that Theorem

2 is of no help. It can be shown that

~ .’VL
(6%) R=1/L, L = 1lim Vla,).
Nn—co

n 7 n
This still does not help here, since {V |a,|} does not converge because V lay,| = V172" = 1/2 for odd n,
whereas for even n we have

H’ V lan| = V2 + 12" > 1 as n— o,

so that \/n |a,| has the two limit points 1/2 and 1. It can further be shown that
~ ~ M
(6%%) R =1, [ the greatest limit point of the sequence { V ]an|]».

Here I = 1, so that R = 1. Answer. The series converges for l7 < 1. e}

Summary. Power series converge in an open circular disk or some even for every z (or
some only at the center, but they are useless); for the radius of convergence, see (6) or
Example 6.

Except for the useless ones, power series have sums that are analytic functions (as we
show in the next section); this accounts for their importance in complex analysis.

I 1. (Powers missing) Show that if = a,z" has radius of conl . 5 21
| convergence R (assumed finite), then = a,,z2" has radius 5 2 P @+ 1 6. > TR
I of convergence V/R. Give examples. n=0 n=o
‘ 2. (Convergence behavior) Illustrate the facts shown by i a\" . Z (=" on
Examples 1-3 by further examples of your own. b = ble 8. % 2271( 1?2 %
3-18| RADIUS OF CONVERGENCE o o on
nm (22)
Find the center and the radius of convergence of the 9.2 (n— i)z 10. X 2n)!
following power series. (Show the details.) n=0 n=0
(z+i S on" Hntt Z 4"
32 ) 4.5 — (z+2)" II.ELZW 12. > — (z — 5)"
n=o ™ et T s aED
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CHAP. 15 Power Series, Taylor Series

D> onn— 1z — 3 + 2)"

such that all three formulas (6), (6*), and (6**) will
come up.

=2
7; . . TEAM PROJECT. Radius of Convergence. (a)
4.3 (=" o 5. S e — e Formula (6) for R contains |a,,/a,, 1|, not |a, . 1/a,|.
o 2m! ) "o ) How could you memorize this by using a qualitative
. argument?
oo “\n o)
16. E (2 L3 3.1) (z — m" 17. E "_n 22" (b) Change of coefficients. What happens to
o\ 53— o 2 R (0 < R < ) if you (i) multiply all a,, by k # 0,
= am (ii) multiply a,, by k™ # 0, (iii) replace a,, by l/a,,?
18. E EL n)" 7 @+ )" (c) Example 6 extends Theorem 2 to nonconvergent
o 2'(nY cases of a,/a,, . ;. Do you understand the principle of

19.

CAS PROJECT. Radius of Convergence. Write a
program for computing R from (6), (6%), or (6¥*), in
this order, depending on the existence of the limits
needed. Test the program on series of your choice and

“mixing” by which Example 6 was obtained? Use this
principle for making up further examples.

(d) Does there exist a power series in powers of z that
converges at z = 30 + 10i and diverges at z = 31 — 6i?
(Give reason.)

15.3 Functions Given by Power Series

The main goal of this section is to show that power series represent analytic functions
(Theorem 5). Along our way we shall see that power series behave nicely under addition,
multiplication, differentiation, and integration, which makes these series very useful in
complex analysis.

To simplify the formulas in this section, we take z, = 0 and write

1 E anZ™.
n=0

This is no restriction because a series in powers of Z — zo with any z, can always be
reduced to the form (1) if we setZ — zo = z.

Terminology and Notation. If any given power series (1) has a nonzero radius of
convergence R (thus R > 0), its sum is a function of z, say f(z). Then we write

) f@= at=as+ az+a®+ -

n=0

(|2 < R).

We say that f(z) is represented by the power series or that it is developed in the power
series. For instance, the geometric series represents the function f(z) = 1/(1 — z) in the
interior of the unit circle |z = 1. (See Theorem 6 in Sec. 15.1.)

Uniqueness of a Power Series Representation. This is our next goal. It means that
a function f(z) cannot be represented by two different power series with the same
center. We claim that if f(z) can at all be developed in a power series with center z, the
development is unique. This important fact is frequently used in complex analysis (as well
as in calculus). We shall prove it in Theorem 2. The proof will follow from
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THEOREM 1

PROOF

THEOREM 2

PROOF

Continuity of the Sum of a Power Series

If a function f(z) can be represented by a power series (2) with radius of convergence
R > 0, then f(2) is continuous at z = 0.

From (2) with z = 0 we have f(0) = a,. Hence by the definition of continuity we must
show that lim,_o f(z) = f(0) = a,. That is, we must show that for a given € > 0 there
is a & > 0 such that || < & implies |f(z) — ao| < €. Now (2) converges absolutely for
|z = r with any r such that 0 < r < R, by Theorem 1 in Sec. 15.2. Hence the series

o] 1 o o]
E [an’rn_l = E ‘anlrn
n=1 ! n=1

converges. Let § # 0 be its sum. (S = 0 is trivial.) Then for 0 < [z] = r,

If(z) — ao| =

o
> ayz"
n=1

o) . e}
= el 2 lanl l" 7t = 2 2 Jag et = 2|
n=1 n=1

and [z|S < e when [z| < &, where 8 > 0 is less than r and less than €/S. Hence
|2|S < 8S < (e/S)S = €. This proves the theorem. ]

From this theorem we can now readily obtain the desired uniqueness theorem (again
assuming zo = 0 without loss of generality):

Identity Theorem for Power Series. Uniqueness

Let the power series ay + a1z + axz® + - - - and by + b1z + boz® + « - - both be
convergent for |z| < R, where R is positive, and let them both have the same sum Sfor
all these z. Then the series are identical, that is, ay = by, a; = by, Gy = by, * * - .

Hence if a function f(z) can be represented by a power series with any center z,
this representation is unique.

We proceed by induction. By assumption,

agt ayz + ap® + - =bo+ bz + by? + - - (7 < R).
The sums of these two power series are continuous at z = 0, by Theorem 1. Hence if we
consider [z| > 0 and let z — 0 on both sides, we see that a, = b: the assertion is true

for n = 0. Now assume that a,, = b, forn = 0, 1, - - -, m. Then on both sides we may
omit the terms that are equal and divide the result by z (# 0); this gives

& 2 — 2
i1 T Amy2Z T Api3?” T 000 = bm+1 + bm+2Z + b’m+3Z R

Similarly as before by letting z — 0 we conclude from this that a,,,; = byyi1- This
completes the proof. 25
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THEOREM 3

PROOF

CHAP. 15 Power Series, Taylor Series

Operations on Power Series

Interesting in itself, this discussion will serve as a preparation for our main goal, namely,
to show that functions represented by power series are analytic.

Termwise addition or subtraction of two power series with radii of convergence R;
and R, yields a power series with radius of convergence at least equal to the smaller of
R; and R,. Proof. Add (or subtract) the partial sums s,, and s;¥ term by term and use
lim (s,, * s¥) = lims,, = lim s;%.

Termwise multiplication of two power series

oo
fQ=2 aF=ag+az+---

k=0
and

8(Z):E byz™ = by + byz + - - -
m=0

means the multiplication of each term of the first series by each term of the second series
and the collection of like powers of z. This gives a power series, which is called the
Cauchy product of the two series and is given by

aobo + ((lobl =+ albo)z + (aobz + albl + azbo)zz + -

= E (agby, + asb,_q + + -+ + aybg)z".

n=0

We mention without proof that this power series converges absolutely for each z within
the circle of convergence of each of the two given series and has the sum s(z) = f(2)g(2).
For a proof, see [D5] listed in App. 1.

Termwise differentiation and integration of power series is permissible, as we show
next. We call derived series of the power series (1) the power series obtained from (1)
by termwise differentiation, that is,

oC
3) D na," ' =ay + 2asz + 3azz> + .

n=1

Termwise Differentiation of a Power Series

The derived series of a power series has the same radius of convergence as the
original series.

This follows from (6) in Sec. 15.2 because

nlan| Ay,

lim ———— = lim lim
n— (n + 1) ’an+1\ n—oo n + 1 noowo

= lim

N—>0o0

i1 41

or, if the limit does not exist, from (6**) in Sec. 15.2 by noting that Vn—slasn—oo MW
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EXAMPLE 1

THEOREM 4

THEOREM 5

PROOF

Application of Theorem 3

Find the radius of convergence R of the following series by applying Theorem 3.

* (n
2()z":zz+313+6z4+1015+"n
2

n=2

Solution. Differentiate the geometric series twice term by term and multiply the result by 22/2. This yields
the given series. Hence R = 1 by Theorem 3. |

Termwise Integration of Power Series

The power series

(e o]

a a, do
E n+1:aoz+_z2+_z3+...
n=0

n+1Z 2 3

obtained by integrating the series ay + a1z + asz> + - - - term by term has the
same radius of convergence as the original series.

The proof is similar to that of Theorem 3.
With Theorem 3 as a tool, we are now ready to establish our main result in this section.

Power Series Represent Analytic Functions

Analytic Functions. Their Derivatives

A power series with a nonzero radius of convergence R represents an analytic
Junction at every point interior to its circle of convergence. The derivatives of this
JSunction are obtained by differentiating the original series term by term. All the
series thus obtained have the same radius of convergence as the original series.
Hence, by the first statement, each of them represents an analytic function.

(a) We consider any power series (1) with positive radius of convergence R. Let f(z) be
its sum and f(z) the sum of its derived series; thus

(4) f@ =2 a2 and f1@ = 2 na,z" L

n=0 n=1

We show that f(z) is analytic and has the derivative f,(z) in the interior of the circle of
convergence. We do this by proving that for any fixed z with |z] < R and Az — 0 the
difference quotient [f(z + Az) — f(z)]/Az approaches f,(z). By termwise addition we first
have from (4)

- m+?—mpﬁw:2%[ww@—z_mml
z Az

n=2

Note that the summation starts with 2, since the constant term drops out in taking the
difference f(z + Az) — f(z), and so does the linear term when we subtract f1(z) from the
difference quotient.
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(b) We claim that the series in (5) can be written

(6) E a,Az[(z + A" 2+ 22z + A" 3+ -+ (n — 2)7" 3z + Az)

"2 + (- D"

The somewhat technical proof of this is given in App. 4.

