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Comptex Numbers
and Functions

Complex numbers and their geometric representation in the complex Plane are discussed

in Secs. 13.1 and 13.2. Complex analysis is concerned with complex analYtic functions

as defined in Sec. 13.3. Checking for analyticity is done by the Cauchy-Riemann

equations (Sec. I3.4). These equations are of basic importance, also because of their

relation to Laplace's equation.
The remaining sections of the chapter are devoted to elementarY comPlex functions

(exponential, trigonometric, hyperbolic, and logarithmic functions). These generalize the

familiar real functions of calculus. Their detailed knowledge is an absolute necessitY in

practical work, just as that of their real counterparts is in calculus.

P rere quisite : E|ementary calculus.
References and Answers to Problems: App. 1 Part D, App, 2,

]3.] Complex Numbers. Complex Plane
Equations without real soIutions, such as x2 - - 1 oí x2 - 10x + 40: 0, Were observed

"uily 
in history and led to the introduction of complex numbers.1 By definition, a comPlex

number z is an ordered patr (x, }) of real numbers x and y, written

z : (x, y).

x is called the real part and y the imaginary part of z, written

x:ReZ, y:Imz.

By definition, two complex numbers are equal if and only if their real parts are equal

and their imaginary parts are equal.
(0, 1) is called the imaginary unit and is denoted by l,

l : (0, 1).

lFirst to use complex numbers for this purpose was the Italian mathematician GIROLAMO CARDANO
(1501_1576), who found the formula for solving cubic equations. The term "complex number" was introduced

by CARL FRIEDRICH GAUSS (see the ťootnote in Sec. 5.4), who also paved the way for a general use of

complex numbers.

(1)
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Addition, Multiptication. Notation z = x * iy
Addition of two complex numbers zt : (xl, y1) and zz: (xz, }z) is defined by

(2) zt l zz : (xr yr) + (xz, yz) : (xt t *r, yl * y).

Multiplication is defined by

(3) zlzz : (xt, yt)(xz, !z) : (x z - !t!z, xl,!z l xz!t).

In particular, these two definitions imply that

and 
(xr, 0) * (xz,O) : (xl * x2, 0)

(x1, 0)(x2, 0) : (xlx2, 0)

as for real numb fs .í1, x2. Hence the complex numbers "extend" the real numbers. We
can thus write

(x, 0) : x. Similarly, (0, y) : i)

because by (1) and the definition of multiplication we have

iy: (0, l)y: (0, 1Xy,0): (0.y - 1,0, 0,0 + 1,y): (0,y).

Together we have by addition (x, y) : (x,0) + (0, y) : x -l iy:
In practice, complex numbers z : (x, y) are written

(4)

or z : x l yi, e.g., í7 -l 4i
Electrical engineers often
If x : 0, then z: iy and

(5)

z: x l iy

(instead of i4).
write j instead if i because they need i for the current.
is called pure imaginary. Also, (l) and (3) give

i2 -- -I

becausebythedefinitionof multiplication, i2: ii: (0, 1X0, 1): (-1,0;: -1.
For addition the standard notation (4) gives lsee (2)]

(xt-| iy) + (xz * iy) : (xr i x) + i(yt + y).

For multiplication the standard notation gives the following very simple recipe. Multiply
each term by each other term and use 12 : - 1 when it occurs [see (3)]:

(xr i iy)(xz + iyr) : xlx2 * ixg2 * iyp2 -l i'y,,y,
: (xtxz - h,!) -l i(x12 -l xzy).

This agrees with (3). And it shows that x i ly is a more practical notation for complex
numbers than (x, y).



604 CHAP. 13 Complex Numbers and Functions

If you know vectors, you see that (2) is vector addition, whereas the multiplication (3)

has no countelpart in the usual vector algebra.

Real Part, lmaginary Part, Sum and Product of Complex Numbers

Letz1 : 8 + 3l and zz:9 - 2i,Then Rez1 : 8, Imz1 : 3, Re zz:9,Imzz: -2and

ztl zz: (8 + 3') + (9 - 2i) : I1 + i,

ztzz: (8 + 3i)(9 - 2i) : 12 + 6+'(-16 + 21) : 78 + 1li.

Subtraction, Division
Subtraction and division are defined as the inverse operations of addition and

multiplication, respectively. Thus the difference z : zl z2 is the complex number z for

which zt : z a z2.Hence by (2),

Zl, - Zz : (xl - xz) + i(yr - !).

The quotient z : ztlzzkz * 0) is the complex number e for whicll zt: zz2.If we equate

the real and the imaginary parts on both sides of this equation, setting z : x * ly, we

obtain x1 : x2x - jz!,lt: jzx -l xzJ. The solution is

Zl xp2 l yry, xzlt - xtlz
(7*) z:-:x]*iY, x:;7*r , !: ,rz*;.

The practical rule used to get this is by multiplying numerator and denominator of zllz2
by xz - iyz and simplifiying:

x1 -l iy1 (xr * iy)(xz - iyz) xg2 -l y1y, , . x2!L - xtjz(/) z: *u 1r: G2+ b,2W2- iy) 
: 

x22 + É - ' *r'* r;

EXAM PLE 2 Difference and Quotient of Complex Numbers

For71 : 8 + 3i and z.z: 9 - 2iweget\ - zz: (8+ 3i) - (9 - 2D : -1 + 5i and

;: ?+: $ffi]}: i#: # * #,
Check the division by multiplication to get 8 + 3l. l

Complex numbers satisfy the same commutative, associative, and distributive laws as real

numbers (see the problem set).

Complex Plane
This was algebra. Now comes geometry: the geometrical representation of complex

numbers as points in the plane. This is of great practical importance. The idea is quite

simple and natural. We choose two perpendicular coordinate axes, the horizontal x-axis,

called the real axis, and the vertical y-axis, called the imaginary axis. On both axes we

choose the same unit of length (Fig. 315). This is called a Cartesian coordinate system.

ExAMPLE l

(6)



SEC. l3.1 Complex Numbers. Complex Plane

( lmaginary
axis)
y

z=xtL!

Ix
Fig. 315. The complex plane

(Real
axis)

the complex plane

We now plot a given complex number z : (x, y) : x -l i as the point P with coordinates
x, y. The.ry-plane in which the complex numbers are represented in this way is called the
complex plane.2 Figure 316 shows an example.

Instead of saying "the point representedby z in the complex plane" we say briefly and
simply "the point z in the complex plane." This will cause no misunderstandings.

Addition and subtraction can now be visualized as illustrated in Figs. 317 and 318.

ó--
o2

Fig. 318.

'l '2

Fig. 3l7. Addition of complex numbers Subtraction of complex numbers

Complex Conjugate Numbers
The complex conjugate Z of a complex number z : x -| iy is defined by

Z:x-iy.

It is obtained geometrically by reflecting the point z in the real axis. Figure 319 shows
this for z : 5 -l 2i andits conjugate z : 5 - 2i.

y

2 z=x,+iy=5+2i

x

ž=x-iy=5-2i

Fig. 3l9. Complex conjugate numbers

2Sometimes called the Argand diagram, after the French mathematician JEAN ROBERT ARGAND
(1768-1822), born in Geneva and later librarian in Paris. His paper on the complex plane appeared in 1806,
nine years after a similar memoir by the Norwegian mathematician CASPAR WESSEL (1745_1818), a Surveyor
of the Danish Academv of Science.

6o5

Fig. 316. The number 4 - 3i in

2
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The complex conjugate is important because it permits us to switch from complex
to real. Indeed, by multiplication, zZ : x2 + y2 (verify!). By addition and subtraction,

z -| 7, : 2x, z - ž : 2iy.We thus obtain for the real part x and the imaginary part y
(not ly!) of z : x -f iy the important formulas

(8)
1Rez:r:r(z-|z,), Imz: !

1:2ik-ž).

(9)

If z is real, z: í, then Z : z by the definition of ž, and conversely.
Working with conjugates is easy, since we have

kJd:ZtlZz-
.'--.
(zg2) : ZlZ2.

|rr-r):Zt-Zz,

lllustration of (8) and (9)

Let z1 : 4 + 3i and z2: 2 i 5i. Then by (8),

Imz1: [(4 + 3,) - (4 - 3l)] :

Also, the multiplication formula in (9) is verified by

krá - G + 3l)Q + 5l): (-7 + 26l): -1 - 26i,

Žl,zz: G - 3DQ - 5i): -1 - 26i.

(;) :t

3i+3i 1

- 

- 
_l-

2i
l

a

ExAMPLE 3

l

1. (Powersof i) Show thatiz - -1, i" : -i, i4 : !,
i5 : i,, , , and lli -- -i, Ili2 : -I,Ili3 - i,,

2. (Rotation) Multiplication by i is geometrically a

counterclockwise rotation through rrl2 (9O"), Verify
this by graphing z and iz and the angle of rotation for
Z:2 + 2i, z: -I _ 5i, z: 4 - 3i.

3. (Division) Verify the calculation in (7).

4. (Muttiplication) If the product of two complex numbers

is zero, show that at least one factor must be zero.

5. Show that z : x * iy is pure imaginary if and only
-+ - _lL 1. - /,.

6. (Laws for conjugates) Verify (9) for z1 : 24 + 10i,

z2: 4 * 6i.

E coMpLEx ARITHMETIc

Let z1 : 2 + 3i and zz : 4 - 5i. Showing the details
of your work, find (in the form x -l iy):

13. (4zt - zz)2 1,4. žllzy zllZ1
15. (zr * z)l(zt - zz)

F6JE Let z : x -l- iy. Find:

16. Im.3, 1Im z)3

17. Re (1/Z)

18. Im [(t + i)'z'l
19. Re (Ilz2)

20. (Laws of addition and multiplication) Derive the

following laws for complex numbers from the

corresponding laws for real numbers.

Zt * Zz : Zz * Z1. ZlZ2 : ZzZt (Commutative laws\

(ar + z) * Z3 : Zl -| Gzt Zs),
(Associative laws)

klzz)zs : zt(zzzs)

zl(zz * zs) : zlz2 l 7r7, (Distributive law)

0*z:ZlO:Z,
z * (-z): (-z) * z:0, z., | : z.

7. (5zt + 3z)2
9. Re (1lzl2)

1I. z2/z1

8.Z 2

10. Re (zz2), (Re z)2
12. ZJZ2, kJr)



13.2 Polar Form of Complex Numbers.
powers and Roots

The complex plane becomes even more useful and gives further insight into the arithmetic
operations for complex numbers if besides the xy-coordinates we also employ the usual
polar coordinates r, 0 defined by

X: r cos 0, y: r sin 0.

l] takes the so-called polar form
}

z: r(cos 0 + i sin á).

value or modulus of z and is denoted bv lzl. Hence

Rea l

r axis

(3) lr|:r:\/ +Ý:\/á.

Geometrically, |z| is the distance of the point e from the origin (Fig. 320). Similarly,
|r, - z2| is the distance between z1 and z2 (Fig. 321).

0 is called the argument of z and is denoted by arg z. Thus (Fig. 320)

0:argz:atctaí (z + 0).

GeometricaIIy, 0 is the directed angle from the positive x-axis to OP in Fig. 320. Here, as
in calculus , all angles are measured in radinns and positive in the counterclockwise sense.

For e : 0 this angle á is undefined. (Why?) For a given z * 0 it is determined only
up to integer multiples of 2rr since cosine and sine are periodic with period 2rr. But one
often wants to specify a unique value of arg z of a given z * 0. For this reason one defines
the principal value Argz (with capital A!) of argzby the double inequality

(5) -rrlArgzšn.

Then we have Arg z : 0 for positive real z: x, which is practical, and Arg z: tr (not
- Ťrl) for negative real z, a.E., for z : -4. The principal value (5) will be important in
connection with roots, the complex logarithm (Sec. 73.7), and certain integrals. Obviously,
for a given z t 0 the other values of arg z are arg z : Arg z + 2n,r (n : -+l, *2,. . .).

lmaginary
axis

SEC. l3.2 Polar Form of Complex Numbers. Powers and Roots

(1)

We see that then Z : x -|

(2)

r is called the absolute

607

y

x
(4)

y

o
Fig. 32O. Complex plane, polar form

of a complex number

x

Fig. 32l. Distance between two
points in the complex plane
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ExAMPLE l

CHAP. 13 Complex Numbers and Functions

Polar Form of Complex Numbers. Principal Value Arg z

z:7 + l(Fig. 322)hasthepolarformz : \/r(cos}rr-l jsin}rr). Henceweobtain

|rl: ž, argz: lr + 2nrr (,l : 0, l, . . .), and Argz: lrr (the principal value).

Similarly, z:3 * 3XEi:6(cos}r -l i sinár), 1.1 
:6, andArgz: }tr, l

CAUTI6N! In using (4), we must pay attention to the quadrant in which z lies, since

tan 0 has period ?T, so that the arguments of z and -z have the same tangent. ExamPle:

for 91 : aíg(l + r) afid02: arg(-1 - i) wehavetan 01 : tanp'z: l,

Triangle lnequality
Inequalities such ás _T1 1 xz make sense for real numbers, but not in comPlex because

there is no natural way of ordering complex numbers. However, inequalities between

absolute values (which are real!), such as l.rl < lzz| (meaning that z1 is closer to the origin

than z2) are of great importance, The daily bread of the complex analYst is the triangle

inequality

|r, + zzl a|zr| + |zr|
(Fig. 323)

which we shall use quite frequently. This inequality follows by noting that the three Points

0, z1, and z1 + zrur"the vertices of a trianglá (Fig. 323) with sides |rr|,|rrl, and lzr + ,rl,
and one side cannot exceed the sum of the other two sides. A formal proof is left to the

reader (prob. 35). (The triangle degenerates if z1 and z2lie on the same straight line through

the origin.)

By induction we obtain from (6) the generalized triangle inequality

|rr+ zz* ", + znl = lzrl 
+ |z2l + ", + |z,|:

(6)

(6*)

that is, the absolute value of a swm cannot exceed the sum of the absolute values of the

terms.