(c) We consider (6). The brackets contain n — 1 terms, and the largest coefficient is
n — 1. Since (n — 1)2 = n(n — 1), we see that for [z| = Ry and |z + Az| = Ro, Ry < R,
the absolute value of this series (6) cannot exceed

(7) A2 S [agntn — DRG .

n=2

This series with a,, instead of |a,,| is the second derived series of (2) at z = Ry and converges
absolutely by Theorem 3 of this section and Theorem 1 of Sec. 15.2. Hence our present
series (7) converges. Let the sum of (7) (without the factor |Az|) be K(Ro). Since (6) is
the right side of (5), our present result is

flz+Az) — f@)
Az

— f1(@)| = |AZ] KRy).

Letting Az — 0 and noting that Ry (< R) is arbitrary, we conclude that f(z) is analytic at
any point interior to the circle of convergence and its derivative is represented by the derived
series. From this the statements about the higher derivatives follow by induction. |

Summary. The results in this section show that power series are about as nice as we
could hope for: we can differentiate and integrate them term by term (Theorems 3 and 4).
Theorem 5 accounts for the great importance of power series in complex analysis: the
sum of such a series (with a positive radius of convergence) is an analytic function and
has derivatives of all orders, which thus in turn are analytic functions. But this is only
part of the story. In the next section we show that, conversely, every given analytic function
f(z) can be represented by power series, called Taylor series and being the complex
analog of the real Taylor series of calculus.

DIFFERENTIATION OR INTEGRATION

Find the radius of convergence in two ways: (a) directly by “ om
the Cauchy-Hadamard formula in Sec. 152, (b) froma 5 5 322D
series of simpler terms by using Theorem 3 or Theorem 4. 5"

[1-10] RADIUS OF CONVERGENCE BY $ v ( . )zn+1
4

n=1
1. E % (z — 20" 6. i (n) (i)ﬂ
n=2 n—k k 4
oo 4n ., o) (_7)n o
ZEln(n+l) ¢ 721 nin + D(n + 2)
o ) _
3. E % (z + )" ' 3. E _n(zinﬁ 222
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9.

10.

11.

12.

13.

14.

15.

[
20

(Addition and subtraction) Write out the details of
the proof on termwise addition and subtraction of
power series.

(Cauchy product) Show that

(1 =272 =37 4 (n + 1)z" (a) by using the Cauchy
product, (b) by differentiating a suitable series.
(Cauchy product) Show that the Cauchy product of

=%—o 2""/n! multiplied by itself gives 3% _, (22)"/n!.
(On Theorem 3) Prove that Vin—1lasn— (as
claimed in the proof of Theorem 3).

(On Theorems 3 and 4) Find further examples of your
own.

16-20| APPLICATIONS OF THE IDENTITY

THEOREM

State clearly and explicitly where and how you are using
Theorem 2.

16.

(Bionomial coefficients) Using
(I + 221 + 22 = (1 + z)P"9, obtain the basic
relation

17.

19.

20.

683

SRS

(Odd function) If f(z) in (1) is odd (i.c.,
f(—=z2) = —f(z)), show that a,, = 0 for even n. Give
examples.

. (Even functions) If f(z) in (1) is even (i.e.,

f(=2) = f(2)), show that a, = 0 for odd n. Give
examples.

Find applications of Theorem 2 in differential equations
and elsewhere

TEAM PROJECT. Fibonacci numbers.2 (a) The
Fibonacci numbers are recursively defined by
ap =ay = 1,a,41 =a, +a,_;ifn=172---.
Find the limit of the sequence (a,, . i/a,,).

(b) Fibonacci’s rabbit problem. Compute a list of
ag, * -+, aps. Show that a;5 = 233 is the number of
pairs of rabbits after 12 months if initially there is 1
pair and each pair generates 1 pair per month,
beginning in the second month of existence (no deaths
occurring).

(¢) Generating function. Show that the generating

Junction of the Fibonacci numbers is

f(2) = (1 — 2 = 2?); that is, if a power series (1)
represents this f(z), its coefficients must be the
Fibonacci numbers and conversely. Hint. Start from
f(2 (1 =z — z%) = 1 and use Theorem 2.

15.4 Taylor and Maclaurin Series

The Taylor series® of a function f(z), the complex analog of the real Taylor series is

1

(1) =20 5t
n=1

or, by (1), Sec. 14.4,

(2) Gy — =

2

1
where Gty e
f(z*)
= 7"
3€C Ve Zo)n+1 :

In (2) we integrate counterclockwise around a simple closed path C that contains z, in
its interior and is such that f(z) is analytic in a domain containing C and every point

inside C.

A Maclaurin series® is a Taylor series with center 0 = 0.

2LEONARDO OF PISA, called FIBONACCI (= son of Bonaccio), about 1180—1250, Italian mathematician,
credited with the first renaissance of mathematics on Christian soil.

3BROOK TAYLOR (1685-1731), English mathematician who introduced real Taylor series. COLIN
MACLAURIN (1698-1746), Scots mathematician, professor at Edinburgh.
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The remainder of the Taylor series (1) after the term a,,(z — z¢)" is

*k

(z — ™" 56 f(z*)

R =
(3) n(Z) & (Z* _ Zo)n+1(z* _ Z)

2

(proof below). Writing out the corresponding partial sum of (1), we thus have

1!

(Z—Zo)z. "
LB Pyt

o ) s e

@) i
& —Z—n?"— F®(0) + Ru(2).

This is called Taylor’s formula with remainder.

We see that Taylor series are power series. From the last section we know that power
series represent analytic functions. And we now show that every analytic function can be
represented by power series, namely, by Taylor series (with various centers). This makes
Taylor series very important in complex analysis. Indeed, they are more fundamental in
complex analysis than their real counterparts are in calculus.

Taylor's Theorem

Let f(z) be analytic in a domain D, and let z = zo be any point in D. Then there
exists precisely one Taylor series (1) with center zo that represents f(z). This
representation is valid in the largest open disk with center zy in which f(z) is analytic.
The remainders R,(z) of (1) can be represented in the form (3). The coefficients
satisfy the inequality

M

r’I’L

) laa| =

where M is the maximum of |f(z)| on a circle |z — zo| = r in D whose interior is
also in D.

The key tool is Cauchy’s integral formula in Sec. 14.3; writing z and z* instead of zq and
z (so that z* is the variable of integration), we have

1 %
©) fo) = & L&

; % _
2mi Yoz Z

dz*.

2 lies inside C, for which we take a circle of radius r with center z, and interior in D
(Fig. 364). We develop 1/(z¥ — z) in (6) in powers of z — z. By a standard algebraic
manipulation (worth remembering!) we first have

1 1 1
™) = =

-z ¥ —z0 — (2 — 20) 2— 20\
@ =)\l - —
v — 2o
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For later use we note that since z* is on C while z is inside C, we have

Z — 2o .
(7%) =0 < (Fig. 364).
" — 2o
y
Q z*
O C

X

Fig. 364. Cauchy formula (6)

To (7) we now apply the sum formula for a finite geometric sum

8* ~ n_l_qn+1_ 1 B q’n+1
(8%) l+g+---+q"= — = — (g# 1),
l—g¢q l1—g¢g l—g

which we use in the form (take the last term to the other side and interchange sides)

n+1

1
(8) ——— =1+4g+ - +g"+
1 —g¢q l—gq

Applying this with ¢ = (z — zo)/(z* — z¢) to the right side of (7), we get

1 1 72—z Z— 7 \2 2= 20 \"*
= 1+ —= + 2 ) ¢
*—z ¥ — 2o ¥ — 2 ¥ — 2z ¥ =z
N 1 (ZZO n+1
*F—z \z¥F— 1z

We insert this into (6). Powers of z — zo do not depend on the variable of integration z*,
so that we may take them out from under the integral sign. This yields

f(z*) 2= 2o ff; f(z*)
(

=
1@ 2mi Yo 7F g ¢ 2ri 7+ — 7o)

(z — z9)" f(z¥) )

with R, (z) given by (3). The integrals are those in (2) related to the derivatives, so that
we have proved the Taylor formula (4).

Since analytic functions have derivatives of all orders, we can take n in (4) as large as
we please. If we let n approach infinity, we obtain (1). Clearly, (1) will converge and
represent f(z) if and only if

) lim R,(z) = 0.
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We prove (9) as follows. Since z* lies on C, whereas z lies inside C (Fig. 364), we have
|z# — z] > 0. Since f(z) is analytic inside and on C, it is bounded, and so is the function
f@)N(z* — z), say,

f(@*)

*—z

=M

for all z* on C. Also, C has the radius r = |z* — zo| and the length 27rr. Hence by the
ML-inequality (Sec. 14.1) we obtain from (3)

I f(z%) )
\Rn\ - ) +1 dZ.‘
(10) 27 c @ — 2" @~ 2
o — 2"t ~ 1 ~ |z =z |1
= M 2ar = M
2 gt T r

Now |z — z| < r because z lies inside C. Thus |z — zo|/r < 1, so that the right side
approaches 0 as n — . This proves the convergence of the Taylor series. Uniqueness
follows from Theorem 2 in the last section. Finally, (5) follows from (1) and the Cauchy
inequality in Sec. 14.4. This proves Taylor’s theorem. H

Accuracy of Approximation. We can achieve any preassinged accuracy in

approximating f(z) by a partial sum of (1) by choosing n large enough. This is the practical
aspect of formula (9).

Singularity, Radius of Convergence. On the circle of convergence of (1) there is at
least one singular point of f(z), that is, a point z = ¢ at which f(z) is not analytic (but
such that every disk with center ¢ contains points at which f(z) is analytic). We also say
that f(z) is singular at c or has a singularity at c. Hence the radius of convergence R of
(1) is usually equal to the distance from z, to the nearest singular point of f(z).

(Sometimes R can be greater than that distance: Ln z is singular on the negative real
axis, whose distance from zo = —1 + 7 is I, but the Taylor series of Ln z with center
7o = —1 + i has radius of convergence V2)

Power Series as Taylor Series

Taylor series are power series—of course! Conversely, we have

Relation to the Last Section

A power series with a nonzero radius of convergence is the Taylor series of its sum.

Given the power series
f(2) = ag + a1(z — z9) + as(z — 20)2 + as(z — 10)3 +--
Then f(zg) = ao. By Theorem 5 in Sec. 15.3 we obtain

f'(2) = a; + 2ay(z — zp) + 3as(z — o+, thus f'(zo) = a1

') =2a, +3-2@—z9) + ", thus  f"(z0) = 2las
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EXAMPLE 1

EXAMPLE 2

and in general f“(z,) = n!a,,. With these coefficients the given series becomes the Taylor
series of f(z) with center z. ]

Comparison with Real Functions. One surprising property of complex analytic
functions is that they have derivatives of all orders, and now we have discovered the other
surprising property that they can always be represented by power series of the form (1).
This is not true in general for real functions; there are real functions that have derivatives
of all orders but cannot be represented by a power series. (Example: f(x) = exp (— 1/x2)
if x # 0 and f(0) = 0; this function cannot be represented by a Maclaurin series in an
open disk with center O because all its derivatives at 0 are zero.)