EXA M P L E 2 Triangle lnequality

If zr:1 i i and zz: -2 _F 3i,then(sketchafigure!)

lz, + zr|: |-r + 4,| : \m : 4.123 < xE + {B :5.020.

Multiplication and Division in Polar Form
This will give us a "geometrical" understanding of multiplication and division. Let

ZI: Tt(cos 01 -l l sin 01) and z2: ťz(cos 02 * i sin 02).

Fig. 323. Triangle inequality

y

1

lx.

Fig.322. Example 1
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Multiplication. By (3) in Sec. 13.1 the product is at first

ZIZ2: rlr2[(cos 01 cos 02 - sin 01 sin 0r) + i (sin 01 cos 02 * cos g1 sin 0r)].

The addition rules for the sine and cosine t(6) in App. A3.1] now yield

(7)

(8) lrrrrl : Irrllrrl.

Taking arguments in (7) shows that the argument of a product equals the sum of the
arguments of the factors,

(9) arE k ) : arg z1 l arg z2 (up to multiples of 2rr).

Division. We have zt : (ztlzz)zz. Hence lztl : lkllzr\72| : |zl/z2||zz| and by division
by lzrl

ztz2: rlrr[cos (% + 0r) + i sin (01 + 0)].

Taking absolute values on both sides of (7), we see that the absolute value of a product
equals the product of the absolute values of the factors,

1-1t-t(10) l1rl : -]{1Llál: ks kz * 0),

Similarly, ar$z7: aíglkllz)7r1: arg (z7lzr) l argz2andby subtraction of ar$z2

(11) *s ? : aíg z1 - ars z2 (up to multiples of 2rr).
<-2

Combining (10) and (11) we also have the analog of (7),

(12) t: }rcor Í,t- 0r)+i sin(01 - 0)l.

To comPrehend this formula, note that it is the polar form of a complex number of absolute
value rllr2 and argument il - 0r. But these are the absolute value and argument of ZJzz,
as we can see from (10), (11), and the polar forms of zl and zz.

E XA M P LE 3 lllustration of Formulas (8)-(1l)

Let \: -2 + 2i and Z2: 3i. Then;1;2 : -6 - 6i, ztlzz: 2l3 + (2l3)i.Hence (make a sketch)

lrrrrl : 6\,5 :3\,6 : lrrllrrl, lz|zzl : zx5n : lrrltlrrl,

and for the arguments we obtain Arg z1 : 3rrl4, Arg z2 : rl2,

3n
Arg (zrzz) : - T 

: Argz1 * Arg z2- 2tr, Arg(zt/zz): : Arg z1 - Arg z2. l
Ťr

T
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ExAMPLE 4

CHAP. 13 Complex Numbers and Functions

lnteger Powers oí z. De Moivre's Formula

From (8) and (9) with z1 : Z2: z we obtain by induction for n : 0,I,2, , , ,

Zn : r'(cos n0 * l sin n0).

Similarly, (l2) with ír : 1 anď z2: 4u gives (13) for n :
De Moivre's formulaS

(13*) (cos 0 * i sin 0)" :

(13)

(14)

where k is an integer. For k : 0, 1,,,,, tr - I

integers of k would give values already obtained,

-1, -2,, " . For |r| 
:, : 1, formula (13) becomes

cos n0 * i sin n0.

we get n distinct values of w. Further
For instance, k : n gives Zkrrln : 2Ť,

We can use this to express cos n0 and sin n0 in terms of powers of cos 0 and sin 0. For instance, for n : 2 we

h^;" ;" in. rďt .or' 0 * 2l cos 0 sin 0 - sin2 0. Taking the real and imaginary parts on both sides of (13x)

with n : 2 gives the familiar formulas

cos 20 : .or' 0 - sin2 0, sin 20 : 2 cos 0 sin 6.

This shows íhaí complex methods otten simplify the derivation of real formulas. TrY n : 3,

Roots
If z: wn (n: I,2,. . .), then to each value of w there coíTesponds one Value of z. We

shall immediately see that, conversely, to a given z + 0 there coíTespond precisely n

distinct values of w. Each of these values is called an ntli. root of z, and we write

,:{r.

l

Hence this symb oI ts multivalued, namely, n-valued. The n values of {zcan be obtained

as follows. We write z and w in polar form

7: r(cos 0+ isin0) and w:R(coSó+ lsin@).

Then the equationwn: 4 becomes, by De Moivre's formula (with @ instead of 0)

wn : R'(cos nó + i sinnQ): z: r(cos 0 + i sin 0).

The absolute values on both sides mustbe equal; thus, R' : r, so thatR :{r, where

Ý , ,rpositive real (an absolute value must be nonnegative!) and thus uniquelY determined.

Equating the argum ents nQ and 0 and recalling that 9 is determined only uP to integer

multiples of 2rr, we obtain

nÓ:0-1 Zkrr,
0 2krr

3AgRRHAl,t DE MOIVRE (1661-I154), French mathematician, who pioneered the use of complex numbers

in trigonometry and also contributed to probability theory (see Sec. 24,8).
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hence thew comesPonding to k: O, etc. Consequently, {r,fo, z * O,has the n distinct
values

6t1

(15)

(16)

(I7) |V7,

v.:fi (.". !a:y * i sin ,#)
where k : 0, 1,' ", n - 1. These n values lie on a circle of radius Ý r witttcenter at
the origin and constitute the vertices of a regular polygo n of n sides. The value 

"i 
Ý2

obtained bY taking the principal value of arg z and k :- O in (15) is called the principal
value of w : Ý2 .

Taking z: 1in (15), we have lr|: ,: 1 and Argz:0. Then (15) gives

n /- 2kt 1I,*
Ýl:.o, a f i sin 

LKll 
,nn

These rz values are called the nth roots of unity. They lie on the circle of radius 1 and
celter 0, brieflY called the unit circle (and used quite frequently!). Figures 324_326show
ÝT : 1, -L t *\/1 i, ÝI: + 1 , *i, and ÝI.

If al denotes the value conesponding to k : 7 in (16), then the n values of Ýlcan be
written as

1, 0), {r)2, . . , or-l .

More generally, if wl is any nth root of an arbitrary complex number z (* 0), then the
n values of Ý2 in (15) are

because multiPlYin g wt by a;k corresponds to increasing the argument of wt by 2krr/n.Formula (17) motivates the introduction of roots of unity and shows their usefulness.

wťn. w1u2. " ' , VV10)n-1

Fig.325. 4Fig.l24. \n Fig.326. \n

2. 2i, -2i
a. ! + ltri

u. zxE + zt

-\,5 - Q/3)i

E poLAR FoRM
Do these problems very carefully since polar forms will be
needed frequently. Represent in polar form and graph in
the complex plane as in Fig. 322 on p. 608. (Show the
details of your work.)

1.

3.

5.

a a.
J-Jl

-5
I+i
t- i

k:0, l,...,n-l.
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2+3i
8' 5+4i

E pRlNclpAL ARGuMENT
Determine the principal value of the argument.

9. -I - i
11. 4 -|

I3.7 -

15. (9 +

@ coNvERsloN To x * iy
Represent in the form x * ly and graph it in the complex

plane.

16. cos in + l sin (+ }rr) 17. 3(cos 0.2 + i sin 0.2)

18. 4(cos á, t l sin }rr) 19. cos (- 1) + l sin (- 1)

20. 12(cos 3, + i sin }rr)

@ RooTs
Find and graph all roots in the complex plane.

wheresigny: 1if y 
= 

0, signy - -1 if y { 0,

and all square roots of positive numbers are taken

with positive sign. Hint: Use (10) in App. A3.1 with

x : 0l2.
(c) Find the square roots of 4i, 16 30i, and
g + 8\/1i by both (18) and (19) and comment on the

work involved.

(d) Do some further examples of your own and apply

a method of checking your results.

@ EQuATloNs
Solve and graph all solutions, showing the details:

27. z2 - (8 - 5i)z + 40 - 20i:0 (Use(19).)

28. za + (5 - t4i)z2 - (24 + 10i) : 0

29. 8z2 - (36 - 6i)z + 42 - 11i : 0

30. za * 16 : 0. Then use the solutions to factor 7a + 16

into quadratic factors with real coefficients.

31. CAS PROJECT. Roots of Unity and Their Graphs.
Write a program for calculating these roots and for
graphing them as points on the unit circle. Apply the

program to zn : 1 with lt: 2,3,, , , , 10. Then extend

the program to one for arbitrary roots, using an idea

near the end of the text, and apply the program to

examples of your choice.

Fr;sl lNEQuALlTlEs AND AN EQuATloN
Verify or prove as indicated.

32. (Re and Im) Prove |ne z| = 1.1, |tm z| = lzl.
33. (Parallelogram equality) Prove

l., + zzl'+ |r,, - zrl2:2(lzll2 + lzrl\.

Explain the name.

34. (Triangle inequality) Verify (6) for zt : 4 + Ji,
Zz:5+2i.

35. (Triangle inequality) Prove (6).

21. \/=
n.Ý=
25. Ý-

10. -20 + i, -20 -
12. -n2
14. (1 + i)12

22. Ý1
24.Ý3+u

26. TEAM PROJECT. Square Root. (a) Show that

, : {z has the values

Wl:

*lsin(;-4]

(b) Obtain from (18) the often more practical formula

t i\4 (.tr ,) + (sign ,l; VG rkl + ,l]

-f 0Vrfcos-*isin

\r[.",G-l( 18)

01
,)

(19)

] 3.3 Derivative. Analytic Function
our study of complex functions will involve point sets in the complex plane. Most

important will be the following ones.

Circles and Disks. Half-Planes
Theunitcirclelzl : t (Fig.327)hasalreadyoccurredinSec. 13.2.Figure328 showsa

general circle of radius p and center a. Its equation is

lr-o|:p

612
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,l

l ,)
I \-_---,

Fig. 327. Unit circle
X,

Fig. 328. Circle in the
complex plane

Fig. 329. Annulus in the
complex plane

because it is the set of all z whose distance l, - "| 
from the center a equals p. Accordingly,

its interior ("open circular disk") is given by lz - aI 1 p, its interior plus the circle itself
("closed circular disk") by lz - al a p, and its exterior by lz - al > p. As an example,
sketchthisfora:l*iandp:2,tomakesurethatyouunderstandtheseinequalities.

An oPen circular disk |z - a| < p is also called a neighborhood of a or,more precisely,
a P-neighborhood of a. And a has infinitely many of them, one for each value of
p (> 0). and a is a point of each of them. by definition!

In modern literature any set containing a p-neighborhood of a is also called a
neighborhood of a.

Figure 329 shows an open annulus (circular ring) p, < |z - al 1 pz, which we shall
need later. This is the set of all z whose distance l, - "l 

from a ts greater than p1 but less
than p2. Similarly, the closed annulus h í l, - "| = pz includes the two circles.

Half-Planes. By the (open) upper half-plane we mean the set of all points z : x * iy
such thaty > 0. Similarly, the conditiony < 0 defines the lowerhalf-plane, x} 0the
right half-plane, and x 1 0 the left half-plane.

For Reference: Concepts on Sets in the
Complex Plane
To our discussion of special sets let us add some general concepts related to sets that we
shall need throughout Chaps. 13-18; keep in mind that you can find them here.

BY a Point set in the complex plane we mean any sort of collection of finitely many
or infinitelY many points. Examples are the solutions of a quadratic equation, the points
of a line, the Points in the interior of a circle as well as the sets discussed just befóre.

A set S is called oPen if every point of S has a neighborhood consisting entirely of
Points that belong to 

^ 
. For example, the points in the interior of a circle or a square form

an open set, and so do the points of the right half-plane Re z - x ) 0.
A set S is called connected if any two of its points can be joined by a broken line of

finitelY many straight-line segments all of whose points belong to S. An open and connected
set is called a domain. Thus an open disk and an open annulus are domains. An open
Square with a diagonal removed is not a domain since this set is not connected. (whv?)

The comPlement of a set , in the complex plane is the set of all points of the complex
Plane that do not belong to S. A set S is called closed if its complement is open. For
examPle, the Points on and inside the unit circle form a closed ."i 1".lor"d unit disk,,)
since its complement lzl > 1 is open.

A boundarY Point of a set ,S is a point every neighborhood of which contains both
Points that belong to S and points that do not belong to , . For example, the boundary
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points of an annulus are the points on the two bounding circles. ClearlY, if a set S is oPen,

then no boundary point belongs to S; if S is closed, then every boundary point belongs to

S. The set of al| boundary points of a set S is called the boundarY of S.

A region is a set consisting of a domain plus, perhaps, some or all of its boundarY

points. WARNING! "Domain" is the modern term for an open connected set.

Nevertheiess, some authors sti1l call a domain a "region" and others make no distinction

between the two terms.

Complex Function
Complex analysis is concerned with complex functions that are differentiable in Some

domain. Hence we should first say what we mean by a complex function and then define

the concepts of limit and derivative in complex. This discussion will be similar to that in

calculus. Nevertheless it needs great attention because it will show interesting basic

differencesbetweenrealandcomplexcalculus.
Recal1 from calculus that a real function / defined on a set ,S of real numbers (usuallY

an interva1) is a rule that assigns to every x in S a real number /(x), called the valwe of

f at x. Now in complex, S is a set of complex numbers. And a function f defined on S is

a rule that assigns tá every e in S a complex number w, called the value of f atz. We write

w -- f(z),

Here z varies in S and is called a complex variable. The set S is called the domain of

definitionof / or, briefly, the domain of /. (In most cases S will be open and connected,

thus a domain as defined just before,)

Example: w : f (z,) : ,Ž + 3z is a complex function defined for all z; that is, its domain

S is the whole complex plane,

The set of all values of a function / is called the range o/ /.
w is complex, and we write w : ll l iu, where w and U aíe the real and imaginary

parts, respeótively. Now w depends on z : x -| ly, Hence u becomes a real function of x

and y, and so does u. We may thus write

w : f (z) : u(x, y) + iu(x, y).

This shows that a complex function /(z) is equivalent to a pair of real functions u(x, Y)

and u(x, y), each depending on the two real variables x and Y.

EXAMPLE l Function of a ComplexVariable

T,*n"ť.";: J 
j,;,':',::i'i:1::::":l]"i':,":lJ 

z: I-l 3i

í(1 + 3,) : (1 + 3t12 +3(1 + 3,) : 1 - 9 + 6i+ 3 + 9i: -5+ l5i,

This shows that u(1,3) : _5 and u(1, 3) : 15. Check this by using the expressions for u and u. l

EXAMPLE 2 Function of a ComplexVariable

Leíw : f(z) : 22 + 6Z.Find u and u and the value of / at, : l + 4i,

Solution. í(z,):2i(x+ ly) + 6(x_ ly)gives u(.x,y)- 6x_2yandu(x,y) - 2x_ 6y.Also,

'.1! + +i) : 2i(+ + 4i) + 6G - 4i): j - 8 + 3 - 24i : -5 - 23i,

Check this as in Example 1. l
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Remarks on Notation and Terminology

1. Strictly speaking, í(z) denotes the value of f at z, but it is a convenient abuse of
language to talk about the function f (z) (instead of the function /), thereby exhibiting the
notation for the independent variable.

2. We assume all functions to be single-valued relations, as usual: to each z in S there
coíTesponds but one value w : Í(z) (but, of course, several z may give the same value
w : Í(z), just as in calculus). Accordingly, we shall not use the term "multivalued
function" (used in some books on complex analysis) for a multivalued relation, in which
to a z there conesponds more than one w.

Limit, Continuity
A function í(z) is said to have the limit l as z approaches a point zo, written

(1) 
!y2,f {z) : t,

if / is defined in a neighborhood of zo (except perhaps at zo itsel0 and if the values
of f are "close" to / for all Z "close" to zo,in precise terms, if for every positive real e
we can find apositive real ó such that for all z * zg in the disk |z - zol < ó ig.330)
we have

Vrr>-ll<r;

geometrically, if for every z * zg in that 6-disk the value of / lies in the disk (2).
Formally, this definition is similar to that in calculus, but there is a big difference.

Whereas in the real case, x can approach an xoonly along the real line, here, by definition,
z may approach zgfrom any direction in the complex plane. This will be quite essential
in what follows.

If a limit exists, it is unique. (See Team Project 26.)

A function f (z) is said to be continuous at z : zg íf _f(zo) is defined and

(3) 
!11l."f(z) 

: f(z .

Note that by definition of a limit this implies that /(z) is defined in some neighborhood
of zo.

/(z) is said to be continuous in a domain if it is continuous at each point of this domain.

(2)

z ,--

'll 6 ,z^ l| ,-,'/ " t\rl
\rr-----'

z----
'-a

i --\o
I-fG)| '_---u I
|2,'
\

\
1

l
l
l
l

\.'------
Fig. 33O. Limit
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Derivative
The derivative of a complex function / at a point e6 is written f' (zo) and is defined by

f(zg+Ae)-/(zo)
f '(z : J,q L,z

provided this limit exists. Then f is said to be differentiable at z6. If we write L,z: z - zg,

we have z : zo i Az and (4) takes the form

(4)

(4,)

Now comes an important point. Remember that, by the definition of limit, í(z) is defined

in a neighborhood of zg and z in (4'1may appro ach zg from any direction in the complex

plane. Hence differentiability at z6 írreíIrrs that, along whatever path z approacheS z6, the

quotient in (4') always approaches a certain value and all these values are equal. This is

important and should be kept in mind.

EXAMPLE 3 Differentiability. Derivative

The function í(z1 : z2 i* diff"."ntiable for all z and has the derivative Í'(z): 1,7 because

7,2 +2zLz+ (Lz)2 - z2

Al
: lim (2z + Lz) : 2z. I

L,z-O

The dffirentiation rules are the same as in real calculus, since their proofs are literally

the same. Thus for any analytic functions f and g and constants c we have

as well as the chain rule and the power rule (z')| : nrn-l (n integer).

Also, if í(z)isdifferentiable atzo,itiscontinuous atzo. (SeeTeamProject26.)

EXAMPLE 4 ž not Differentiable

It may come as a surprise that there are many complex functions that do not have a derivative at any Point. For

instance, í(z):Z: x- lyissuchafunction.Toseethis,wewriteAz: Ax -F lAyandobtain

í(z+Lz)-í(z) k+^d-Z Ň Ar-iAy

^, 
: k 

:É: 
^,+,^),

If Ay : O, this is tl. If Ax : 0, this is -1. Thus (5) approaches il along path I in Fig. 331 but -1 alon8

path II. Hence, by definition, the limit of (5) as Az - 0 does not exist at any z. l

Fig.33l. Paths in (5)

(z.- L,dz - z2
i'|z): lim --------;- : lirrrAz.--0 AZ Az ,0

(cí), : cí', ff + s)' : í' l g', (í8)' : f'g-| í8', (*)' : í8'Jg
2(]

ó

(5)
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Surprising as Example 4 may be, it merely illustrates that differentiability of a complex
function is a rather severe requirement.

The idea of proof (approach of z from different directions) is basic and will be used
again as the crucial argument in the next section.

Analytic Functions
Complex analysis is concerned with the theory and application of "analytic functions,"
that is, functions that are differentiable in some domain, so that we can do "calculus in
complex." The definition is as follows.

DEFlNlTloN Analyticity

A function í(z) is said to be analytic in a domain D if f(z) is defined and
differentiable at all points of D. The function f(z) is said to be analytic at a point
z : zo in D if /(z) is analytic in a neighborhood of z0.

Also, by an analytic function we mean a function that is analytic tn some domain.

Hence analyticity of f (z) et zo means that f(7) has a derivative at every point in some
neighborhood of z6 (including zg itself since, by definition, 7o is a point of all its
neighborhoods). This concept is motivated by the fact that it is of no practical interest if
a function is differentiable merely at a single point z6 but not throughout some
neighborhood of zg.Team Project 26 gives an example.

A more modern term for analytic in D is holomorphic in D.

EX A M P L E 5 Polynomials, Rational Functions

The nonnegative integer powers l, z, z2,. . . are analytic in the entire complex plane, and so are polynomials,
that is, functions of the form

ík) :c6 { clz + c2z2 + . . . + cnzn

where co, . . ., cn arecomplex constants.
The quotient of two polynomials sk) and h(z),

g(z)
Ikl: lr|o .

is called a rational function. This / is analytic except at the points where h(z) :0; here we assume that common
factors of g and hhave been canceled.

Many further analytic functions will be considered in the next sections and chapters. l

The concepts discussed in this section extend familiar concepts of calculus. Most important
is the concept of an analytic function, the exclusive concern of complex analysis. Although
many simple functions are not analytic, the large variety of remaining functions will yield
a most beautiful branch of mathematics that is very useful in engineering and physics.
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CURVES AND REGIONS OF
PRACTICAL INTEREST

Find and sketch or graph the sets in the complex plane given
by

I.)z-3-2i|: t
3 2.7<lz-I+4t|=5

3. 0 < |z - 1| < t

5.Imz2:2
7.|z+1l :l.-
9. Rez<Imz

-rrlRez{r
Ree ) -1
|arg z| = i,
Re (1/z) < 1

1|

4.

6.

8.

10.
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11. WRITING PROJECT. Sets in the Complex Plane.
Extend the part of the text on sets in the complex plane

by formulating that part in your own words and

including examples of your own and comparing with

calculus when applicable.

COMPLEX FUNCTIONS AND DERIVATIVES

ItZ-tS I Function Values. Find Re / and Im /. Also find

their values at the given point z,

t2.f:3z2-6z*3i,z:Z+i
13.í:zl(z+1),z:4-5i
14. S: ll(| - z).z:i+ii
15.í:Ilz2,z:I*i

@ Continuity. Find out (and give reason) whether

í(.) i, continuous at z : 0 if í(0) : 0 and for z * 0 the

function / is equal to:

16. [Re k\Ulzl'
ls. |zl' Re (1/z)

@ Derivative.

25. CAS PROJECT. Graphing Functions. Find and

graph Re /, Im f , and |/| as surfaces over the z-plane.

Also graph the two families of curves Re í(e) : const

and Im í(z) : const in the same figure, and the curves

lí(.)l : const in another figure, where (a) í(z) : z2,

(b) í(z) : Ilz, (c) í(z) : za.

26. TEAM PROJECT. Limit, Continuity, Derivative
(a) Limit. Prove that (1) is equivalent to the pair of
relations

Re /(z) : Re /, lim
- ^ l)

Im í(z) : Im /.

(b) Limit. If lim /(1) exists, show that this limit is
. z-zo

unlque.

(c) Continuity.If 4, z2,, , ,are complex numbers for
which }j2 r. 

: a, and if .f(z) is continuous at

z : a, show thatj!5 ík) : í(a).

(d) Continuity. If /(z) is differentiable at zg, show that

í(z) is continuous at 4o.

(e) Differentiability. Show that f (z) : Re z : x is
not differentiable at any z. Can you find other such

functions?

(0 Differentiability. Show that í(z) : lrl' is
differentiable only atz:0; hence it is nowhere analytic.

lim- -()

20. (z' - 9)l(z2 + I)
22. (3z + 4i)l(I.5iz - 2)

24. z2l(z + D2

17. [Im k\Ulzl
19. (Im z)l(I -

Differentiate

2I. (r" + D2

23. it(I - z)2

13.4 Cauchy-Riemann Equations.
Laplacei Equation

The Cauchy_Riemann equations &re the most important equations in this chapter and

one of the pillars on which complex analysis rests. They provide a criterion (a test) for

the analyticity of a complex function

Roughly,
u satisfy

(1)

w : f (z) : u(x, y) + iu(x, y).

/ is analytic in a domain D if and only if the first partial derivatives of u and

the two Cauchy-Riemann equationsa

ur: u,a, Ua : -U*

aThe French mathematician AUGUSTIN-LOUIS CAUCHY (see Sec. 2.5) and the German mathematicians

BERNHARD RIEMANN (1826-1866) and KARL WEIERSTRASS (1815-1897; see also Sec. l5.5) are the

founders of complex analysis. Riemann received his Ph.D. (in 185 1) under Gauss (Sec. 5.4) at Góttingen, where

he also taught until he died, when he was only 39 years old. He introduced the concept of the integral as it is

used in basic calculus courses, and macle important contributions to differential equations, number theorY, and

mathematical physics. He also developed the so-called Riemannian geometrY, which is the mathematical

foundation of Einstein's theory of relativity; see Ref. [GR9] in App. 1.
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everywhere in D; here u* : Euldx and u, :
notations for partial derivatives. The p."Cir"
Theorems I and 2.

ExamPle: f(z) : z2 : X2 - y2 + 2ixy isanalytic for all z (see Example 3 in Sec. 13.3),
and U : x2 - y2 andu : Zxy satisfy (1), namely, r*: 2x : t)oas well as I1a: _ 2y : -u*.More examples will follow.

Cauchy-Riemann Equations

Let Í(z) : u(x, Y) + iu(x, !) be defined and coníinuous in some neighborhood of a
Point z : X ,| iy and dffirentiable at z itself. Then at that point, the Jirst-order
Partial derivatives of u and u exist and satisfu the Cauchy-Ri)mann equations (I).

Hence iÍ f(d is analYtic in a domain D, those partial derivatives exiit and satisfu
(I) at all points oí D.
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}ul}y (and similarly for u') are the usual
formulation of this statement is given in

THEoREM l

P R o o F By assumption, the derivative f 
l(7) 

at z exists. It is given by

f'(z): lim
Az-o

f(z+Lz.)-f(z)

The idea of the Proof is very simple. By the definition of a limit in complex (Sec. 13.3)
we can let Lz approach zero along any path in a neighborhood of z. Thus we may choose
the two Paths I and II in Fig. 332 and equate the rezults. By comparing the real parts we
shall obtain the first CauchY-Riemann equation and by comparing the imaginary parts the
second. The technical details are as follows.

Wewrite Lz.: AxtiAy.Then z-| Lz:xl Arf i(y+ Ay),andinterms of uand,
u the derivative in (2) becomes

(2)
L,z

(3) .f 'k) : li-
Az+O

[u(x ,| Lx, y * Ly) -| iu(x ]- Lx,y: 
^y)] 

- lu(x, y) + iu(x, y)l
Ax + iAy

We first choose path I in Fig. 332. Thus we let Ay --
is zero, Az : Ax. Then (3) becomes, if we first write
U-terms,

u(x * Lx, y) - u(x, y)

Lx

0 first and then A_r --+ 0. After Ay
the two a-terms and then the two

u(x - Lx, y) - u(x, y)

Ax
.f 'k) : Iim

Ar+O +ilim
Ar+O

z+^z

Fig. 332. Paths in (2)
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Since f '(z) exists, the two real limits on the right exist. By definition, they are the Partial
derivatives of z and u with respect to r. Hence the derivative f ' (z) of f (z) can be written

f '(z) : u, * iu*.(4)

Similarly, if we choose path II in Fig. 332, we let Ax -+ 0 first and then AY - 0. After

Ax is zero, Lz: i!y, so that from (3) we now obtain

u(x,y + Ay) - u(x,y) u(x,y + Ay) - u(x,y)
f'(z) : lim

Lu.-o iLy
-lilim

L,y+O iLy

the limits on the right exist and give the partial derivatives of u and u

noting that lli - -i, we thus obtain
Since /'(1) exists,
with respect to y;

(5) í'(z): -iuo l u.r.

The existence of the derivative /'(z) thus implies the existence of the four Partial

derivatives in (4) and (5). By equating the real parts u*anduoin (4) and (5) we obtain

the first Cauchy_Riemann equation (1). Equating the imaginary parts gives the other. This

:i"J"ilnrfjrst 
statement of the theorem and implies the second because of the definition

l

Formulas (4) and (5) are also quite practical for calculating derivatives Í'(z), as we shall

See.

EXA M P LE l auchy-Riemann Equations

f (z) : z2 is analytic for all z. It follows that the Cauchy-Riemann equations must be satisfied (as we have

verified above).