Important Special Taylor Series

These are as in calculus, with x replaced by complex z. Can you see why? (Answer. The
coefficient formulas are the same.)

Geometric Series

Let f(z) = 1/(1 — z). Then we have f(z) = n!/(1 — 2)™*1, f™(0) = n!. Hence the Maclaurin expansion of
1/(1 — z) is the geometric series

o0

1) =D =1ttt (ol < 1.
n=0

f(z) is singular at z = 1; this point lies on the circle of convergence. [

Exponential Function

We know that the exponential function ¢* (Sec. 13.5) is analytic for all z, and (¢°)’ = ¢°. Hence from (1) with
zo = 0 we obtain the Maclaurin series

2

(12) EZ— £ e
n! 2!

n=0

This series is also obtained if we replace x in the familiar Maclaurin series of ¢® by z.
Furthermore, by setting z = iy in (12) and separating the series into the real and imaginary parts (see
Theorem 2, Sec. 15.1) we obtain

(i\')n ) Zk 2k+1
= —1k
n=0 k:0

y
! +'E - (2k+ o

Since the series on the right are the familiar Maclaurin series of the real functions cos y and sin y, this shows
that we have rediscovered the Euler formula

13) ¢ = cosy + isiny.

Indeed, one may use (12) for defining ¢ and derive from (12) the basic properties of ¢*. For instance, the
differentiation formula (¢°)’ = ¢° follows readily from (12) by termwise differentiation. i
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EXAMPLE 3

EXAMPLE 4

EXAMPLE 5

CHAP. 15 Power Series, Taylor Series

Trigonometric and Hyperbolic Functions

By substituting (12) into (1) of Sec. 13.6 we obtain

© 2n 2 4

Z Z %
e g e i

i n:o( ) 5L

14
e} 2n+1 3 5
4 e
1 — —1 (UF SRR e - 4+ — - 4+ e,

- go( e ]

When z = x these are the familiar Maclaurin series of the real functions cos x and sin x. Similarly, by substituting
(12) into (11), Sec. 13.6, we obtain

0 2n 2 4

Z z Z
cosh z = =14+ =+ =+ -
oSz 2 2n)! 2 4l
n=0
(15s)
o 2n+1 3 5
Z Z Z
sinhz=2————:z+_+_.... ]
— (2n + 1)! 31 5!
n=0
Logarithm
From (1) it follows that
22 2
(16) Ln(1+z)=z—7+?—+--~ (zl < 1.

Replacing z by —z and multiplying both sides by —1, we get

(17) —Ln(l —z)=Ln

+

~

) i NM
+

twes (lzl <D

1 -z

By adding both series we obtain

!
(18) Ln 7% = ( + (d<1. W

wlmw
+

2
U\\ Y
4
~—

Practical Methods

The following examples show ways of obtaining Taylor series more quickly than by the
use of the coefficient formulas. Regardless of the method used, the result will be the same.
This follows from the uniqueness (see Theorem 1).

Substitution
Find the Maclaurin series of f(z) = 1/(1 + zz).

Solution. By substituting —z2 for z in (11) we obtain ‘I}

1 1 e x
a9 =" =S A=Y =1 -2 - W< B
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EXAMPLE 6

EXAMPLE 7

EXAMPLE 8

Integration
Find the Maclaurin series of f(z) = arctan z.

Solution. We have f'(z) =1/ + 22). Integrating (19) term by term and using f(0) = 0 we get

z (=" 2 2
2n+1
arctan 7 = Z =z7— — 4+ — — 4+ - 7 < 1);
2 o 37 (<D
n=0
this series represents the principal value of w = u + iv = arctanz defined as that value for which
u| < @2 B

Development by Using the Geometric Series
Develop 1/(c — z) in powers of z — zq, where ¢ — zg # 0.

Solution. This was done in the proof of Theorem 1, where ¢ = z*. The beginning was simple algebra and
then the use of (11) with z replaced by (z — zg)/(c — zo):

c—72  c—2zg— (z— z9) (c—z)(l z—zo) c—29 2o \C— 2o
o1 -
C_ZO
1 Z = 29 Z— 7 \2
= (1+“ +( +
Cc — 2o cC — 29 c— 2

This series converges for

<1, that is, |z = zo| <lc — z- u

c— 29

Binomial Series, Reduction by Partial Fractions

Find the Taylor series of the following function with center z5 = 1.

22 +9:+5
@ = z3+z278z712

Solution. We develop f(z) in partial fractions and the first fraction in a binomial series

1 i (_m)
=1+ ™M= 7"
L+ gm
(20) s ol )
mimt ) m(m + 1)(m + 2)
o

3
21 31 £

=1—-—mz+

with m = 2 and the second fraction in a geometric series, and then add the two series term by term. This gives

B L2 1 - 2 ;l( 1 )_ 1
f(Z)*(z+2>2 2=3 [B+Ge-DF 2-G-D 9 \[1+iz-DP 1-23z-1

12 (72 (z=1\ & (z-1\ E&[CED@+D 1 n
-53 )(—3 )‘EO( 2 )—E[ o *ﬂ@‘”

n=0 n n=0
8 31 ,_ 2 2 205 b2
B A T A A TV ‘
We see that the first series converges for |z — 1| < 3 and the second for |z — 1| < 2. This had to be expected
because 1/(z + 2) is singular at —2 and 2/(z — 3) at 3, and these points have distance 3 and 2, respectively,
from the center zo = 1. Hence the whole series converges for [z — 1] < 2. |
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Find the Taylor or Maclaurin series of the given function
with the given point as center and determine the radius of
convergence.

TAYLOR AND MACLAURIN SERIES

1.e7 %, 0 2. 1/(1 =23, 0

3. %, —2i 4. cos®z, O

5. sinz, w/2 6. 1/z, 1

7. U — z), i 8. Ln(l —2), i

9. =72, 0 10. ezzf e~ di, 0
0

1. 26 — 22 +z2 — 1, 1| 12.sinh(z — 2i), 2i

[13-16] HIGHER TRANSCENDENTAL
FUNCTIONS

Find the Maclaurin series by termwise integrating the
integrand. (The integrals cannot be evaluated by the usual
methods of calculus. They define the error function erf z,
sine integral Si(z), and Fresnel integrals* S(z) and C(z),
which occur in statistics, heat conduction, optics, and other
applications. These are special so-called higher
transcendental functions.)

13. erfz = — f 24 14 Si(z) = EnE

. € z—\/; Oe . Si(z) = T

15. S(2) =f sin 12 dt 16. C(z) = fcost2 dt
0 0

17. CAS PROJECT. sec, tan, arcsin. (a) Euler numbers.
The Maclaurin series

— Ey 2 Ey 4
21) secz—Eo—?z +ZZ -+

defines the Euler numbers Es,. Show that Eq = 1,
Ey = —1,E, = 5, Eg = —61. Write a program that
computes the E,, from the coefficient formula in (1)
or extracts them as a list from the series. (For tables
see Ref. [GR1], p. 810, listed in App. 1.)

(b) Bernoulli numbers. The Maclaurin series

B B
=1+Bz+ =22+ 22+

22
22) & — 1 21 3!

18.

19.

20.

defines the Bernoulli numbers B,,. Using undetermined
coefficients, show that

1 1
Bl = — 0= Bz = g 5 Bg = 0,
(23) .
= — — = B e
Ba 500 B=0 Be= 45

Write a program for computing B,,.

(¢) Tangent. Using (1), (2), Sec. 13.6, and (22), show
that tanz has the following Maclaurin series and
calculate from it a table of By, - - -, Bag:

(24) tanz = —; -

22n(22n _ l)
2n)!

Il

an Z2n—1.

> (—1rt
n=1

(Inverse sine) Developing 1/V1 — z? and integrating,
show that

(1 z3+ 1-3)\ 2°
arcsin 7 = g B 3 2.4 5
123<5Y &

+ S
2:4:6) 7

Show that this series represents the principal value of
arcsin z (defined in Team Project 30, Sec. 13.7).

+

(|z| < 1).

(Undetermined coefficients) Using the relation
sin z = tan z cos z and the Maclaurin series of sin z and
cos z, find the first four nonzero terms of the Maclaurin
series of tan z. (Show the details.)

TEAM PROJECT. Properties from Maclaurin
Series. Clearly, from series we can compute function
values. In this project we show that properties of
functions can often be discovered from their Taylor or
Maclaurin series. Using suitable series, prove the
following.

(a) The formulas for the derivatives of €, cos z, sin z,
cosh z, sinh z, and Ln (1 + z)

(b) (e + e7%) = cos z

(¢) sinz # O for all pure imaginary z = iy # 0

“AUGUSTIN FRESNEL (1788-1827), French physicist and engineer, known for his work in optics.
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15.5 Uniform Convergence. Optional

We know that power series are absolutely convergent (Sec. 15.2, Theorem 1) and, as
another basic property, we now show that they are uniformly convergent. Since uniform
convergence is of general importance, for instance, in connection with termwise integration
of series, we shall discuss it quite thoroughly.

To define uniform convergence, we consider a series whose terms are any complex
functions f(z), f1(2), = - - :

(1) D fm@ = fol@) + f12) + fal@) + - - -

m=0

(This includes power series as a special case in which f,,(z) = a,, (z — z0)™.) We assume
that the series (1) converges for all z in some region G. We call its sum s(z) and its nth
partial sum s,,(z); thus

$.(2) = fo@) + f1(2) + -+ - + f(2).

Convergence in G means the following. If we pick a z = z; in G, then, by the definition
of convergence at z;, for given € > 0 we can find an N;(€) such that

Is(z1) — sp(z0)| < € for all n > Nj(e).
If we pick a z, in G, keeping € as before, we can find an Ny(e€) such that
|s(z2) — s,(20)| < € for all n > Ny(e),

and so on. Hence, given an € > 0, to each z in G there corresponds a number N,(e).
This number tells us how many terms we need (what s,, we need) at a z to make
|s(z) — s,(z)| smaller than e. Thus this number N,(e) measures the speed of
convergence.

Small N(€) means rapid convergence, large N,(€) means slow convergence at the point
z considered. Now, if we can find an N(e) larger than all these N,(¢e) for all z in G, we
say that the convergence of the series (1) in G is uniform. Hence this basic concept is
defined as follows.

DEFINITION Uniform Convergence

A series (1) with sum s(z) is called uniformly convergent in a region G if for every
€ > 0 we can find an N = N(e), not depending on z, such that

Is(2) — 5,2 < € for all n > N(€) and all z in G.

Uniformity of convergence is thus a property that always refers to an infinite set in
the z-plane, that is, a set consisting of infinitely many points.
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EXAMPLE 1

THEOREM 1

PROOF

CHAP.15 Power Series, Taylor Series

Geometric Series

Show that the geometric series 1 + z + 72 + - - - is (a) uniformly convergent in any closed disk lZl=r<1,
(b) not uniformly convergent in its whole disk of convergence lz] < 1.

Solution. (a) For z in that closed disk we have |l —z =1 — r (sketch it). This implies that
1/]1 = 2 = 1/(1 — r). Hence (remember (8) in Sec. 15.4 with g = 2)

oo 7n+1 rn+1
s — syl =| = "= : = .
— 2 1=r
m=n-+1

Since r < 1, we can make the right side as small as we want by choosing n large enough, and since the right
side does not depend on z (in the closed disk considered), this means that the convergence is uniform.

(b) For given real K (no matter how large) and n we can always find a z in the disk |z| <1 such that

n+1
z

Izl’VL+1

T

> K,

l—z2

simply by taking z close enough to 1. Hence no single N(e) will suffice to make |s(z) — s,(z)| smaller than a
given € > 0 throughout the whole disk. By definition, this shows that the convergence of the geometric series
in |z < 1 is not uniform.

This example suggests that for a power series, the uniformity of convergence may at most
be disturbed near the circle of convergence. This is true:

Uniform Convergence of Power Series

A power series

[ee]

) > amz — )™

m=0

with a nonzero radius of convergence R is uniformly convergent in every circular
disk |z — zo| = r of radius r < R.

For |z — z¢| = r and any positive integers n and p we have

B) apir@ — 20+ - F apapz — 20" = I e R o [ el
Now (2) converges absolutely if |z — zo| = r < R (by Theorem 1 in Sec. 15.2). Hence it
follows from the Cauchy convergence principle (Sec. 15.1) that, an € > 0 being given,

we can find an N(e) such that

|apidl™ ™+ ot |apap P <e  forn>N(eE and p=1,2,--".

From this and (3) we obtain

|a1’L+1(Z - ZO)n+1 +oee t an+p(z - ZO)n+pl <€
for all z in the disk |z — zo| = r, every n > N(e), and every p = 1, 2, - - - . Since N(e) is
independent of z, this shows uniform convergence, and the theorem is proved. |

Theorem 1 meets with our immediate need and concern, which is power series. The
remainder of this section should provide a deeper understanding of the concept of uniform
convergence in connection with arbitrary series of variable terms.
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THEOREM 2

PROOF

Properties of Uniformly Convergent Series

Uniform convergence derives its main importance from two facts:

1. If a series of continuous terms is uniformly convergent, its sum is also continuous
(Theorem 2, below).

2. Under the same assumptions, termwise integration is permissible (Theorem 3).
This raises two questions:

1. How can a converging series of continuous terms manage to have a discontinuous
sum? (Example 2)

2. How can something go wrong in termwise integration? (Example 3)
Another natural question is:

3. What is the relation between absolute convergence and uniform convergence? The
surprising answer: none. (Example 5)

These are the ideas we shall discuss.

If we add finitely many continuous functions, we get a continuous function as their sum.
Example 2 will show that this is no longer true for an infinite series, even if it converges
absolutely. However, if it converges uniformly, this cannot happen, as follows.

Continuity of the Sum ‘
Let the series |
\

— 1

2 @ = fol@) + f1(2) + - - - |

m=0 ‘

be uniformly convergent in a region G. Let F(z) be its sum. Then if each term f,,(z)
is continuous at a point z; in G, the function F(2) is continuous at z;.

Let s,,(z) be the nth partial sum of the series and R,,(z) the corresponding remainder:

Sn:f0+f1+"'+fn’ Rn:fn+1+fn+2+”'~

Since the series converges uniformly, for a given € > 0 we can find an N = N(e) such
that

€
|Rn(2)| < 3 for all z in G.

Since sp(z) is a sum of finitely many functions that are continuous at z;, this sum is
continuous at z;. Therefore, we can find a § > 0 such that

€
lsn(z) — splzy)] < 3 for all z in G for which |z — z;| < 8.

Using F' = sy + Ry and the triangle inequality (Sec. 13.2), for these z we thus obtain

|F(z) — F(zy)| = |sn(2) + Ry(2) — [sn(z1) + Ry(z)]]

= [sn(@) — syl + [Ry@)| + Ry < — +

€
= = €.
3 3

€
3

This implies that F(z) is continuous at z;, and the theorem is proved. B




694 CHAP. 15 Power Series, Taylor Series

EXAMPLE 2 Series of Continuous Terms with a Discontinuous Sum

Consider the series

x2 X2 x2

+ + +
1+ (+D2 1+

(x real).

This is a geometric series with ¢ = 1/(1 + x2) times a factor x2. Its nth partial sum is

1 1 1
2
= 1+ + toot ———|.
Sulx) = % [ 1+x2 (1 +x32 (1+x2)”]

We now use the trick by which one finds the sum of a geometric series, namely, we multiply
5(x) by —¢ = — 11 + 2%,

1 1 1
2
- — ) = — ot + .
1+ x2 () * |:1+x2 (1 + X" ¢ +x2)n+1]

Adding this to the previous formula, simplifying on the left, and canceling most terms on the right, we obtain

2
Y =2 R S
1+ 2 sp(x) = X \:1 - a + 2yt :I ’

0 1
A+ 3

thus

Spx)=1+x

The exciting Fig. 365 “explains” what is going on. We see that if x # 0, the sum is
s() = lim s,(0) = 1 + x2,
n—oe

but for x = 0 we have 5,,(0) = 1 — 1 = 0 for all n, hence s(0) = 0. So we have the surprising fact that the
sum is discontinuous (at x = 0), although all the terms are continuous and the series converges even absolutely
(its terms are nonnegative, thus equal to their absolute value!).

Theorem 2 now tells us that the convergence cannot be uniform in an interval containing x = 0. We can also
verify this directly. Indeed, for x # 0 the remainder has the absolute value

IR, ()] = [s(x) — s,(0)| = AT o

and we see that for a given € (< 1) we cannot find an N depending only on € such that |R,,| < € for all n > N(e)
and all x, say, in the interval 0 = x = 1.

Fig. 365. Partial sums in Example 2
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Termwise Integration

This is our second topic in connection with uniform convergence, and we begin with an
example to become aware of the danger of just blindly integrating term-by-term.

EXAMPLE 3 Series for which Termwise Integration is Not Permissible

mx

2 . .
Let u,,,(x) = mxe and consider the series

Fmlx) where Fm®) = w(X) = 1 (x)
0

T M

in the interval 0 = x = 1. The nth partial sum is
Sp = Uy —Ug Fug —uy ot Uy Uy T Uy T U = Uy,

Hence the series has the sum F(x) = lim s,(x) = lim u,(x) =0 (0 = x = 1). From this we obtain
n—oo n—oc

1

f F(x) dx = 0.
0

On the other hand, by integrating term by term and using f; + fo + < -+ + f, = s,,, we have

1 1

oo 1 { n
E; f fm(x) dx = lim E fm(x) dx = lim f Sp(x) dx.
m=1"0 =170 : 8 iy

Now s,, = u,, and the expression on the right becomes

1 1
1 1
lim f u,(x) dx = lim nxe~ ™ dx = lim — (1—-e™=—=,
. 2 2

n—oo n—oo J n—0o0

but not 0. This shows that the series under consideration cannot be integrated term by term from x = 0 to

x = 1. =

The series in Example 3 is not uniformly convergent in the interval of integration, and
we shall now prove that in the case of a uniformly convergent series of continuous
functions we may integrate term by term.

THEOREM 3 Termwise Integration
Let

F2) = 2 fl@ = fol@) + f10) + - - -

m=0

be a uniformly convergent series of continuous functions in a region G. Let C be
any path in G. Then the series

) 3 |0 de=[ pa@d: + [ e+ -

is convergent and has the sum f F(z) dz.
c




696

PROOF

THEOREM 4

THEOREM 5

CHAP.15 Power Series, Taylor Series

From Theorem 2 it follows that F(z) is continuous. Let s,,(z) be the nth partial sum of the
given series and R,,(z) the corresponding remainder. Then F' = s,, + R,, and by integration,

| Fod:= [ s@d fCRn(z) d.

Let L be the length of C. Since the given series converges uniformly, for every given
€ > 0 we can find a number N such that |R,(z)| < €/L for all n > N and all z in G. By
applying the ML-inequality (Sec. 14.1) we thus obtain

€
fRn(z)dz < —L=c¢€ for all n > N.
c L
Since R,, = F — s,,, this means that
fF(z) dz — fsn(z) dz| < e for all n > N.
C C
Hence, the series (4) converges and has the sum indicated in the theorem. =

Theorems 2 and 3 characterize the two most important properties of uniformly convergent
series. Also, since differentiation and integration are inverse processes, Theorem 3 implies

Termwise Differentiation

Let the series fo(z) + f1(z) + fo(z) + * * - be convergent in a region G and let F(z)
be its sum. Suppose that the series fo(2) + f1(z) + fa(z) + - - - converges uniformly
in G and its terms are continuous in G. Then

F'@@=fo + 10 + f20 + - forall z in G.

Test for Uniform Convergence

Uniform convergence is usually proved by the following comparison test.

Weierstrass® M-Test for Uniform Convergence

Consider a series of the form (1) in a region G of the z-plane. Suppose that one can
find a convergent series of constant terms,

(5) M0+M1+M2+"',

such that |f,(2)| = M, for all z in G and every m =0,1,---. Then (1) is
uniformly convergent in G.

SKARL WEIERSTRASS (1815-1897), great German mathematician, whose lifework was the development
of complex analysis based on the concept of power series (see the footnote in Sec. 13.4). He also made basic
contributions to the calculus, the calculus of variations, approximation theory, and differential geometry. He
obtained the concept of uniform convergence in 1841 (published 1894, sic!); the first publication on the concept
was by G. G. STOKES (see Sec 10.9) in 1847.

Lidj
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EXAMPLE 4

EXAMPLE 5

The simple proof is left to the student (Team Project 18).

Weierstrass M-Test
Does the following series converge uniformly in the disk || = 1?