Forí(z) :ž: x - lywe haveu: x,u: -yandseethatthesecondCauchy-Riemannequationis satisfied,

ur: |rr: O, but the first is not: u*: I * ,o: -1, We conclude that f(z): Ž is not analYtic, confirming

Example 4 of Sec. 13.3. Note the savings in calculation! l

The Cauchy_Riemann equations are fundamental because they are not only necessar}

but also sufficient for a function to be analytic. More precisely, the following theorem

holds.

THEoREM 2 Cauchy-Riemann Equations

If two real-valued continuous functions u(x, y) and u(x, y) of two real variables x

and y have continuous first partial derivatives that satisfu the Cauchy-Riemann

equations in some domain D, then the complex function í(z) : u(x, y) * iu(x, y) is

analytic in D.

The proof is more involved than that of Theorem 1 and we leave it optional (see APP. 4).

Theorems 1 and 2 aíe of great practical importance, since by using the

Cauchy_Riemann equations we can now easily find out whether or not a given comPlex

function is analytic.
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ExAM PLE 2 Cauchy-Riemann Equations. Exponential Function

Is /(z) : u(x, y) + iu("r, y) : e"(cosy f i siny) analytic?

Solution. We have ll : e* cos ), u : e ' sin y and by differentiation

u*: e* CoSy, uo : e* cosy

ur: -e'síny, u*: e* siny.

we see that the cauchy-Riemann equations are satisfied and conclude that /(z)
be the complex analog of eÍ known from calculus.)

621

is analytic for all z. (í(z) will
l

EXA M PLE 3 An Analytic Function of Constant Absolute Value ts Constant

The Cauchy-Riemann equations also help in deriving general properties of analytic functions.
For instance, show that if /(z) is analytic in a domain D and lrr.ll : k: const in D, then í(z): const tn

D. (We shall make crucial use of this in Sec. 18.6 in the proof of Theorem 3.)

Solution. By assumption,lf|2 : lu + iu!2 : ,2 + u2 : k2.By differentiation,

uu, -| UUr: 0,

uuo í uuo: 0.

Now use ur: -ua in the first equation and,uo: u*in the second, to get

(6) (a) uur - uu, : 0,

(b) uu, l uu*: 0.

1:g* ridof uo, multiply (6a) by z and (6b) by u and add. Similarly, to eliminate uí,multiply (6a) by -u and
(6b) by u and add. This yields

(tt2 + uzlu*: g.

(u2+u2luo:g.

If k2: u2 + 12: O.then u: L):0,hence-f :0. If k2: r,2 + u2* 0,then ur: ua
the CauchY-Riemann equations, also u, : ua : 0. Together this implies u : consi and u
f : const.

We mention that if we use the polar form z - r(cos 0 + j sin 0) and set
í(z) : u(r,0) * iu(r,0), then the Cauchy-Riemann equations are (Prob. 11)

(r > 0).

Laplace's Equation. Harmonic Functions
The great imPortance of complex analysis in engineering mathematics results mainly from
the fact that both the real part and the imaginary part of an analytic function satisfy
LaPlace's equation, the most important PDE of physics, which occurs in gravitation,
electrostatics, fluid flow, heat conduction, and so on (see Chaps. 12 and 18).

: 0. Hence, by
: const; hence

l

(7)

1
: 

- 
,tw0.

r

1

---u0rU,r
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Laplace's Equation

Ií f(z) : u(x, y) + iu(x, }) is analytic in a domain D, then both u and u satisÍy

Laplace's equation

(8) Yzu:U**lUuu:O

(V2 read'onabla squared") and

(9) Y2t) : U*, l Uuu: 0,

in D and have continuous second partial derivatives in D.

pRooF Differentiating Lt*: ua with respectto x anduo - -ur with respect toy, we have

(10) U**: UEr Uua : -UrU,

Now the derivative of an analytic function is itself analytic, as we shall prove later (in

iii,;.í,;?;3'LTJj'::Jlí!i:l*,l:J:ť:ffi ::":,i::tT*:1"J,i|;Ť:'n:
obtain (8). Similarly, (9) is obtained by differentiating u* : u, with respect to y and

uu : -u, with respect to x and subtracting, using Ll*o : llyr. l

Solutions of Laplace's equation having continuous second-order partial derivatives

are called harmonic functions and their theory is called potential theory (see also

Sec. 12.10). Hence the real and imaginary parts of an analytic function are harmonic

functions.
If two harmonic functions u and u satisfy the Cauchy-Riemann equations in a domain

D, they are the real and imaginary parts of an analytic function f in D. Then u is said to

be a harmonic conjugate function of u in D. (Of course, this has absolutely nothing to

do with the use of "conjugate" for Z.)

ExAMpLE 4 How to Find a Harmonic Conjugate Function by the Cauchy-Riemann Equations

Verify íhat u : ,' - y' - y is harmonic in the whole complex plane and find a harmonic conjugate function

u,of u.

Solution. Y2u : 0 by direct calculation. Now a, : 2x and uu : -2y - 1. Hence because of the

Cauchy-Riemann equations a conjugate u of u must satisfy

ur: w*: 2x, l)í: -Lt.a : 2:l + I.

Integrating the first equation with respect to y and differentiating the result with respect to,T, we obtain

u:2l!+h(x),
dhu-:2y i _

clr

Acomparisonwiththesecondequationshowsthatdhldx:l.Thisgivesň(x):xlc.Henceu:2xytxlc
(c any real constant) is the most general harmonic conjugate of the given u. The corresponding analytic function is

í(z): u* iu: 12 - y2 _ y + i(2xy -| x i c): z2 + iz.-f ic. l
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@ cAucHy-ruEMANN EQuATloNs
Are the following functions analytic? [Use (1) or (7).]

I. í(z) : za 2. f (z) : Im (z2)

3. ez*(cos y + i sin y) a. ík) : Il(I - zn)

5. e-"(cos y - i sin y) 6. í(z) : Arg rr7

7. í(z) : Re 7 -l Im z 8. í(z) :ln |e| + i Arg z

9. í(z) : ilzg 10. /(z) : z2 + Ilz2

11. (Cauchy-Riemann equations in polar form) Derive
(7) from (1).

@ HARMoNIc FuNcTloNs
Are the following functions harmonic? If your answer is
yes, find a conesponding analytic function

f (z) : u(x, y) * iu(x, y),

12. u: xy 13. u : xy
14. u : -y/(x2 + y') 1,5. u: h |z|

16.u:lnlei 17.u:x3-3xy'
18. u : l/(x2 + y') 19. u : (x2 - y')'
20. u : cos x coshy 2l. u : e-:r sin2y

@rr4 Determine a, b, c such that the given functions
are harmonic and find a harmonic conjugate.

Example 4 illustrates that a conjwgate of a given harmonic function is uniquely determined
wp to an arbitrary real additive constant.

The Cauchy-Riemann equations are the most important equations in this chapter. Their
relation to Laplace's equation opens wide ranges of engineering and physical applications,
as we shall show in Chap. 18.

22. u : e3* cos Jy 23. u : sin x cosh cy

24.u:axg lb),'
25. (Harmonic conjugate) Show that if u is harmonic and

u is a harmonic conjugate of u, then u is a harmonic
conjugate of -u.

26. TEAM PROJECT. Conditions for í(z) = const. Let
í(z) be analytic. Prove that each of the following
conditions is sufficient for f (z) : const.

(a) Re í(z) : const

(b) Im í(z) : const

(c) í'(r) : O

(d) lí(.)l : const (see Example 3)

27. (Two further formulas for the derivative). Formulas
(4), (5), and (11) (below) are needed from time to time.
Derive

(11) í'(z) : u., - illo, í'(z) : uo l it)r.

28. CAS PROJECT. Equipotential Lines. Write a
program for graphing equipotential lines u : const of
a harmonic function u and of its conjugate u on the
same axes. Apply the program to (a) u : x2 - !2,
Ll : 2xy, (b) u : x3 - 3xy2, u : 3x2y - j3,
(c)u: e* Qos!,U: e'slny.

13.5 Exponential Function
In the remaining sections of this chapter we discuss the basic elementary complex
functions, the exponential function, trigonometric functions, logarithm, and so on. They
will be counterparts to the familiar functions of calculus, to which they reduce when
z : x is real. They are indispensable throughout applications, and some of them have
interesting properties not shared by their real counterparts.

We begin with one of the most important analytic functions, the complex exponential
function

', also written exp Z.

The definition of e' in terms of the real functions e', cos }, and sin y is

(1) e" : e*(cosy * l siny).

623
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This definition is motivated by the fact the e' extends the real exponential function e* of
calculus in a natural fashion. Namely:

(A) e'-- e* forrealz: xbecausecosy: 1and sin},:0 wheny:0.
(B) e'is analytic for all z. (Proved in Example 2 of Sec. 13.4.)

(C) The derivative of e' is e', that ts,

(2)

This follows from (4) in Sec. 13.4,

(e')' : e'.

(r')' : (e* cosy), + i(e" sin!)*: e" cos y l ie" stny : u".

REMARK. This definition provides for a relatively simple discussion. We could define e'by
thefamiliarseriesI*x+x2l2!+x3l3|.+...withxreplacedbye,butwewouldthenhave
to discuss complex series at this very early stage. (We will show the connection in SeC. 15.4.)

Further Properties. A function f (7) thatis analytic for all z is called an entire function.

Thus, e" is entire. Just as in calculus the/unctional relation

Zli 22 Zt 2ze :e e(3)

(4)

(5)

holds for any zt : xL f lyr and z2 : x2 t ly2. Indeed, by (1),

,"n" : n"'(.o, lt t i sin y1) n*'1ro, lz * i sin yr).

Since ,*'n*' - ,*'**'for these real flnctions, by an application of the addition formulas

for the cosine and sine functions (similar to that in Sec. l3.2) we see that

,"n" : urt+í2[cos (y, + yr) * i sin (yr + yz)] : e"'t"

as asserted. An interesting special case of (3) is zl : x, z2 : iy; then

e' : e'eiU

Furthermore, for z : iy we have from (1) the so-called Euler formula

eiU:cosyilsiny.

Hence the polar form of a complex numbeí, Z : r(cos 0 + i sin 0), may now be written

(6)

From (5) we obtain

(7)

i.e
Z, : re-,,

e2ni : I

as well as the important formulas (verify!)

(8) e'il2 : i. eoi : - I, u-nil2 - _i, e-r' : - l.
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Another consequence of (5) is

(9)

(10)

That is, for pure imaginary exponents the
result you should remember. From (9) and

|eiu|: |cosy + i siny| : V*r'y + ,iďy : 1.

exponential function has absolute value
( 1),

arg e" : y ! 2nrr (n : 0, I,2, .

in polar form.

I,a

,),

since lr"| : e" shows that (1) l,s actually e"
From lr'|: e" * O in (10) we see that

(11) e"*0 for all e.

So here we have an entire function that never vanishes, in contrast to (nonconstant)
polynomials, which are also entire (Example 5 in Sec. 13.3) but always have a zero, as
is proved in algebra.

Periodicity of e" with period 2rri,

nz+2 : _ nz(12)

is a basic property
the values that w ,

2rr

for aII z

|n'| : ,". Hence

that follows from (1) and the periodicity of cos y and sin y. Hence all
: e" can assume are already assumed in the horizontal strip of width

(13) -rrlyín (Fig.333).

This infinite strip is called a fundamental region of e'.

EXAM PLE I Function Values. Solution of Equations.

computation of values from (l) provides no problem. For instance, verify that

el'4-o'6i : 
"''n(.o, 

0.6 - i sin0.6) : 4.055(0.8253 - 0.5646i) : 3.34'7 - 2.2}gi

|er+-o,6i1 : e1,4 : 4.055, Arggla-o.a, : _0.6.

To illustrate (3), take the product of

e2+i - rzlcosl + isinl) and 
"4-i 

:"41.os1 - isin1)

and verify that it equalr r2"41"os2 1 * sin2 1) : e6 - e(2+i)+(4-i).

Fig. 333. Fundamental region of the
exponential function e' in the z-plane
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To solve the equation e' :3 i 4i, note first that |n'|: ," : 5,,r : ln5 : 1.609 is the real part of all

solutions. Now, since e* : 5,

e* cosy:3, e* stny:4, cosy:0.6, siny: 0.8, y:0.927.

Ans. z: 1.609 + 0.g27i + 2nrri (,r : 0, í,2,. ..). These are infinitely many solutions (due to the periodicity

of e'). They lie on the vertical line x : 1.609 at a distance 2rrfrom their neighbors. l

To summaíize,. many properties of ez: expz parallel those of et; an exception is the

periodicity of ez withZni, which suggested the concept of a fundamental region. Keep in

mind that ez is an entire.function (Do you still remembef what that means?)

1,. Using the Cauchy-Riemann equations, show that e" is

entire.

E Values oí e". Complte ez in the fotm u f lu and

Ie"|, where 7 equals:

2. 3 -l rri
4. \,5 - Lri
6. (I + i)n
8. 9tilZ

@ Real and Imaginary Parts. Find Re and Im of:

-g. 
, '" I0, e"'

1,1,. e"' 12. ell"

@ Polar Form. Write in polar form:

B.\n 1.4. I+i
15. Vz '1,6. 3 + 4i

17. -9

@ Equations. Find all solutions and graph some of
them in the complex plane.

18. e3" : 4 19. e" - -2
20.e":0 21,.e':4-3i

22. TF,A,M PROJECT. Further Properties of the
Exponential Function. (a) Analyticity. Show that e"

is entire. What about e|l'? ez? e*(cos ky + i sin ky)?
(Use the Cauchy-Riemann equations.)

(b) Special values. Find all e such that (i) e" is real,

tiil |e-,| < l. (iii) e2 : v.
(c) Harmonic function. Show that

Lt : e'a cos (x2l2 - y2l2) is harmonic and find a

conjugate.

(d) Uniqueness. It is interesting that /(e) : e' is
uniquely determined by the two properties

í (x + i 0) : e* anď í' (z) : í(z), where f is assumed

to be entire. Prove this using the Cauchy-Riemann
equations.