2

me1 m? + cosh mlz|

Solution. Uniform convergence follows by the Weierstrass M-test and the convergence of S1/m? (see
Sec. 15.1, in the proof of Theorem 8) because
7"+ 1 2™+ 1

m2

m? + cosh mlz|

1A

2
m?

No Relation Between Absolute and
Uniform Convergence

We finally show the surprising fact that there are series that converge absolutely but not
uniformly, and others that converge uniformly but not absolutely, so that there is no
relation between the two concepts.

No Relation Between Absolute and Uniform Convergence

The series in Example 2 converges absolutely but not uniformly, as we have shown. On the other hand, the series

i (—pm-t 1 1 1 |
= - + -+ X rea
me1 2+ m 241 2+ 2 2+3 ( )

converges uniformly on the whole real line but not absolutely.

Proof. By the familiar Leibniz test of calculus (see App. A3.3) the remainder R,, does not exceed its first
term in absolute value, since we have a series of alternating terms whose absolute values form a monotone
decreasing sequence with limit zero. Hence given € > 0, for all x we have

m | —

1 1 )
|Rn(x)| s ﬁ < W <€ if n> N(e) =

This proves uniform convergence, since N(€) does not depend on x.
The convergence is not absolute because for any fixed x we have

(_ l)m—l

x2+m

UNIFORM CONVERGENCE % enl
. . . . 2. > . | =10t
Prove that the given series converges uniformly in the o (2n+ D!
indicated region.
L > (z— 2% |z—2i =0999 3> o 2", |7l =0.56
n=0 n=0
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15.

17.

18.
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®, sin" |y

SR B = S5
gl nn+1)° lel =10
oo Z'n
= el lz] =1
n=1
oo Z’ﬂ,

=1

nzzl n? cosh nlz| ~ ll
&, tanh" |¢|
2 n?+1 lel = g™
n=0
i cos;zlz] el = 10
n=1 n

9-16| POWER SERIES

Find the region of uniform convergence (Give reason.)

Eo(z+1—20)" [ i)>%
> s L0
n=0 4 n=0 (2 )‘
Z (=" .n
2 e 122()(2z—z)
n=1 n=2 2
> — 2" 4. > (3" tanh n)z>"
n=1 n n=1
oo 2n oo n._2n

z (=D
zl 52 EO 2n)!

CAS PROJECT. Graphs of Partial Sums. (a) Figure
365. Produce this exciting figure using your software
and adding further curves, say, those of sa56, S1024- €tC.
(b) Power series. Study the nonuniformity of
convergence experimentally by plotting partial sums near
the endpoints of the convergence interval for real z = .

TEAM PROJECT. Uniform
(a) Weierstrass M-test. Give a proof.

Convergence.

(b) Termwise differentiation. Derive Theorem 4
from Theorem 3.

(c) Subregions. Prove that uniform convergence of a
series in a region G implies uniform convergence in
any portion of G. Is the converse true?

. What are power series? Why are these series very
important in complex analysis?

. State from memory the ratio test, the root test, and the

Cauchy-Hadamard formula for the radius of

convergence.

. What is absolute convergence? Conditional convergence?

Uniform convergence?

(d) Example 2. Find the precise region of
convergence of the series in Example 2 with x replaced
by a complex variable z.

(e) Figure 366. Show that x> =5, (1 +x*)™" =1
if x # 0 and 0 if x = 0. Verify by computation that the
partial sums sy, s5, 53, look as shown in Fig. 366.

Fig. 366. Sum s and partial
sums in Team Project 18(e)

HEAT EQUATION

Show that (9) in Sec. 12.5 with coefficients (10) is a solution
of the heat equation for # > 0, assuming that f(x) is continuous

on
all

19.

20.

ESTIONS AND PROBLEMS

4.

the interval 0 = x = L and has one-sided derivatives at
interior points of that interval. Proceed as follows.
Show that |B,,| is bounded, say |B,| < K for all n.
Conclude that

|| < Ke*n’to if tZ1,>0

and, by the Weierstrass test, the series (9) converges
uniformly with respect to x and ¢ for t = 15, 0 = x = L.
Using Theorem 2, show that u(x, 1) is continuous for
! = t, and thus satisfies the boundary conditions (2)
for t = t,.

Show that |ou,,/0f] < A2 Ke™*""% if t = 1, and the
series of the expressions on the right converges, by the
ratio test. Conclude from this, the Weierstrass test, and
Theorem 4 that the series (9) can be differentiated term
by term with respect to ¢ and the resulting series has
the sum du/dt. Show that (9) can be differentiated twice
with respect to x and the resulting series has the sum
92uldx?. Conclude from this and the result to Prob. 19
that (9) is a solution of the heat equation for all
t Z t,. (The proof that (9) satisfies the given initial
condition can be found in Ref. [C10] listed in App. 1.)

What do you know about the convergence of power
series?

. What is a Taylor series? What was the idea of obtaining

it from Cauchy’s integral formula?

. Give examples of practical methods for obtaining

Taylor series.

. What have power series to do with analytic functions?

s el
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8. Can properties of functions be discovered from their |21-30| TAYLOR AND MACLAURIN SERIES

Maclaurin series? If so, give examples. Find the Taylor or Maclaurin series with the given point as

9. Make a list of Maclaurin series of e cosz, sinz, center and determine the radius of convergence. (Show

cosh z, sinh z, Ln (1 — z) from memory. details.)
10. What do you know about adding and multiplying power 21, 2 22. Lnz, 2
ies?
seres? 23, 11 -z2), —1 24, (4~ 37, 1+i
11-20| RADIUS OF CONVERGENCE 25. 1/(1 — 23, 0 26. 1/z2, i
Find the radius of convergence. Can you identify the sum 24 ) 5 f F Py
as a familiar function in some of the problems? (Show the o Mz i 8. Ot (e —Da, 0
details of your work.) B 29. cosz, im 30. sin?z, 0
[} 3 n o _2 n
s B 2y 520 , ,
oo M g, 2n 31. Does every function f(z) have a Taylor series?
x 2l © (=1 32. Does there exist a Taylor series in powers of z — 1 — i
13. 2 1 14. E an)! " that diverges at 5 + 5i but converges at 4 + 6i?
n n)!
\ n=0 n=0 33. Do we obtain an analytic function if we replace x by z
© n? i -nH" in the Maclaurin series of a real function f(x)?
| 15. > — (z— 3> 16 EL(z—z)Z”“ . L . f.) .
! o 2n+ D! 34. Using Maclaurin series, show that if f(z) is even, its
- = (2o integral (with a suitable constant of integration) is
Z
17. S 7z — 202" 18. D, : odd.
n=0 noo 0! 35. Obtain the first few terms of the Maclaurin series of
o an © (7 — i tan z by using the Cauchy product and
w 19. > 5 " 20, > —— .
n (3 + 4)" sin z = cos z tan z.

0

n=1 n

= SUMMARY-OF CHAPTER

Power Series, Taylor Series

Sequences, series, and convergence tests are discussed in Sec. 15.1. A power series
is of the form (Sec. 15.2)

oo

(1) E an(z - Zo)n = dy + al(z - ZO) + aZ(Z — ZO)Z + .. 2

n=0

2o is its center. The series (1) converges for |z — zo| < R and diverges for
|z — 20| > R, where R is the radius of convergence. Some power series converge
for all z (then we write R = ). In exceptional cases a power series may converge
only at the center; such a series is practically useless. Also, R = lim |a,/a,, 4| if this
limit exists. The series (1) converges absolutely (Sec. 15.2) and uniformly
‘ (Sec. 15.5) in every closed disk |z — zo| = r < R (R > 0). It represents an analytic
: function f(z) for |z — zo| < R. The derivatives f'(z), f"(z), - - - are obtained by
| termwise differentiation of (1), and these series have the same radius of convergence
R as (1). See Sec. 15.3.
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Conversely, every analytic function f(z) can be represented by power series. These
Taylor series of f(z) are of the form (Sec. 15.4)

oc

1
) @ =2 5 F™ o)z — 20" (|2 = 2ol < R),

n=0

as in calculus. They converge for all z in the open disk with center zo and radius
generally equal to the distance from z, to the nearest singularity of f(z) (point at
which f(z) ceases to be analytic as defined in Sec. 15.4). If f(z) is entire (analytic
for all z; see Sec. 13.5), then (2) converges for all z. The functions €%, cos z, sin z,
etc. have Maclaurin series, that is, Taylor series with center 0, similar to those in
calculus (Sec. 15.4).




CHAPTER-I 6

Laurent Series.
Residue Integration

Laurent series generalize Taylor series. Indeed, whereas a Taylor series has positive integer
powers (and a constant term) and converges in a disk, a Laurent series (Sec. 16.1) is a
series of positive and negative integer powers of 7z — z, and converges in an annulus (a
circular ring) with center z,. Hence by a Laurent series we can represent a given function
f(z) that is analytic in an annulus and may have singularities outside the ring as well as
in the “hole” of the annulus.

We know that for a given function the Taylor series with a given center z, is unique.
We shall see that, in contrast, a function f(z) can have several Laurent series with the
same center zo and valid in several concentric annuli. The most important of these series
is that which converges for 0 < |z — z¢| < R, that is, everywhere near the center z, except
at 7 itself, where z, is a singular point of f(z). The series (or finite sum) of the negative
powers of this Laurent series is called the principal part of the singularity of f(z) at z,
and is used to classify this singularity (Sec. 16.2). The coefficient of the power 1/(z — z)
of this series is called the residue of f(z) at zy. Residues are used in an elegant and
powerful integration method, called residue integration, for complex contour integrals
(Sec. 16.3) as well as for certain complicated real integrals (Sec. 16.4).

Prerequisite: Chaps. 13, 14, Sec. 15.2.
Sections that may be omitted in a shorter course: 16.2, 16.4.
References and Answers to Problems: App. 1. Part D, App. 2.

16.1 Laurent Series

Laurent series generalize Taylor series. If in an application we want to develop a function
f(z) in powers of z — z, when f(z) is singular at z, (as defined in Sec. 15.4), we cannot
use a Taylor series. Instead we may use a new kind of series, called Laurent series,’
consisting of positive integer powers of z — z, (and a constant) as well as negative integer
powers of 7 — zo; this is the new feature.

Laurent series are also used for classifying singularities (Sec. 16.2) and in a powerful
integration method (“residue integration”, Sec. 16.3).

A Laurent series of f(z) converges in an annulus (in the “hole” of which f(z) may have
singularities), as follows.

'PIERRE ALPHONSE LAURENT (1813-1854), French military engineer and mathematician, published the
theorem in 1843.

701
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THEOREM 1 Laurent’s Theorem

Let f(z) be analytic in a domain containing two concentric circles Cy and Cy With
center z and the annulus between them (blue in Fig. 367). Then f(z) can be
represented by the Laurent series

[e’e] 0 bn
= e =g T Do
e o @29
1) =ay+ayz—z0) taxz =z + -
B by

+ 52
Z— 2 (z = 20)

consisting of nonnegative and negative powers. The coefficients of this Laurent series
are given by the integrals

1 f(@) 1
2 = . L dz*, e = T = n—1 *) dz*,
@  a, 2mi 7 (z* — Zo)n+1 z b i 3€c (z Z0) f(z*) dz

taken counterclockwise around any simple closed path C that lies in the annulus
and encircles the inner circle, as in Fig. 367. [The variable of integration is denoted
by z* since z is used in (1).]

This series converges and represents f(z) in the enlarged open annulus obtained
from the given annulus by continuously increasing the outer circle Cy and decreasing
C,, until each of the two circles reaches a point where f(z) is singular.

In the important special case that Zo is the only singular point of f(z) inside Cs,
this circle can be shrunk to the point zq, giving convergence in a disk except at the
center. In this case the series (or finite sum) of the negative powers of (1) is called
the principal part of the singularity of f(z) at 2.

Fig. 367. Laurent’s theorem

COMMENT. Obviously, instead of (1), (2) we may write (denoting b,, by a_y,)

[oe]

a f@) =2 anz — 2"

n=—o0
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PROOF

where all the coefficients are now given by a single integral formula, namely,

4 = ! f(Z/) * = +1. +
2 an—% dez (n=0,x1, £2,---).

We prove Laurent’s theorem. (a) The nonnegative powers are those of a Taylor series.
To see this, we use Cauchy’s integral formula (3) in Sec. 14.3 with z* (instead of z) as
the variable of integration and z instead of zy. Let g(z) and A(z) denote the functions
represented by the two terms in (3), Sec. 14.3. Then

e 1 @)

&3

! %
3) ﬂ@:“”+“@:5m£h dz*.

H o ! / [ p—
¥ =z 2mi S F -z

Here z is any point in the given annulus and we integrate counterclockwise over both C;
and C,, so that the minus sign appears since in (3) of Sec. 14.3 the integration over Cy is
taken clockwise. We transform each of these two integrals as in Sec. 15.4. The first integral
is precisely as in Sec. 15.4. Hence we get precisely the same result, namely, the Taylor
series of g(z),

1 >
“) g@) = Ey J;(Z_) dz* = D, a,(z — )"
ai Jy 2% =

n=0

with coefficients [see (2), Sec. 15.4, counterclockwise integration]

1 f(z®)
5 = — ¢ ————— dr*.
( ) Ay %c‘ ( )n+1 z

21ri ¥ — 2o

Here we can replace C; by C (see Fig. 367), by the principle of deformation of path, since
2o, the point where the integrand in (5) is not analytic, is not a point of the annulus. This
proves the formula for the a,, in (2).

(b) The negative powers in (1) and the formula for b,, in (2) are obtained if we consider
h(z) (the second integral times —1/(27ri) in (3). Since z lies in the annulus, it lies in the
exterior of the path C,. Hence the situation differs from that for the first integral. The
essential point is that instead of [see (7*) in Sec. 15.4]

P -

Z— 2 z 20

©) () %< 1.

<1 we now have (b)

¥ — 2o Z— 2o
Consequently, we must develop the expression 1/(z* — z) in the integrand of the second
integral in (3) in powers of (z* — zy)/(z — zo) (instead of the reciprocal of this) to get a
convergent series. We find
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Compare this for a moment with (7) in Sec. 15.4, to really understand the difference. Then
go on and apply formula (8), Sec. 15.4, for a finite geometric sum, obtaining

1 1 ¥~z ¥ — 75 \2 7* = Zo \"
= - {1+ 2+ L B
¥ —z 7= 2o 7= 2o 72— 2o 7= 2o
1 (Z*_Z())n-»—l
72— \ z— 2 '

Multiplication by —f(z*)/2i and integration over Cy on both sides now yield

1 *
b f(z¥) o
2mi Je, 72

h(z)

L { 3€ f(z*) dz* + : 5{; (@* = z)f (%) dz* + » -
2mi (2 2 @ — 2 g,

T — _ 7e—1
+(z—z)“3£ (& — 2"z de*

+ § @ ars de } + R

(z—z2
with the last term on the right given by
)n+1

1 *
) RHD) = 5 ff(z 2 f@r) de¥,
C, Z—Z

27i(z — 70"t

As before, we can integrate over C instead of Cy in the integrals on the right. We see that
on the right, the power 1/(z — z¢)" is multiplied by b,, as given in (2). This establishes
Laurent’s theorem, provided

(8) lim Ryi(2) = 0.

(¢) Convergence proof of (8). Very often (1) will have only finitely many negative powers.
Then there is nothing to be proved. Otherwise, we begin by noting that f(z¥)/(z — z¥) in
(7) is bounded in absolute value, say,

fz*)

" <M for all z* on Cy
-z

because f(z*) is analytic in the annulus and on Cs, and z* lies on Cy and z outside, so
that z — z* # 0. From this and the ML-inequality (Sec. 14.1) applied to (7) we get the
inequality (L = length of Cs, [2* — 2| = radius of Cy = cons)

ML n+1
277

¥ — 2o

IR(2)] = — zo""t ML =

2’7T|Z - Zo|n+1 |Z

Z— 2o
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EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

From (6b) we see that the expression on the right approaches zero as n approaches infinity.
This proves (8). The representation (1) with coefficients (2) is now established in the given
annulus.

(d) Convergence of (1) in the enlarged annulus. The first series in (1) is a Taylor
series [representing g(z)]; hence it converges in the disk D with center zo whose radius
equals the distance of the singularity (or singularities) closest to zy. Also, g(z) must be
singular at all points outside C; where f(z) is singular.

The second series in (1), representing A(z), is a power series in Z = 1/(z — zo). Let the
given annulus be ry < |z — 70| < ry, where ry and r,, are the radii of C; and Cs, respectively
(Fig. 367). This corresponds to 1/r, > |Z| > 1/r;. Hence this power series in Z must
converge at least in the disk |Z| < 1/r,. This corresponds to the exterior |z — zo| > ry of
C,, so that h(z) is analytic for all z outside C,. Also, h(z) must be singular inside C, where
f(z) is singular, and the series of the negative powers of (1) converges for all z in the exterior
E of the circle with center z, and radius equal to the maximum distance from zq to the
singularities of f(z) inside C,. The domain common to D and E is the enlarged open annulus
characterized near the end of Laurent’s theorem, whose proof is now complete. [z

Uniqueness. The Laurent series of a given analytic function f(z) in its annulus of
convergence is unique (see Team Project 24). However, f(z) may have different Laurent series
in two annuli with the same center; see the examples below. The uniqueness is essential. As
for a Taylor series, to obtain the coefficients of Laurent series, we do not generally use the
integral formulas (2); instead, we use various other methods, some of which we shall illustrate
in our examples. If a Laurent series has been found by any such process, the uniqueness
guarantees that it must be the Laurent series of the given function in the given annulus.

Use of Maclaurin Series

Find the Laurent series of z~° sin z with center 0.

Solution. By (14), Sec. 15.4, we obtain

oC
Dt 24 L I ! I »
= t - Tt z| > 0).
% (2n + 1)! A7 62 120 5040 (>0
Here the “annulus” of convergence is the whole complex plane without the origin and the principal part of
the series at 0 is z~% — 1772 e

Substitution

Zellz

Find the Laurent series of z with center 0.

Solution. From (12) in Sec. 15.4 with z replaced by 1/z we obtain a Laurent series whose principal part is
an infinite series,

1 1 1 1 I
2 1/z 2 2
=gz 1+ + + e = + + — 4+ — 4+ —— 4 - >0.
ze = ( 11z 2'72 ) Z Z B | p (|Z| ).

Development of 1/(1 — z2)

Develop 1/(1 — z) (a) in nonnegative powers of z, (b) in negative powers of z.

Solution.
l o0
(a) g > " (valid if |z| < 1).
% n=0
1 -1 @ 1 1 1 o
®) =z " -5 - il S (valid if |z| > 1). M
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EXAMPLE 4 Laurent Expansions in Different Concentric Annuli
Find all Laurent series of 1/(z3 = 14) with center 0.

Solution. Multiplying by 1/7%, we get from Example 3

1 < n-3 1 1 1
@ =X =gt gtttz 0 <l <),
27—z n=0 Z Z 2
1 e 1 1 1
(I == = =—= -3 " (z>1n. W
23*24 nE::o Zn+4 Z4 Z5 H

EXAMPLE 5 Use of Partial Fractions
-2z +3

Find all Taylor and Laurent series of f(z) = 35—~
y f@) 2 310

with center 0.

Solution. In terms of partial fractions,

o 1 _ 1
f@ = z—1 z—2°

(a) and (b) in Example 3 take care of the first fraction. For the second fraction,

U W - T S
() i 1 ~n§0 e (7 < 2.
ZI‘EZ
1 1 © 2"
(d) - - =2 T (2l > 2.
72 Z(l-z) n:02+1

(1) From (a) and (c), valid for || < 1 (see Fig. 368),
* 1 3 5 9
= +— "=+ =+ = 2 ...
@) 2(1 2n+1)z St gt gl
n=0
(I1) From (c) and (b), valid for 1< lzl <2,

o oo 1

1 1 1 1 1
=3 — " - =t —z+ -2 T 5~
f(@ ngo 2n+1 z ngo Zn+1 2 4 z 8 z z Z2
(I1) From (d) and (b), valid for |z| > 2,
x 1 2 3 5 9
f=-2 @+ ="_ "2 3 A u
i z 2 z z z

Fig. 368. Regions of convergence in Example 5

If f(z) in Laurent’s theorem is analytic inside C, the coefficients b,, in (2) are zero by
Cauchy’s integral theorem, so that the Laurent series reduces to a Taylor series. Examples
3(a) and 5(I) illustrate this.




71

SEC.16.2 Singularities and Zeros. Infinity

707

LAURENT SERIES NEAR A SINGULARITY
AT O

Expand the given function in a Laurent series that
converges for 0 < |z| < R and determine the precise region
of convergence. (Show the details of your work.)