3.I+2i
5. '7 ri12
7. 0.8 - 5,

]3.6 Tritonometric and Hyperbolic Functions
Just as we extended the real e'to the complex e' in Sec. 13.5, we now want to extend

the familiar real trigonometric functions to complex trigonometric functiolzs. We can do

this by the use of the Euler formulas (Sec. 13.5)

e7* : cos _rr -l i sin x, e-'* : cos -r - i sin x.

By addition and subtraction we obtain for the real cosíne and sine

e-'*), sin x : (e'* - e-'*).

This suggests the following definitions for complex values z : x * iy:

1

2i
1

- (e'' +
2

cos.tr :
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cosZ:
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It is quite remarkable that here in complex, functions come together that are unrelated in
real. This is not an isolated incident but is typical of the general situation and shows the
advantage of working in complex.

Furthermore, as in calculus we define

1

-(e"+2
(1)

(2)

and

-'"),

sin ztanZ:
cos Z

l
SOCZ: 

- 

,
cos Z

(3)

cos ZCotZ: ,

Sln Z

1cscZ: .

Sln Z

since e' is entire, cos z and sin z are entire functions. tan z and sec z are not entire; they
are analytic except at the points where cos Z is zero; and cot z and csc z are analytic except
where sin z is zero. Formulas for the derivatives follow readily from (u')' : e' and(1)-(3);
as in calculus,

(4) (cosz)/ : -sinZ, (sinz)| : cosZ, (tanz)' : sec2 z,

etc. Equation (1) also shows that Euler's formula is valid in complex:

e'":coSZiisinz for aII z.

The real and imaginary parts of cos z and sin z are needed in computing values, and

:l"ililrJ 
help in displaying properties of our functions. We illustrate this with a typical

ExAMPLE l Real and lmaginary Parts. Absolute Value. Periodicity

Show that

(a) cos z - cos ;r cosh y - l sin,r sinh y

(b) sinz: sin.r coshy * i cosr sinhv

(a) |cos z|2 : .or2 x * sinh2 y

(b) |sin z|2 : sin2 x i sinhz y

and give some applications of these formulas.

Solution. From (1),

cos:: l{pi'**iu' + r-itr,igl,
: }e-a{cos.r * i sin x) + leu@os-r - i sinx)

: lteu + e-a) cos,r - žt("o - e-ay sínx.

This yields (6a) since, as is known form calculus,

(8) cosh _y 
: Lko + e-a), sinh y : }{ea 

* 
"-u1.

(5)

(6)

and

(7)
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(6b) is obtained similarly. From (6a) and cosh2 y : 1 + sinh2 y we obtain

|cos z|2 : (cos2 x) (1 + sinh2 y) + sin2 x sinhz y.

Since sinzx + cos2 x: I,this gives (7a),and (7b) is obtained similarlY.

For instance, cos(2 + 3i) : cos 2 cosh3 - i sin2 sinh 3 : -4,190 - 9,109',

From (6) we see that cos z and sin 7 are periodic with period 2rr, just as in real. PeriodicitY of tan z and

cot z with period ?T now follows.
Formula (7) points to an essential difference between the real and the complex cosine and sine; whereas

|cos x| < 1 and lsin "l 
< 1, the complex cosine and sine functions aíe no longer bounded but aPProach infinitY

in absolute value as j + @,since then sinh y -> - in (7), l

ExAMPLE 2 Solutionsof Equations. ze os of coszand sinz

Solve (a) cosz : 5 (which has no real solution!), (b) cos Z:0, (c) sin z:0.

Solution, (u) nzi, - |Oei, + l : 0 from (l) by multiplicationby ei', This is a quadratic equation in eŽ'.

with solutions (rounded off to 3 decimals)

"iz - ,-a+iJ : 5 + ,v55 - |: 9.899 and 0.101.

Thus e-U : 9.899 or 0.IO!, eiÍ :
Can you obtain this from (6a)?

1, y : -|2.292, x : 2nrr. Ans. z : +2nr -| 2.292i (n : 0, 1,2, ",),

(b) cos-T : 0, sinhy : 0 by (7a), y : 0. Ans. z:
(c) sinx : 0, sinhy : 0 by (7b). Ans. z: *nŤr

sin z are those of the real cosine and sine functions.

General formulas
values. This follows
addition rules

(9)

*Ž(z, + l)rr (n: 0,I,Z,, , ,).

(n : O, I, 2, , , ,). Hence the only zeros of cos z and
l

for the real tri7onometric functions continue to hold for complex

immediately from the definitions. We mention in particular the

cos (Zr t ,r) : cos Z1 cos e2 T sin Zl sin z2

sin (z1 t ,r) : sin Z1 cos z2 t sin z2 cos {1

cos2Z+sin2Z:I.

Some further useful formulas are included in the problem set.

and the formula

(10)

HyperboIic Functions
The complex hyperbolic cosine and I

(11) coshz:t7e" + e

sine are defined by the formulas

"), sinhz : Ž("' - e-").

This is suggested by the familiar definitions for a real variable [see (8)]. These functions

are entire, with derivatives

(cosh z)' : sinh z, (sinh z)' : cosh z,(I2)

as in calculus. The other hyperbolic functions are defined by
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(13)

sinh z
tatth; : ----__:_ ,

cosh z

1
sech;: ----_l__,

cosh z

coth z

csch Z

cosh z

sinh z

1:-
sinh z

Complex Trigonometric and Hyperbolic Functions Are Related. If in (11), we replace
zby iz and then use (1), we obtain

(l4) cosh lz : cos z, sinh tz : i sin z.

Similarly, if in (1) we replace zby iz and then use (11), we obtain conversely

(15) cos k : cosh z, sin iz : i sinh z.

Here we have another case of unrelated real functions that have related complex analogs,
pointing again to the advantage of working in complex in order to get both a more unified
formalism and a deeper understanding of special functions. This is one of the main reasons
for the importance of complex analysis to the engineer and physicist.

1.

)

Prove that cos Z, sin Z, cosh Z, sinh e aíe entire
functions.

Verify by differentiation that Re cos z and Im sin z are
harmonic.

r FoRMuLAs FoR HypERBoLlc FuNcTloNs
Show that

3. coshz:coshxco y*lsinhxsiny
sinhe: sinh-Tcosy * i coshx siny.

4. cosh (11 -| z) : cosh 21 cosh z2 .| sinh z1 sinh z2

sinh (er -| z) : sinh z1 cosh z2 f cosh z1 sinh z2.

5. cosh2z - sinh2 z: I

6. cosh2z * sinh2 z: cosh2z

E Function Values. Compute (in the form u + iu)

1,4.

16.

sinh (4 - 3i)

(Real and imaginary pa

Retan2:

Imtan z :

Equations. Find

15. cosh (4 - 6rri)

rts) Show that

sin x cos x
cos2x * sinhzy

sinh y cosh y

cos2x * sinh2y

all solutions of the following

18. sinz: 100

20. cosh z: -L

equations.

17. cosh z: 0

19. cos z: 2i
21. sinh z: O

11. cosh (-2 + 3l), cos (-3 - 2i)
12. -i sinh (-,rr ,t 2i), sin (2 + ni)
1,3. cosh (2n + I)rri, n : I, 2, . . .

22. Ftnd all z for which (a) cos z, (b) sin z has real values.

@ Equations and Inequalities. Using the
definitions, prove:

23. cos 1 is even, cos (-a) : cos 7, and sin z is odd,
sin (-z) : _sin z.

24. |sinh y| < |cos z| < cosh y, |sinh y| < |sin z| < cosh y.
Conclude that the complex cosine and sine are not
bounded in the whole complex plane.

25. sin z1 cos zz : Ž[sin (z1 * z) * sin (zl - z)f

7. cos (1 + l)
9. sin 5i, cos 5i

8. sin (1 + 
')10. cos 3rri
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13.7 Logarithm. General Power
We finally introduce the complex logarithm, which is more complicated than the real

logarithm (which it includes as a special case) and historically puzzleď mathematicians
for some time (so if you first get puzzted-which need not happen!-be patient and work
through this section with extra care).

The natural logarithm of z : x,-l ly is denoted by ln z (sometimes also by log z) and

is defined as the inverse of the exponential function; that is, w : ln z is defined for

z * 0 by the relation
^,LD 

- -( -<..

(Note that z : 0 is impossible, since e* * 0 for aII w; see Sec. 13.5.) If we set

w : 1,1 
,l iu and, z: ,ei', this becomes

,u.l - ,u+ž, : rei9.

Now from Sec. 13.5 we know that e'+i" has the absolute value eu and the argument u.

These must be equal to the absolute value and argument on the right:

eu:r, U:0.

eu : r gives u : In r, where ln r is the familiar real natural logarithm of the positive
number r : lzl.Hence w : Lt l iu : lnz is given by

Inz: lnr * i0 (r: |z| > 0, 0: argz).

Now comes an important point (without analog in real calculus). Since the argument of
z is determined only up to integer multiples of 2rr, the complex natural logarithm lnz
k + O1 is infinitely many-valued.

The value of ln z coffesponding to the principal value Arg z (see Sec. 13.2) is denoted

by Ln z (Ln with capital L) and is called the principal value of ln z. Thus

Lnz: h|z| + iArgz (z + 0;.

The uniqueness of Arg z for given z (+ 0) implies that Ln z is single-valued, that is, a

function in the usual sense. Since the other values of arg z differ by integer multiples of
2T the other values of ln z are given by

lnZ: Lnz t Znrri (n -- 1,2, , , ,),

They all have the same real part, and their imaginary parts differ by integer multiples of 2n.
If z is positive real, then Arg z : 0, and Ln z becomes identical with the real natural

logarithm known from calculus. If z is negative real (so that the natural logarithm of
calculus is not defined!), then Arg z : rr and

Lnz:In|z|+ rrt (z negative real).

(1)

(2)

(3)
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From (1) and n|nr - r for positive real r we obtain

l4a) eln' : Z

as expected, but since arg (e') : ), t 2nrr is multivalued, so is

(4b) ln(e') : z t 2nrri,

EXA M P L E l Natural Logarithm. Principal Value

ln 1 : 0, +2rri, +-4rri,,,,

ln4: 1.386294 -r 2nri

ln (- 1) : + ni, +3ri, +Srri, , , ,

ln (-4) : 1.386 294 -| (2n + I)ri

In i : til2, -3Trl2, 5nil2, " ,

ln4i : I.386294 -l nil2 -+ 2nri

ln (-4r) : 1.386 294 - ril2 + 2nri

ln (3 - 4i):1n5 -l i arg(3 _ 4i)

: 1.609 438 - 0.927 295i + 2nri

n:Orl,

Lnl:0
Ln4 : I.386294

Ln (-1) : rt

Ln(*4): 1.386 294 + ni

Ln i : ti/2

Ln4i : I.386294 -l rril2

Ln(-4i): 1.386 294 - ril2

Ln (3 - 4i): L609 438 - 0.921 295i

(Fig. 33a)

I

l

u

-0.9 + 6lt

-0.9 + 4lt

-0.9 + 2n
0_0,9

-0,9 - 2n

o
I

I

?
I

+
I

Fig. 334. Some values of ln (3 - 4i) in Example '|

The familiar relations for the natural logarithm continue to hold for complex values,
that is,

(a) In(z )-InzllInzz, (b) In (ztlzz) - In zt - |1 zz

but these relations are to be understood in the sense that each value of one side is also
contained among the values of the other side; see the next example.

EXAMPLE 2 |llustration of the Functional Relation (5) in Complex

Let 
Zt: Zz: en,: _7"

If we take the principal values

1n zr : Ln zz: ri,

then (5a) holds provided we write ln (z z) : ln 1 : 2ni; however, it is not true for the principal value,
Ln(z ):Ln1:0. I

(5)

SEC. l3.7 Logarithm. General Power
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Analyticity of the Logarithm

For every fl: 0, *I, +2, ", formula (3) defines afunction, which is analytic,
except at 0 and on the negative real axis, and has the derivative

(6) 1In z)' - 
1 

(z not 0 or negative real).
z

P R O O F We show that the Cauchy-Riemann equations are satisfieC. From (1)-(3) we have

Inz:lnr -t i(0 + r): +In@z 
+ y')+ i(u..tu" + 

-.)

where the constant c is a multiple of 2n. By differentiation,

x11qr 
x2+y2 "a l+Qlx)2 x

ua:?+Ý:-.u*:-áŇ( +)

Hence the Cauchy-Riemann equations hold. fConfirm this by using these equations in
polar form, which we did not use since we proved them only in the problems (to

Sec. 13.4).] Formula (4) in Sec. 13.4 now gives (6),

11nz)':u*liu*:-J-*,---]- 
/ v \ x-iv 1 -x-Ť y:-l I+(yď l,-;'): ,,*r,:;, l

Each of the infinitely many functions in (3) is called a branch of the logarithm. The
negative real axis is known as a branch cut and is usually graphed as shown in Fig. 335.
The branch for n : 0 is called the principal branch of ln z.

Fig. 335. Branch cut for ln z

General powers

General powers of a complex number z : x -l iy are defined by the formula

(7) ,c - ,c In z (c complex, z * 0).

Since ln z is infinitely many-valuad, z" will, in general, be multivalued. The parlicular
value

-c - ^cLrlz

is called the principal value oí z".
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EXAMPLE 3 GeneralPower

.i ilnil:e

If c : ft : l, 2,,,,, then x' is single-valued and identical with the usual nth power
of z. If c - -7, -2, . . . , the situation is similar.

If c : Iln, where fr : 2, 3,, . ., then

z" : Vz, - n(Un) In z k*0),
the exponent is determined up to multiples of 2dln and we obtain the n distinct values
of the nth root, in agreement with the result in Sec. 13.2.If c : plq, the quotient of two
positive integers, the situation is similar, and z" has only finitely many distinct values.
However, if c is real irrational or genuinely complex, then z" is infinitely many-valued.

: exp (i ln i) : exp 
l, G , - ,,,,)): n-r-''r='n.