1 ! 2 :
. 7COS —
-2 z
3 e’ 4 cosh 2z
2 72
4
o 2 (A
5 361/2 6 5 3
=z

LAURENT SERIES NEAR A SINGULARITY
AT z,
Expand the given function in a Laurent series that

converges for 0 < |z — zo| < R and determine the precise
region of convergence. (Show details.)

4 sin z

7'2—1’ Z20=1 .(Z——T7;)§’ 70 = 3
1

1 . COs Z
9. R 0= I 0.(2_—77_)4, 0= T
11 ! = —i
e e

3 2

zZ -4
12. T 720 = —i 13. P z20=1

1
14. 7% sinh ~ = 0

15-23| TAYLOR AND LAURENT SERIES

Find all Taylor and Laurent series with center z = z, and
determine the precise regions of convergence.
1 1

15. 3 720=0 16.1_—Z2, =1
z2 1

17. = 20=0 18.?, o =1
72— 2iz? ) sinh z

IQ‘W’ Zg = I W, 20=1

a 2220 2 = =i
Z=—1" 2

23.%, 2= —im

24. TEAM PROJECT. Laurent Series. (a) Uniqueness.
Prove that the Laurent expansion of a given analytic
function in a given annulus is unique.

(b) Accumulation of singularities. Does tan (1/z)
have a Laurent series that converges in a region
0 < |z| < R? (Give a reason.)

(c) Integrals. Expand the following functions in a
Laurent series that converges for |z| > 0:

1 fzet—ld 1 fzsintd
— L = t.
ot gt

25. CAS PROJECT. Partial Fractions. Write a program
for obtaining Laurent series by the use of partial
fractions. Using the program, verify the calculations in
Example 5 of the text. Apply the program to two other
functions of your choice.

16.2 singularities and Zeros. Infinity

Roughly, a singular point of an analytic function f(z) is a z, at which f(z) ceases to be
analytic, and a zero is a z at which f(z) = 0. Precise definitions follow below. In this
section we show that Laurent series can be used for classifying singularities and Taylor

series for discussing zeros.

Singularities were defined in Sec. 15.4, as we shall now recall and extend. We also
remember that, by definition, a function is a single-valued relation, as was emphasized

in Sec. 13.3.

We say that a function f(z) is singular or has a singularity at a point z = z, if f(z) is
not analytic (perhaps not even defined) at z = z,, but every neighborhood of z = z,
contains points at which f(z) is analytic. We also say that z = 7, is a singular point of f(z).

We call z = z, an isolated singularity of f(z) if z = z, has a neighborhood without
further singularities of f(z). Example: tan z has isolated singularities at *7/2, =37/2, etc.;
tan (1/z) has a nonisolated singularity at 0. (Explain!)
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EXAMPLE 1

EXAMPLE 2

CHAP. 16 Laurent Series. Residue Integration

Isolated singularities of f(z) at z = z, can be classified by the Laurent series

oo

(1) f@) = anz — 29" + E (Sec. 16.1)

_ o wm
n=0 n=1 Z ZO)

valid in the immediate neighborhood of the singular point z = z,, except at zq itself, that
is, in a region of the form

0<|z— 2z <R

The sum of the first series is analytic at z = z,, as we know from the last section. The
second series, containing the negative powers, is called the principal part of (1), as we
remember from the last section. If it has only finitely many terms, it is of the form

bl bm
() — (b, # 0).
Z— 2o (z — 29)

Then the singularity of f(z) at z = z, is called a pole, and m is called its order. Poles of
the first order are also known as simple poles.

If the principal part of (1) has infinitely many terms, we say that f(z) has at z = zo an
isolated essential singularity.

We leave aside nonisolated singularities.

Poles. Essential Singularities
The function
1 3
+
22-2°  -2?

has a simple pole at z = 0 and a pole of fifth order at z = 2. Examples of functions having an isolated essential
singularity at z = 0 are

s 1 1 1

1/z
e =1+ 4= 4
E“O nlz™ 212
and
= —n" 1 1 1
smf Z == e et h e e g e

Qn+ D2 2 31 510

Section 16.1 provides further examples. For instance, Example 1 shows that 779 sin z has a fourth-order pole
at 0. Example 4 shows that 1/(z% — z* has a third-order pole at 0 and a Laurent series with infinitely many
negative powers. This is no contradiction, since this series is valid for |z] > 1; it merely tells us that in classifying
singularities it is quite important to consider the Laurent series valid in the immediate neighborhood of a singular
point. In Example 4 this is the series (I), which has three negative powers. Jied

The classification of singularities into poles and essential singularities is not merely a
formal matter, because the behavior of an analytic function in a neighborhood of an
essential singularity is entirely different from that in the neighborhood of a pole.

Behavior Near a Pole

fl) = 2 has a pole at z = 0, and |f(z)] — o as z — 0 in any manner. This illustrates the following
theorem. N
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THEOREM 1

EXAMPLE 3

THEOREM 2

EXAMPLE-4

Poles

If f(2) is analytic and has a pole at 7 = z,, then lf2)) = < asz— 2o In any manner.

The proof is left to the student (see Prob. 12).

Behavior Near an Essential Singularity

The function f(z) = ¢ has an essential singularity at z = 0. It has no limit for approach along the imaginary
axis; it becomes infinite if z— 0 through positive real values, but it approaches zero if 7 — 0 through negative
real values. It takes on any given value ¢ = coe'™ # 0in an arbitrarily small e-neighborhood of z = 0. To see
the letter, we set z = re', and then obtain the following complex equation for r and 6, which we must solve:

ellz _ e(cos 60— isin O)/r _ Coem.

Equating the absolute values and the arguments, we have ¢‘“® ®/" = ¢ that is
cos 6 = rlncg, and —sin 6 = ar
respectively. From these two equations and cos® 6 + sinZ § = r2(In co)z + &®% = 1 we obtain the formulas

1 @
and tan 0 = —

2 _
(In c0)2 + a2 In ¢q '

Hence r can be made arbitrarily small by adding multiples of 27 to e, leaving ¢ unaltered. This illustrates the
very famous Picard’s theorem (with z = 0 as the exceptional value). For the rather complicated proof, see Ref.
[D4], vol. 2, p. 258. For Picard, see Sec. 1.7. [

Picard’s Theorem

If f(2) is analytic and has an isolated essential singularity at a point z, it takes on
every value, with at most one exceptional value, in an arbitrarily small e-neighborhood

of 2.

Removable Singularities. We say that a function f(z) has a removable singularity at
z = zo if f(z) is not analytic at 7 = z,, but can be made analytic there by assigning a
suitable value f(zy). Such singularities are of no interest since they can be removed as
just indicated. Example: f(z) = (sin z)/z becomes analytic at z = 0 if we define f(0) = 1.

Zeros of Analytic Functions

A zero of an analytic function f(z) in a domain D is a z = %o in D such that f(zy) = 0.
A zero has order n if not only f but also the derivatives f', f”, - - -, f"=D are all 0 at
2 = zo but f™(z0) # 0. A first-order zero is also called a simple zero. For a second-order
zero, f(z9) = f'(z9) = 0 but £"(z5) # 0. And so on.

Zeros

The function 1 + z2 has simple zeros at *i. The function (I — 14)2 has second-order zeros at =1 and *i. The
function (z — a)3 has a third-order zero at z = a. The function ¢® has no zeros (see Sec. 13.5). The function
sin z has simple zeros at 0, =, *+2q, - -+, and sin? z has second-order zeros at these points. The function
1 — cos z has second-order zeros at 0, +27, *4q, - - -, and the function (1 — cos z)z has fourth-order zeros
at these points. o
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Taylor Series at a Zero. At an nth-order zero z = zo of f(z), the derivatives f "zt 7" s

F®1(z,) are zero, by definition. Hence the first few coefficients dag, = * * » dp—1 Of the
Taylor series (1), Sec. 15.4, are zero, too, whereas a,, # 0, so that this series takes the
form

f(Z) = aW(Z - ZO)n + an+1(Z - Zo)n+1 + we s

3
=(z— z0)" la, + ap41(z — Z0) + Apeo(Z — 20)2 + ] (a, # 0).

This is characteristic of such a zero, because if f(z) has such a Taylor series, it has an
nth-order zero at z = zo, as follows by differentiation.
Whereas nonisolated singularities may occur, for zeros we have

THEOREM 3 Zeros

The zeros of an analytic function f(z) (% 0) are isolated; that is, each of them has
a neighborhood that contains no further zeros of f(2).

PROOE The factor (z — zo)" in (3) is zero only at z = Zo. The power series in the brackets
[+ - -] represents an analytic function (by Theorem 5 in Sec. 15.3), call it g(z). Now
g(z9) = ay, # 0, since an analytic function is continuous, and because of this continuity,
also g(z) # 0 in some neighborhood of z = zo. Hence the same holds of f(2). il

This theorem is illustrated by the functions in Example 4.

Poles are often caused by zeros in the denominator. (Example: tan z has poles where
cos z is zero.) This is a major reason for the importance of zeros. The key to the connection
is the following theorem, whose proof follows from (3) (see Team Project 24).

THEOREM 4 Poles and Zeros

Let f(z) be analytic at z = 2 and have a zero of nth order at 7 = Zo. Then 1/f(z)
has a pole of nth order at z = Zp; and so does h(z)/f(z), provided h(z) is analytic
at 7 = 7o and h(zy) # 0.

Riemann Sphere. Point at Infinity

When we want to study complex functions for large |z, the complex plane will generally
become rather inconvenient. Then it may be better to use a representation of complex
numbers on the so-called Riemann sphere. This is a sphere S of diameter 1 touching the
complex z-plane at z = 0 (Fig. 369), and we let the image of a point P (a number z in the
plane) be the intersection P* of the segment PN with S, where N is the “North Pole”
diametrically opposite to the origin in the plane. Then to each z there corresponds a point
on S.

Conversely, each point on § represents a complex number z, except for N, which does
not correspond to any point in the complex plane. This suggests that we introduce an
additional point, called the point at infinity and denoted % (“infinity”) and let its image
be N. The complex plane together with % is called the extended complex plane. The
complex plane is often called the finite complex plane, for distinction, or simply the

e R SRR W
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EXAMPLE 5

Fig. 369. Riemann sphere

complex plane as before. The sphere S is called the Riemann sphere. The mapping of
the extended complex plane onto the sphere is known as a stereographic projection.
(What is the image of the Northern Hemisphere? Of the Western Hemisphere? Of a straight
line through the origin?)

Analytic or Singular at Infinity

If we want to investigate a function f(z) for large |z|, we may now set z = 1/w and investigate
f(2) = f(1/w) = g(w) in a neighborhood of w = 0. We define f(z) to be analytic or singular
at infinity if g(w) is analytic or singular, respectively, at w = 0. We also define

4) g(0) = 7}]12) gw)

if this limit exists.
Furthermore, we say that f(z) has an nth-order zero at infinity if f(1/w) has such a zero
at w = 0. Similarly for poles and essential singularities.

Functions Analytic or Singular at Infinity. Entire and Meromorphic Functions

The function f(z) = 1122 s analytic at oc since g(w) = f(1/w) = w?is analytic at w = 0, and f(z) has a second-
order zero at o. The function f(z) = z° is singular at o and has a third-order pole there since the function
gw) = f(liw) = 1/w? has such a pole at w = 0. The function ¢ has an essential singularity at o since MW
has such a singularity at w = 0. Similarly, cos z and sin z have an essential singularity at oc.

Recall that an entire function is one that is analytic everywhere in the (finite) complex plane. Liouville’s
theorem (Sec. 14.4) tells us that the only bounded entire functions are the constants, hence any nonconstant
entire function must be unbounded. Hence it has a singularity at o, a pole if it is a polynomial or an essential
singularity if it is not. The functions just considered are typical in this respect.

An analytic function whose only singularities in the finite plane are poles is called a meromorphic function.
Examples are rational functions with nonconstant denominator, tan z, cot z, sec z, and csc z.

In this section we used Laurent series for investigating singularities. In the next section
we shall use these series for an elegant integration method.

1-10| SINGULARITIES ) 2 3
1. tan® 7z 2.2+ — — =

Determine the location and kind of the singularities of the 2 2

following functions in the finite plane and at infinity. In the 3. cot z2 4. ZPeE 1

case of poles also state the order. 5. cosz — sinz 6. 1/(cosz — sinz)
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sin 3z 21. (1 — cos 2)? 22, ¢ — **
TEt- 1t . .
23. (Zeros) If f(z) is analytic and has a zero of order n at
4 2 8 Z = zo, show that £2(z) has a zero of order 2n.

11.

12.

[13-22

. cosh [1/(z2 + )]

+ -
z—1 E-1* f&=1°
10. el/(z—l)/(ez _ 1)

2., 5 &
/2" in a similar way

(Essential singularity) Discuss el
as e/ is discussed in Example 3.

(Poles) Verify Theorem 1 for f(z) = z7® — z~*. Prove
Theorem 1.

ZEROS

Determine the location and order of the zeros.

13.
15.
17.
19.

(z + 160)* 14. (* — 16)*
773 sin® 77 16. cosh?z
(322 + 1)e~® 18. (22 — 1% — 1)

(22 + 4)(e* — 1) 20. (sinz — 1)®

24.

25.

TEAM PROJECT. Zeros. (a) Derivative. Show that
if f(z) has a zero of order n > 1 at z = z,, then f'(2)
has a zero of order n — 1 at z,.

(b) Poles and zeros. Prove Theorem 4.

(c) Isolated k-points. Show that the points at which
a nonconstant analytic function f(z) has a given value
k are isolated.

(d) Identical functions. If f,(z) are analytic in a
domain D and equal at a sequence of points z,, in D
that converges in D, show that f1(z) = f5(z) in D.
(Riemann sphere) Assuming that we let the image of
the x-axis be meridians 0° and 180°, describe and
sketch (or graph) the images of the following regions
on the Riemann sphere: (a) |z] > 100, (b) the lower
half-plane, (¢) 1 = |z] = 2.

16.3 Residue Integration Method

The purpose of Cauchy’s residue integration method is the evaluation of integrals

§ F@) dz

taken around a simple close path C. The idea is as follows.

If f(z) is analytic everywhere on C and inside C, such an integral is zero by Cauchy’s
integral theorem (Sec. 14.2), and we are done.

If f(z) has a singularity at a point z = z, inside C, but is otherwise analytic on C and

inside C, then f(z) has a Laurent series

[ee]

f@) =2 anlz — 2" + .

n=0

by by

+ 2
— 20 (Z - Z())

that converges for all points near z = zq (except at z = z, itself), in some domain of the
form 0 < |z — zo| < R (sometimes called a deleted neighborhood, an old-fashioned term
that we shall not use). Now comes the key idea. The coefficient b; of the first negative
power 1/(z — zo) of this Laurent series is given by the integral formula (2) in Sec. 16.1

with n = 1, namely,

1
by = gy jgcf(z) dz.

Now, since we can obtain Laurent series by various methods, without using the integral
formulas for the coefficients (see the examples in Sec. 16.1), we can find b; by one of
those methods and then use the formula for b, for evaluating the integral, that is,

@

$ f(z) dz = 2miby.
(@
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EXAMPLE 1

EXAMPLE 2

Here we integrate conunterclockwise around a simple closed path C that contains z = zo
in its interior (but no other singular points of f(z) on or inside C!).
The coefficient b is called the residue of f(z) at z = z, and we denote it by

2 by = 55;5 f(@).

Evaluation of an Integral by Means of a Residue

-4

Integrate the function f(z) = z~~ sin z counterclockwise around the unit circle C.

Solution. From (14) in Sec. 15.4 we obtain the Laurent series

sin z 1 4
f@=—F =3 -3 5 Tt
< < " N

which converges for |z| > 0 (that is, for all z # 0). This series shows that f(z) has a pole of third order at z = 0

and the residue b; = —1/3!. From (1) we thus obtain the answer
sin z kil
jg 7 dz=2miby = — —/ . |
c £ 3

CAUTION! Use the Right Laurent Series!
Integrate f(z) = 1/(z% — z*) clockwise around the circle C: |z] = 1/2.

Solution. > — * = z?’(l — 7) shows that f(z) is singular at z = 0 and z = 1. Now z = 1 lies outside C.
Hence it is of no interest here. So we need the residue of f(z) at 0. We find it from the Laurent series that
converges for 0 < |z| < 1. This is series (I) in Example 4, Sec. 16.1,

1 1 1
=5+ +
23*Z4 Z3 Zz

1
—Hl4z+-- O <[ <.
g

We see from it that this residue is 1. Clockwise integration thus yields

dz
§ 34— —2mi Res f(z) = —2mi.
c Z z 2=0

CAUTION! Had we used the wrong series (II) in Example 4, Sec. 16.1,

1 1

1
3 4 4 - (I > 1),

Z

Nm| "

we would have obtained the wrong answer, 0, because this series has no power 1/z. |

Formulas for Residues

To calculate a residue at a pole, we need not produce a whole Laurent series, but, more
economically, we can derive formulas for residues once and for all.

Simple Poles. Two formulas for the residue of f(z) at a simple pole at z, are

3 Res f(z) = by = Zh_)n; (z — 20)f(2)

2=2g

and, assuming that f(z) = p(z)/q(2), p(z¢) # 0, and g(z) has a simple zero at z, (so that
f(z) has at z, a simple pole, by Theorem 4 in Sec. 16.2),

@) Res f(z) = Res 2o — P’(Zo) .
2 2=2¢ Q(Z) q (zo)
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PROOF

EXAMPLE 3

PROOF
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For a simple pole at 7 = z, the Laurent series (1), Sec. 16.1, is

by
Z— 2o

fz) = +ao+al(Z#Zo)+a2(Z‘Zo)2+"' (O<‘Z_ZO|<R)'

Here b; # 0. (Why?) Multiplying both sides by z — z, and then letting z — z, We obtain
the formula (3):

lim (z = 2)f(2) = by + lim (z = 29)lap + as(z = 20) + -1 = b
where the last equality follows from continuity (Theorem 1, Sec. 15.3).
We prove (4). The Taylor series of g(z) at a simple zero zo is

(z — Zo)z

21 (1"(10) +oee

q(2) = (z — 200¢' (zo) +

Substituting this into f = p/q and then f into (3) gives

Res f(2) = lim ( — z) 22 = lim (z — 20p()

4@ = (@ = 2)lg' (o) + (@~ 2 G2+ ]

7 — z, cancels. By continuity, the limit of the denominator is q'(zo) and (4) follows. M

Residue at a Simple Pole

flz) =0z + i)/(:3 + z) has a simple pole at i because 24+ 1= (z+i)z— i) and (3) gives the residue
o 2T _ o =i 9z + i _l:9z+i _ i
Res 7@+ 1) e 00 LG+l -2 .

By (4) with p(i) = 9 + i and c]/(:) = 3;2 + 1 we confirm the result,

9z + i 9z + i 10i
iy i o | ot s E
z=i z(z= + 1) 3224+ 1 =i -2

Poles of Any Order. The residue of f(z) at an mth-order pole at zo is

1 : dm—l
(5) Res f(z) = lim { |:(Z = zo)mf(z)}} :

2=z (m — 1) e>z | d7™ !

In particular, for a second-order pole (m = 2),

(5%) Res () = lim {[z — 20?f@]'} .

z=2g
The Laurent series of f(z) converging near z, (except at z itself) is (Sec. 16.2)

= L g
: z— 2™ (2= 2" 7= %

+agt az —zo) t

where b, # 0. The residue wanted is by. Multiplying both sides by (z — 7o) gives

(2 = 20)™f(2) = by + b1z — 20) + * =+ + bi(z — 2"+ aplz — 2™ + -
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EXAMPLE 4

THEOREM 1

We see that b, is now the coefficient of the power (z — zo)™ ™" of the power series of
g(2) = (z — 79)"f(2). Hence Taylor’s theorem (Sec. 15.4) gives (5):

bl = —(m — 1)' g(m—l) (ZO)
1 dm—l
B (m— 1! d" ! [z = 20)"f@): -
Residue at a Pole of Higher Order
flo) = 501/(13 + 2:2 — 7z + 4) has a pole of second order at z = 1 because the denominator equals

(z + 4z — 1)2 (verify!). From (5*) we obtain the residue

d
Res f(z) = lim — [(z = D?f(2)]
2=1 21 dz

3 d 50z
_zin1 dz \z+4

Several Singularities Inside the Contour.
Residue Theorem

Residue integration can be extended from the case of a single singularity to the case of
several singularities within the contour C. This is the purpose of the residue theorem. The
extension is surprisingly simple.

Residue Theorem

Let f(z) be analytic inside a simple closed path C and on C, except for finitely many
singular points zq, 29, * * * , 23, inside C. Then the integral of f(z) taken counterclockwise

around C equals 2i times the sum of the residues of f(2) at zy, = * *, Z:
k
©) $ £ de = 2mi 3, Res f(a).
C j=1 2=%;
C

Fig. 370. Residue theorem