A1l these values are real, and the principal value (n : 0) is 
"-rl2.Similarly, by direct calculation and multiplying out in the exponent,

G + il2-i : exp lQ - r;h (1 + i)] : exp |rz - i; {ln\,ó + lrri + Znri}l

- 2rrl4l:2n-[sin (} 1n2) + i cos 1} ln2)]. l

It is a convention that for real positive z : x the expression z" means uc ln r where ln x
is the elementary real natural logarithm (that is, the principal value Ln z (z - x > 0) in
the sense of our definition). Also, tf 1: e,the base of the natural logarithm, z" : e" is
conventionally regarded as the unique value obtained from (1) in Sec. 13.5.

From (7) we see that for any complex number a,

oz - ,zlna

We have now introduced the complex functions needed in practical work, some of them
(e', cosz, sin Z, cosh z, sinh z) entire (Sec. 13.5), some of them (tan z, cot z, tanh z,coth z)
analytic except at certain points, and one of them (ln z) splitting up into infinitely many
functions, each analytic except at 0 and on the negative real axis.

For the inverse trigonometric and hyperbolic functions see the problem set.

Principal Value Ln e. Find Ln z when z equals:

(8)

1. -10
3.2-2i
5.-3-4i
7. 0.6 + 0.8i

9. I-i

2.2+2i
4. -5 -| 0.1i

6. -100
8. -ei

12. ln e

14. In (4 + 3i)
16. ln (e3i)

13. ln (-6)
15. ln (- r-i)

@ Ail Values of lnz. Find all values and graph
some of them in the complex plane.

10. ln 1 11. ln (-1)

17. Show that the set of values of ln (i2) differs from the
set of values of 2 In i.

@ Equations. Solve for z..

18. ln z: (2 - LDn 19. ln z: 0.3 + 0.7i

20. lnz: e - rri 2l. Inz:2 + lrri
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General Powers. Showing the details of your
work, find the principal value of:

22. i2i, (2i)i
24. (1 - i)r+,
26. (-I)t-zl
28. (3 - Ailtts

29. How can you find
answef to Prob. 25?

30. TEAM PROJECT. Inverse Trigonometric and
Hyperbolic Functions. By definition, the inverse sine
w : arcsin z is the relation such that sin ly : z. The
inverse cosine w : arccos z is the relation such that

cos }, : e. The inverse tangent, inverse cotangent,
inverse hyperbolic sine, etc., are defined and denoted

in a similar fashion. (Note that all these relations are

multivalued.) Using sin ly : (ei- - e-i*)l(2i) and

similar representations of cos }r, etc., show that

(e) arctan z :

(f) arctanh z :

(g) Show that w : arcsin e is infinitely many-valued,
and if w, is one of these values, the others are of the

formw1 -r Znr and r - wtt Znr, n : 0, 1,,,
(The principal value of w : u l iu : arcsinz is
defined to be the value for which - rl2 3 u = rrl2
ifu > 0and -rrl2 1 u 1 nlLifu < 0.)

23. 43*i

25. (1 t ilt-l
27. il|2

the answer to Prob. 24 from the

(a)

(b)

(c)

(d)

arccos z : -i In (z,

arcsin z: -iIn(iz
arccosh z : ln (z *

arcsinh z : ln (4 *

+xF-tl
+ l/t * *l
\/r'- D

r/r' + tl

i itz_ln-
2 i-z

1 1iz_ln-
2 I-z.

1. Add, subtract, multiply, and divide 26 7i and
3 + 4i as well as their complex conjugates.

2. Write the two given numbers in Prob. 1 in polar form.
Find the principal value of their arguments.

3. What is the triangle inequality? Its geometric meaning?
Its significance?

4. If you know the values of ÝT, how do you get from
them the values of {zfor any z?

5. State the definition of the derivative from memory. It

looks similar to that in calculus. But what is the big
difference?

6. What is an analytic function? How would you test for
analyticity?

7. Can a function be differentiable at a point without being
analytic there? If yes, give an example.

8. Are |z|, Z, R" z,Imz analytic? Give reason.

9. State the definitions of e', cos z, sin z, cosh z, sinh z and

the relations between these functions. Do these relations
have analogs in real?

10. What properties of e' are similar to those of e* ? Which
one is different?

11. What is the fundamental region of e' ? Its significance?

12. What is an entire function? Give examples.

13. Why is ln z much more complicated than ln x? Explain
from memory.

14. What is the principal value of ln z?

15. How is the general power z" defined? Give examples.

FtZl Complex Numbers. Find, in the form x * iy,
showing the details:

16. (1 + i)" 17. (-2 + 6i)2

18. 1/(3 - 7i) 19. (1 - i)l(t + )2
20. \/-5 -Izi 21. (43 - I9i) /(8 + i)

@ Polar Form. Represent in polar form, with the

principal argument:

22. I-3i 23.-6+6i
24. \/ňl(4 + 2i) 25. -Izi
26.2 + 2i

@ Roots. Find and graph all values of

27. \/u 28. z56
29. Ý- 30. \/32 - ui

E-]sl Analytic Functions. Find /(z) : u(x,y) * iu(x,y)
with u or u as given. Check for analyticity.

3'!,. u : xl(x2 + y') 32. u : g-3l: sin 3y

33. u : x2 - 2ry - y' 34. u : cos 2x cosh2y

35.u:e*'-a'sin}xy

@ Harmonic Functions. Are the following
functions harmonic? If so, find a harmonic conjugate.

36, x2y2 37. xy
3g. ,-rlz cos }y 39. x2 + y2

FO4Š] Special Function Values. Find the values of

40. sin (3 + 4ni) 4t. sinh 4rri
42. cos (5rr + 2i) 43. Ln (0.8 + 0.6r)

44. tan ( 1 + 
') 

45. cosh (I + rri)

:STlONS AND PROBLEMS



Summary of Chapter 13

For arithmetic operations with complex numbers

(1) z:x*iy:rei':r(cosO+isin0),

, : lzl : \/ *' + Ý, 0 : arctan (y/x), and for their representation in the complex
plane, see Secs. 13.I and 13.2.

A complex function f (z) : u(x, y) * iu(x, y) is analytic in a domain D if it has
a derivative (Sec. 13.3)

(2) f'(z):Al\ry
everywhere in D. Also, /(z) is analytic at a point z : zo if it has a derivative in a
neighborhood of zo (not merely at eo itselO.

If f(z) is analytic in D, then u(x, y) and u(x, y) satisfy the (very important!)
Cauchy-Riemann equations (Sec. l3.4)

(3) E':E', 0u 
--6u6x óy' 0y 6x

everywhere in D. Then u and u also satisfy Laplace's equation

(4) u** t uaa : O, U** * uuu: O

everYwhere in D.If u(x, y) and u(x, y) are continuous and have continuous partial
derivatives in D that satisfy (3) in D, then f(z) : u(x, y) l iu(x, y) is analytic in
D. See Sec. 13.4. (More on Laplace's equation and complex analysis follows in
Chap. 18.)

The complex exponential function (Sec. 13.5)

(5) ez: axpz: e* (cosy + i siny)

reduces to er if 7: x (y :0). It is periodic with2rri and has the derivatlve er.
The trigonometric functions are (Sec. 13.6)

cosz : 
+ 

(n" + u-") -cos-r coshy - i sinx sinhy
(6)

sinz - * 
'r* 

- ,-.n'): sinx cosh y + icos-r sinhy

and, furthermore,

tan z : (sin z)/cos z, cot 7 : Iltan z, etc.

Complex Numbers and Functions

635



Complex Numbers and Functions

The hyperbolic functions are (Sec. 13.6)

(1) coshz : i@" -l e-") : cosiz, sinhz -- i@" - e-") - -i sin iz

etc. The functions (5)-(7) are entire, that is, analytic everywhere in the complex
plane.

The natural logarithm is (Sec. 13.1)

(8) Inz: ln|z| + iargz: tnlzl + lArg z+ Znrri

where z * 0 and n : 0, 1, Arg z is the principal value of arg e, that is,

-rr 1 Argzš n. We see that lnz is infinitely many-valued. Taking n:0 gives

the principal value Ln z of ln z; thus Ln z : h |z| + i Arg z.
General powers are defined by (Sec. 13.1)

(9) ,c - ,c ln z (c complex, z * 0).
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14.1 Line

C,H A,P,T E R 1

Complex lntegration

Two main reasons account for the importance of integration in the complex plane. The
practical reason is that complex integration can evaluate certain real integrals appearing
in applications that are not accessible by real integral calculus. The theoretical reason is
that some basic properties of analytic functions are difficult to prove by other methods.
A striking property of this type is the existence of higher derivatives of an analytic function.

Complex integration also plays a role in connection with special functions, such as the
gamma function (see [GR1l, p.255), the error function, various polynomials (see tGR10])
and others, and the application of these functions in physics.

In this chapter we define and explain complex integrals. The most important result in
the chapter is Cauchy's integral theorem or the Cauchy-Goursat theorem, as it is also
called (Sec. I4.2).It implies Cauchy's integral formula (Sec. l4.3), which in turn implies
the existence of all higher derivatives of an analytic function. Hence in this respect,
complex analytic functions behave much more simply than real-valued functions of real
variables, which may have derivatives only up to a certain order.

A further method of complex integration, known as integration by residues, and its
application to real integrals will need complex series and follows in Chap. 16.

Prerequisite: Chap. 13

References and Answers to Problems; App. 1 Part D, App.2.

in the Complex PlaneIntegraI
As in calculus we distinguish between definite integrals and indefinite integrals or
antiderivatives. An indefinite integral is a function whose derivative equals a given
analytic function in a region. By inverting known differentiation formulas we may find
many types of indefinite integrals.

Complex definite integrals are called (complex) line integrals. They are written

Here the integrand /(z) is integrated over a given curve C or a portion of it (an arc, but
we shall say "curve" in either case, for simplicity). This curve C in the complex plane is
called the path of integration. We may represent C by a parametric representation

z(t):x(t)+iy(t) (a=t=b).

f f,r, or.
-C

(1)

637



638 CHAP. 14 Complex lntegration

The sense of increasing r is called the positive sense on C, and we say that C is oriented
by (1).

For instan ce, z(t) : t * 3it (0 a t š 2) gives a portion (a segment) of the line y : 3x.

The function z(/) : 4 cos t + 4isin r (- rr š t = n)represents the circle lr| : 4,and so

on. More examples follow below.
We assume C to be a smooth curve, that is, C has a continuous and nonzero derivative

ž(t):+:ilr;+;}(4
dt

at each point. Geometrically this means that C has everywhere a continuously turning

tangent, as follows directly from the definition

z(t*L,t)-z(t)
ž(r) : lim

Aí---O L,t
(Fig. 336).

we choose an arbitrary point, say,

r satisfies to š t a tr), a point {2

Here we use a dot since a prime ' denotes the derivative with respect to z.

Definition of the Complex Line lntegral
This is similar to the method in calculus. Let Cbe a smooth curve in the complex plane

given by (1), and let í(z)be a continuous function given (at least) at each point of C. We

now subdivide (we "partition") the interval a š t < b in (1) by points

to(: a), tb ",, tn_t, tn(: b)

points
(Fig. 337),

Fig. 336. Tangent vector Žlt1 or a curve C in the

complex plane given by z(t). The arrowhead on the

curve indicates the positive sense (sense of increasing t).

where zj : z(tj). on each portion of subdivision of c
a point (1 between zg and z1 (that is, ír : z(t) where

between Z1 anď Z2, atQ. Then we form the sum

7L

(2) S, : Ž íGň Lz*
tn:I

We do this for eachn:2,3,.. .in a completely independent manner, but so that the

greatest l\l,*l : V* - trn_tl approaches zero as n ---> m. This implies that the greatest

where 
^Z}?? 

: Z.m - Zm_|.

Fig. 337. Complex line integral



SEC. l4.1 Line lntegral in the Complex Plane

l!z,-l also approaches zero. Indeed, it cannot exceed the length of the arc of C from zm_t
19 Zm and the latter goes to zero since the arc length of the smooth curve C is a continuous
function of r. The limit of the sequence of complex numbers , 2, , 3, , , , thus obtained is
called the line integral (or simply the integral) of f (z) over the path of integration C with
the orientation given by (1). This line integral is denoted by

if C is a closed path (one whose terminal point Z coincides with its initial point zo, &s for
a circle or for a curve shaped like an 8).

General Assumption. All paths of integration for complex line integrals are assumed to

be piecewise smooth, that is, they consist of finitely many smooth curves joined end to end.

Basic Properties Directly lmplied by the Definition
1. Linearity. Integration is a linear operation, that is. we can integrate sums term by

term and can take out constant factors from under the integral sign. This means that
if the integrals of "fr and f 2 over a path C exist, so does the integral of kj1 * kzf z
over the same path and

(4) [lorírrr', + krfzk)]dz: k1 | f ,rrrdz-l kz I hrrror.JC , , JC - JC--

2. Sense reversal in integrating over the same path, from zg to Z (left) and from Z to
e6 (right), introduces a minus sign as shown,

3. Partitioning of path (see Fig. 338)

(3) Í"f 
'r) 

or,, or by f"tu, o,

(5)
.Z .Zo

l radz: -l Iaar.
'zo "Z

(6) I r,r, dz : f t,r, dz -| [ í,r, or.
"C -C1 ,C2

Z
,o

Fig. 338. Partitioning of path fformula (6)]

Existence of the Complex Line lntegral
Our assumptions that f (z) is continuous and C is piecewise smooth imply the existence
of the line integral (3). This can be seen as follows.

As in the preceding chapter let us write f(z) : u(x, y) l iu(x, y). We also set

(,n: **iT* and L,Zrn:Lx*liLyr,,
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Then (2) may be written

Sn: ) r, * iu)(A^x,,+ iLy,,,)

where u : u({rn, Trn), u : u({r, Tn) and we sum over m from I to n. Performing the

multiplication, we may now split up . r, into four sums:

These sums are real. Since / is continuous, u and u aíe continuous. Hence, if we let n
approach infinity in the aforementioned way, then the greatest L,xrnand Ly,nwill approach
zero anď each sum on the right becomes a real line integral:

(8) lim S,", :
rL+@

This shows that under our assumptions on / and C the line integral (3) exists and its value
is independent of the choice of subdivisions and intermediate points {n. l

First Evaluation Method:
Indefinite Integration and Substitution of Limits
This method is the analog of the evaluation of definite integrals in calculus by the

well-known formula

(1)

I"ru, az : [", dx - í", o, * , 
U "" 

dy + I", *f

Lp'@) : í(x)l.

It is simpler than the next method, but it is suitable for analytic functions only. To formulate
it, we need the following concept of general interest.

A domain D is called simply connected if every simple closed curye (closed curve
without self-intersections) encloses only points of D.

For instance, a circular disk is simply connected, whereas an annulus (Sec. 13.3) is not
simply connected. (Explain!)

-bl

J ftxl dx - F(b) - F(a)

THEoREM 1 !ndefinite lntegration of Analytic Functions

Let f(z) be analytic in a simply connected domain D. Then there exists an
indefinite integral oí í(z) in the domain D, that is, an analytic function F(z) such that
P' (z) : í(z) in D, and for all paths in D joining two points zg and z1 in D we have

: F(z) - F(zo) lr'k) -- f@].

(Note that we can write zg and zl instead of C, since we get the same value for all
those C from zo to 4.)

(9) f'"''rr, o,
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This theorem will be proved in the next section.
Simple connectedness is quite essential in Theorem 1, as we shall see in Example 5.
Since analytic functions are our main concern, and since differentiation formulas will often

help in finding F(z) for a given f (z) : F' (z), the present method is of great practical interest.
If f (z) is entire (Sec. 13.5), we can take for D the complex plane (which is certainly

simply connected).

ExAMPLE l

ExAMPLE 2

ExAM PLE 3
,B-3ri l8-3ni,

l ,''' dz : 2e't2 | : 21r4-3rilZ _ ,+ l ril2,, _ 
OJ8rnž lara

since e'is periodic with period 2z,l. l

Í_r+:Lnl-Lnl-i) 
: 

+ ( +):iz,.HereDisthecomplexplanewithoutOandthenegative
real axis (where Ln z is not analytic), Obviously, D is a simply connected domain. l

Second Evaluation Method:
Use of a Representation of a Path
This method is not restricted to analytic functions but applies to any continuous complex
function.

ExAM PLE 4

THEoREM 2 lntegration by the Use of the Path

Let C be a piecewise smooth path, represented by z : z(t), where a 5 t S b. Let
f (z) be a continuous function on C. Then

(10) I"ru, d.z: f,ou,rž(t) dt (u : _1

P R O O F The left side of (10) is given by (8) in terms of real line integrals, and we show that the
right side of (10) also equals (8). We have z: x l iy, hence ž : i + iy. We simply
write u for u|x(t), y(r)] and u for u[x(t), y(/)]. We also have dx : i dt and dy : clt.
Consequently, in (10)

I:-','o,: !.' l:-' 
: },, + ;;3 : -? - i,

I __:", zdz: ,^r|'_n 
_u: 

2 sin ri : 2isinh rr : 23.0gli

.b

J írr<,11žft) dt :

l

dx-

dx-

^b

Jr"

I",

["a

+ iu)(i + iy) dt

udy*i(udy+udx)]

rudy)+i|tudy+udx).
'C

tr

l
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COMMENT. In (7) and (8) of the existence proof of the complex line integral we referred
to real line integrals. If one wants to avoid this, one can take (10) as a definition of the

complex line integral.

Steps in Applying Theorem 2

(A) Represent the path C in the form z(t) (a < t = b).

(B) Calculate the derivative Ž(t) : dzldt.

(C) Substitute z(/) for every z tn f 17t (hence x(r) for x and y(r) for y).

(D) Integrate í|z(t)]Ž(r) over / from a to b.

A Basic Result: lntegral of 1/z Around the Unit Circle

We show that by integrating 1/z counterclockwise around the unit circle (the circle of radius 1 and center 0; see

Sec. l3.3) we obtain

(11) : Zrri (C the unit circle,
counterclockwise).

This is a very important result that we shall need quite often.

Solution. (A) We may represent the unit circle C in Fig. 327 of Sec. 13.3 by

e(r): cosr + jsin t: eit (0 < l12rr),

so that counterclockwise integration corresponds to an increase of r from 0 to 2rr.

(B) Differentiation gives ž(r) : ieit (chain rule!).

(C) By substitution, í(z(t)) : Ilz(t) : e-Žt.

(D) From (10) we thus obtain the result

ExAMPLE 5

ExAMPLE 6

l n-"ir" ,t, :
Jo

++-C 4

, ['" o,++
"C <

: 2rri.

Check this result by using z(r) : cos t -l l sin t.

Simpk connectedness is essential in Theorem 1. Eqlaíion (9) in Theorem 1 gives 0 for any closed path

because then 11 : zg, so that F(;1) - F(zo) : 0. Now 1/z is not analytic aí z : 0. But any simply connected

domain containing the unit circle must contain z : 0, so that Theorem 1 does not apply-it is not enough that

l/z is analytic in an annulus, say, ; < 1.1 < B, because an annulus is not simply connected! l

lntegral of 1/z- with lnteger Power m

Let í(z) : (z - z6)m where re is the integer and a6 a constant. Integrate counterclockwise around the circle C
of radius p with center at z0 Gig. 339).

Fig. 339. Path in Example 6
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Solution. We may represent C in the form

643

(0 < r a2rr).

Then we have

and obtain

z(t) : zo* p(cosr * i sin t) : zo + pru'

{z - Z.gl'' : p-ei''. clz : ipeit clt

Ž(t) : t, í(z(t))

Ž(t) : i, í(z(t))

f"* -

By the Euler formula (5) in Sec. 13.6 the right side equals

f "2o .2n l

'o- 
'' 

LJ. 
cos (,?? + l)t dt * 

'Jo sin (m * 
',,rr_.] 

.

Iím: -1,wehavefn*I:1,cos0: l,sin0:0.Wethusobtain2rri.Forintegerm*Ieachof thetwo
integrals is zero because we integrate over an interval of length 2rr, equal to a period of sine and cosine. Hence
the result is

- -1\L),

+ -l and integer).

r2o r2o
zoť dz: Jo p*ni*' ipeil dr: io-'' Jn eilm'I)t dí.

(12)

Dependence on path. Now comes a yeíy important fact. If we integrate a given function
f (z) from a point zg to a point z1 along different paths, the integrals will in general have
different values. In other words, a complex line integral depends not only on the endpoints
of the path but in general also on the path itself. The next example gives a first impression
of this, and a systematic discussion follows in the next section.

EX A M P [. E '''7 lntegral of a Nonanalytic Function. Dependence on Path

Integrate í(z): Rez: xfromOto 1 + 2i(a)along C* inFig.340, (b) along Cconsisting of ClandC2.

Ix
Fig. 340. Paths in Example 7

Solution. (a) C* can be represented by zG) : t ,l 2it (0 < r < 1). Hence ž(t) : | -f 2i and ílz(t)l : x(t) : ,
on cx. we now calculate

f"r' - zo)- dz:

|,.*" 
zc]z : |,,, 

* 2i)dt : !1t + z1 : * + i.

llz.i @
|o (m

y

2

(b) We now have

C; z,(t) : t,

C2: z(t) : 1 -l it,

:x(t):t (0<l<1)
:x(t):1 (0<t<2).

z=I+2i

C2

C*/

' Cl
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Using (6) we calculate

Note that this result differs from the result in (a).

_Re:dz I:,o, - I',,idt - }+ zi.
, ' 0 'l*.. Or: I",*"raz+ !"

I

|I",u, 
a,| 

= 
ut

ExAMPLE 8

1

Fig. 3a1. Path in
Example 8

l, is the length of C and M a constant such that lí(z)| = M everywhere on C.

p R o o F Taking the absolute value in (2) and applying the generalízed inequality (6*) in Sec. 13.2,

we obtain

|n I n ,lL

ls,l : 12 rc*) Lz,nl 
= ž Vtr*,||L,z,,l= M> lLr,-l.

lr":' l ,n:t yn:I

Now lLr,"l is the length of the chord whose endpoints are z,n_I and z* (see Fig. 33] on

p. 638). Hence the sum on the right represents the length L* of the broken line of chords

whose endpoints día lg, zl, . . . , zn (: Z).If n appíoaehes infinity in such a way that the

greatest |Ar*| and thus |Az-| approach zero, then L* approaches the length l of the curve

C,by the definition of the length of a curve. From this the inequality (13) follows. l

We cannot see from (13) how close to the bound ML the actual absolute value of the

integral is, but this will be no handicap in applying (13). For the time being we explain

the practical use of (13) by a simple example.

Estimation of an lntegral

Find an upper bound for the absolute value of the integral

r
J ,' ar.

C

Solution. r: ÝŽ ana |í(z)| : lz2l ( 13)on C gives by

I

,'az|= zÝz

-<1

ll
2;J

Summary on Integration. Line integrals of f(7) can always be evaluated by (10), using

a representation (1) of the path of integration. If í(z) is analytic, indefinite integration by
(9) as in calculus will be simpler.

Bounds for lntegrals. ML-Inequality
There will be a frequent need for estimating the absolute value of complex line integrals.

The basic formula is

(13) (ML-inequality);

C the straight-line segment from 0 to 1 + i,Fig.341.

:2.8284.

The absolute value of tn" int"s.a i. 
|-

zl 2 -- ; ,| : ; \/5 : o.g428 (see Example 1). l
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PARAMETR|C REPRESENTATIONS

Find and sketch the path and its orientation given by:

1. z(t): (1 + 3ť)t (I = t = 4)

2.z(t)-5-2it(-3=t<3)
3. z(t) : 4 l i l 3ežt (0 < r a2rr)
4. z(t) : 1 * 1 1 

"-nit Q < t < 2)

S.z(t):eŽ'(0=t<rr)
e. zG) : 3 + 4i -| 5eit (rr < t a 2rr)

7. z(t): 6 cos 2t + 5i sin2t (0 < t = rr)
8. z(t): 1 -| 2t + 8it2 (_1 

= 
r < 1)

9. z(t) : t + itr" (-I < t = 2)

E0.181 pARAMETRlcREpREsENTATloNs

Sketch and represent parametrically:

10. Segmentfrom 1 * i to 4 - 2i

11. Unit circle (clockwise)

12. Segment from a -l ib to c - id
13. Hyperbolaxy : 1 from 1 i i to 4 + ii
14. Semi-ellipse x2la2 + y2lb2 : 1, y > 0
15. Parabo|ay:4 - 4x2 (-1 

= 
_r š 1)

16. |z - 2 + 3i|: 4 (counterclockwise)

17. |z -l a * ib|: r (clockwise)

18. Ellipse 4(x - I)' + 9(y + 2)2 : 36

@ INTEGRATIoN
Integrate by the first method or state why it does not apply
and then use the second method. (Show the details of your
work.)

r
19. I Re z dz, C the shortest path from 0 to l * lJC

r
20. I Rez dz,,C theparabolay: x2fromOto 1 + iJC

r
2t. I e2' dz, C the shortest path from rj to2ri

JC

r
22. I sin z dz, C any path from 0 to 2i

JC

23. | .or' z dz from - lri along lrl : , to ni in the right

half-plane
r

24. l t. + z-') dz, C the unit circle (counterclockwise)
JC

r
25. I cosh 4z dz, C any path from - nil\ to dl8l

26. IZ Or,C from -1 + i along the parabolay : *z roJC
I+i
r

27. I sec2 z dz, C any path from nl4 to nil4JC

r
28. I lm z' dz counterclockwise around the triangle withJC

vertices z : 0, I, i

29. [ ,u"'' dz, C from i along the axes to 1JC

30. (Sense reversal) Verify (5) for í(z) : 32, where C is
the segment from -1 - l to 1 * i.

31. (Path partitioning) Verify (6) for f (z) : I/z and C'
and C2 the upper and lower halfs of the unit circle

32. (ML-inequality) Find an upper bound of the absolute
value of the integral in Prob. 19.

33. (Linearity) Illustrate (4) with an example of your own.
Prove (4).

34. TEAM PROJECT. Integration. (a) Comparison.
Write a short report comparing the essential points of
the two integration methods.

(b) Comparison. Evaluate I rrr'dz by Theorem 1
JC"

and check the result by Theorem 2, where:

(i) /(e) : z4 and C is the semicircle |z| 
: 2 from

-2i to 2i in the right half-plane,

(ii) í(z) : e2' and C is the shortest path from 0
toI*2i.

(c) Continuous deformation of path. Experiment
with a family of paths with common endpoints, say,
Z(t): t -f ia sinr,0 š t š rr,with real parameter a.
Integrate nonanalytic functions (Re e, Re (z2), etc.) and
explore how the result depends on a. Then take analytic
functions of your choice. (Show the details of your
work.) Compare and comment.

(d) Continuous deformation of path. Choose
another famlly, for example, semi-ellipses

experiment as in (c).

35. CAS PROJECT.Integration. Write programs for the
two integration methods. Apply them to problems of
your choice. Could you make them into a joint program
that also decides which of the two methods to use in a
given case?
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Simple

/,u)(Q
Simple

ffiW
Simply

connected

14.2 Cauchyi Theoremlntegral
We have just seen in Sec. I4.I that a line integral of a function /(z) generally depends

not merely on the endpoints of the path, but also on the choice of the path itself. This
dependence often complicates situations. Hence conditions under which this does zoí
occur are of considerable importance. Namely. if /(z) is analytic in a domain D and D is
simply connected (see Sec. I4.I and also below), then the integral will not depend on the

choice of a path between given points. This result (Theorem 2) follows from Cauchy's
integral theorem, along with other basic consequences that make Cauchy's integral
theorem the most important theorem in this chapter and fundamental throughout complex
analysis.

Let us begin by repeating and illustrating the definition of simple connectedness
(Sec. 14.I) and adding some more details.

1. A simple closed path is a closed path (Sec. I4.I) that does not intersect or touch

itself (Fig.3aD. For example, a circle is simple, but a curve shaped like an 8 is not

simple.

Fig. 342. Closed paths

2. A simply connected domain D in the complex plane is a domain (Sec. 13.3) such

that every simple closed path in D encloses only points of D. Examples: The interior
of a circle ("open disk"), ellipse, or any simple closed curve. A domain that is not
simply connected is called multiply connected. Examples., An annulus (Sec. 13.3),

a disk without the center, for example, 0 < 1.1 < 1. See also Fig. 343.

í'i-]i"i ;{:i,]ill\l.a:.",;' 
".*_j:: 

,i,i

Fig. 3a3. Simply and multiply connected domains

More precisely, a bounded domain D (that is, a domain that lies entirely in some circle about the origin) is
calledp-fold connected if its boundary consists of p closed connected sets without common points. These sets

canbecurves,segments,orsinglepoints(suchasz:Ofor0<l.| <1,forwhichp:Z).Thus,Dhasp-1
"holes", where "hole" may also mean a segment or even a single point. Hence an annulus is doubly connected
(p :2).

Simply
con nected

Dou bly
connected

Triply
connected

Not simple

o
ď^r)

Not simple
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THEoREM l

ExAMPLE l

z : +2i outside C.

EXAM PLE 3 Nonanalytic Function

Cauchy's lntegral Theorem

tÍ f (z) is analytic in a simply connected domain D, thenfor evel)) simple closed path
CinD,

(1) 6 rrr. d.z : 0. See Fig. 344.JC

647

Fig. 344. Cauchy's integral theorem

Before we prove the theorem, let us consider some examples in order to really understand
what is going on. A simple closed path is sometimes called a contour and an integral over
such a path a contour integral. Thus, (1) and our examples involve contour integrals.

No Singularities (Entire Functions)

$r'ar:O, {.or.dz:0. 6z'az:O (n:O.t....)JC JC--,--', JC-

for any closed path, since these functions are entire (analytic for all z). l

Singularities Outside the Contour

rrdz
s..; dz : 0. Ý"7i1 : O

whereCistheunitcircle,secz: Ilcoszisnotanalyticatz : -|rrl2,+3rrl2,...,butallthesepointslie
outside C; none lies on C or inside C. Similarly for the second integral, whose integrand is not analytic at

ExAMPIE 2

,-
$ , ,, : ['" ,-'',eit clt : 2lriJc -o

where C: z(t) : ,i' i, the unit circle. This does not contradict Cauchy's theorem because í(z) : Z is not
analytic. l

EXAMPLE 4 Analyticity Sufficient, Not Necessary

l dz,9;:o
'CZ

where C is the unit circle. This result does not follow from Cauchy's theorem, because í(z) : l/z2 is not analytic
at Z : 0. Hence the condition that f be analytic in D is sfficient rather than necessary íor (I) to be true. l
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E XA M P L E 5 Simple Connectedness Essential

:2ri

for counterclockwise integration around the unit circle (see Sec. 14.1). C lies in the annulus i < 1.1 < j where
l/z is analytic, but this domain is not simply connected, so that Cauchy's theorem cannot be applied. Hence the
condition that the domain D be simply connected is essential.

In other words, by Cauchy's theorem, if /(z) is analytic on a simple closed path C and everywhere inside C,
with no exception. not even a single point, then (1) holds. The point that causes trouble here is z : 0 where 1/z

lis not analytic.

P R O O F Cauchy proved his integral theorem under the additional assumption that the derivative

í'(z) i, continuous (which is true, but would need an extra proof). His proof proceeds as

follows. From (8) in Sec. 14.1 we have

Ó rrr, ar,: Ó (u dx - u dy) + 1 Ó (u dy -l u dr).JC" JC JC

Since í(z) is analytic in D, its derivative f' (;) exists in D. Since /'(z) i, assumed to be
continuous, (4) and (5) in Sec. 13.4 imply that u and u have continuous partial derivatives
in D. Hence Green' s theorem (Sec. 10.4) (with u and - u instead of F1 and F) is applicable
and gives

f,,,o* - udy): I^í ( * #) o-o,

where R is the region bounded by C. The second Cauchy-Riemann equation (Sec. 13.4)

shows that the integrand on the right is identically zero. Hence the integral on the left is
zero. In the same fashion it follows by the use of the first Cauchy-Riemann equation that
the last integral in the above formula is zero. This completes Cauchy's proof. l

Goursat's proof without the condition that ílk) is continuousl is much more
complicated. We leave it optional and include it in App. 4.

lndependence of Path
We know from the preceding section that the value of a line integral of a given function

/(z) from a point z1 to a point z2 wiII in general depend on the path C over which we
integrate, not merely on Zr and z2.It is important to characterize situations in which this
difficulty of path dependence does not occur. This task suggests the following concept.
We call an integral of í(z) independent of path in a domain D if for every zy zz in D
its value depends (besides on .f(z), of course) only on the initial point z1 and the terminal
point z2, but not on the choice of the path C in D [so that every path in D from zl to 7,
gives the same value of the integral of /(z)].

lBooua.Ro GOURSAT (1858-1936), French mathematician. Cauchy published the theorem in l825. The
removal of that condition by Goursat (see Transactions Amer. Math. Soc., vol. 1 , 1900) is quite important, for
instance, in connection with the fact that derivatives of analytic functions are also analytic, as we shall prove
soon. Goursat also made important contributions to PDEs.

+d."C -
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THEoREM 2 lndependence of Path

Ií f(z) is analytic in a simply connected domain D, then the integral oí f(z) is
independent of path in D.

P R O O F Let z1 and z2 be any points in D. Consider two paths C1 and C, in D from zl to z2 without
further common points, as in Fig. 345. Denote by Ct the path C2 with the orientation
reserved (Fig. 3a6). Integrate from z1 ovef C, to z2 and over C$ back to z1. This is a
simple closed path, and Cauchy's theorem applies under our assumptions of the present
theorem and gives zero:

l2') [trr*r .[dz:o.
'C, 'ci

thus f rrr:-r Idz.
"Cl " C;

I r,rrr: [ íuldz
-C] -C2,

But the minus sign on the right disappears if we integrate in the reverse direction, from
zlto 7r, which shows that the integrals of f(z) over C1 and C2 are equal,

(2) ig. 3a5).

This proves the theorem for paths that have only the endpoints in common. For paths that
have finitely many further common points, apply the present argument to each "loop"
(portions of C1 anď C2 between consecutive common points; four loops in Fig. 347). For
paths with infinitely many common points we would need additional argumentation not
to be presented here.

"O.",O,
Fig.347. Paths with more

common points

CI

Fig. 345. Formula (2) Fig.146. Formula (2/)

Principle of Deformation of Path
This idea is related to path independence. We may imagine that the path C2 tn (2) was
obtained from Ctby continuously moving C, (with ends fixed!) until it coincides with
C2. Figure 348 shows two of the infinitely many intermediate paths for which the integral
always retains its value (because of Theorem 2).Hence we may impose a continuous
deformation of the path of an integral, keeping the ends fixed. As long as our deforming
path always contains only points at which /(z) is analytic, the integral retains the same
value. This is called the principle of deformation of path.

!
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F(z+Lz)-F(z)
L,z

: ; | í)^',,,*) d,* - f ̂
,u-, 

o*]
Hd|-zoZg

Fig. 348. Continuous deformation of path

EXAMPLE 6 A Basic Result: lntegral of lnteger Powers

From Example 6 in Sec. 14.1 and the principle of deformation of path it follows that

(3) $ '. - zgť dz: 
f; 

'|,=**-'r' 
and integer)

for counterclockwise integration around any simple closed path containing zg in its inteňor.
Indeed, the circle |. - .o| : p in Example 6 of Sec. I4.t canbe continuously deformed in two steps into a path

as just indicated, namely, by first deforming, say, one semicircle and then the other one. (Make a sketch). l

Existence of lndefinite lntegral
We shall now justify our indefinite integration method in the preceding section [formula
(9) in Sec. 14.1]. The proof will need Cauchy's integral theorem.

THEoR,EM 3 Existence of lndefinite lntegral

Ií í(d is analytic in a simply connected domain D, then there exists an indefinite
integral F(z) oí í(z) in D-thus, F'(z): f(z)-which is analytic in D, andfor all
paths in D joinin7 any two points zg and zl in D, the integral oí í(z) from zg to z1
can be evaluated by formula (9) in Sec. I4.I.

P R O O F The conditions of Cauchy's integral theorem are satisfied. Hence the line integral of f (z)
from an! zg in D to any z in D is independent of path in D. We keep e6 fixed. Then this
integral becomes a function of z, call tf F(z),

r'(4) F(z): Jftz*laz*

which is uniquely determined. We show 
'n"' 'nr, 

F(z) is analytic in D and P'(z) : í(z).
The idea of doing this is as follows. Using (4) we form the difference quotient

(5) : * f"*o"",*) dz*,

We now subtract /(7) from (5) and show that the resulting expression approaches zero as
L,z -+ 0. The details are as follows.
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We keep z fixed. Then we choose z + Az in D so that the whole segment with
endpoints z and 7 * Lz is in D (Fig. 3a9). This can be done because D is a domain,
hence it contains a neighborhood of z. We use this segment as the path of integration
in (5). Now we subtract í(z).This is a constant because z is kept fixed. Hence we can
write

^z|^z ^z|^zll
J f trl dz.* : í{zl J dz* : f ta Lz. Thus í(z)

1:-
L,z

^z+^zl

J í@ az*.

thusfinda6>0
6, we see that the

1

B*l dr,| : ,,

By this trick and from (5) we get a single integral:

F(z + L,z) - F(z) _
A,z

By the definition of limit and derivative,

Since /(z) is analytic, it is continuous. An e > 0 being given, we can
such that lík\ - f @l { e when lr* - zl < 6. Hence, letting lA.I <
ML-tnequality (Sec. I4.1) yields

rr.l| :fr f,-"rr,r*) - /(z)l ar-|=

this proves that

+ Lz) - F(z)p'(z):Jj5 F(z : f(z).L,z

Since z is any point in D, this implies that F(z) is analytic in D and is an indefinite integral
or antiderivative of f (z) in D, written

rF(d: Jfaaz.

Also, if G'(z) : f (z), then F'(7) - G'(z) = 0 in D; hence F(z) - G(z) is constant in D
(see Team Project 26in Problem Set 13.4). That is, two indefinite integrals of f(z) can
differ only by a constant. The Iatter drops out in (9) of Sec. 14.1, so that we can use any
indefinite integral of í(z). This proves Theorem 3. l

z^ /U .'
-

Fig. 349. Path of integration

l
l
l
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Cauchy's lntegral Theorem for
Muttipty Connected Domains
Cauchy's theorem applies to multiply connected domains. We first explain this for a

doubly connected domain D with outer boundary curve C1 and inner C2 $ig. 350). If
a function /(z) is analytic in any domain D* that contains D and its boundary curves, we

claim that

(6) $ trr, dz:
"C, $ í,r, o,

'Cz
(Fig. 350)

both integrals being taken counterclockwise (or both clockwise, andregardless of whether

or not the full interior of C2 belongs to D*).

Fig. 350. Paths in (5)

p R o o F By two cuts Č1 anď Č2 Gig. 351) we cut D into two simply connected domains D1 and

D, in which and on whose boundaries í(z) is analytic. By Cauchy's integral theorem the

integral over the entire boundary of D, (taken in the sense of the alTows in Fig. 351) is

zero, anď so is the integral over the boundary of Dr, and thus their sum. In this sum the

integrals over the cuts Č1 and Č2 cancel because we integrate over them in both

directions-this is the key-and we are left with the integrals over C1 (counterclockwise)

and C2 (clockwise; see Fig. 351); hence by reversing the integration over C2 (to

counterclockwise) we have

{ ror-{ rdz:o
"C, " Cz

and (6) follows. l

For domains of higher connectivity the idea remains the same. Thus, for a triply connected

domain we use three cuts Č1, Čr, Č" (Fig. 352). Adding integrals as before, the integrals

over the cuts cancel and the sum of the integrals over C1 (counterclockwise) anď C2, C3

(clockwise) is zero. Hence the integral over C1 equals the sum of the integrals over C2

and C3, all three now taken counterclockwise. Similarly for quadruply connected domains,

and so on.

Fig.352. Triply connected domainFig.35l. Doubly connected domain

Cl
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CAUCHY'S INTEGRAL THEOREM
APPL!CABLE?

Integrate /(z) counterclockwise around the unit circle,
indicating whether Cauchy's integral theorem applies.
(Show the details of your work.)

5. f(z)
7. í(z)
9. í(z)

11. í(z)

@

2z. + 3i(i) /(:): _2 , I* T4
z*I(ii) í(z) : _2 la_

{, -T Z1.

(c) Deformation of path. Review (c) and (d) of Team
Project 34, Sec. I4.I, in the light of the principle of
deformation of path. Then consider another family of
paths with common endpoints, say, z(t) : t + ia(t - t2),

0 < r < 1, and experiment with the integration of analytic
and nonanalytic functions of your choice over these paths
(e.g., z,Im z, z2, Re Z2, Im z2, etc),

FURTHER CONTOUR INTEGRALS

1.f(z): Rez
3. í(z.) - e"l2

2.f(z):Il(3z-nri)
a. ík) : Il?.

6. f (z) : sec (7l\
8. í(z) : I/(4z - 3)

10. f(z) : a2

: tan Z.2

: Il(z,8 - 1,2)

: tt(2|z|3)

: Z,2 cot ?.

COMMENTS ON TEXT AND EXAMPLES
12. (Singularities) Can we conclude in Exampl e 2 that

the integral of I/(z2 + 4) taken over (a) lz - Z| : 2,
(b) lz - 2l : 3 is zero? Give reasons,

13. (Cauchy's integral theorem) Verify Theorem 1 for
the integral of z2 over the boundary of the squafe
with vertices 1 + i, -1 + i, -1 - l, and I - i
(counterclockwise).

14. (Cauchy's integral theorem) For what contours C will
it follow from Theorem 1 that

í dz f cosz(a) 9 r : 0, (b) 9 _-, dz: O.Jc i JcZ

r eU'(c) 
?" ra , dz: 0?

15. (Deformation principle) Can we conclude from
Example 4thatthe integral is also zero over the contour
in Problem 13?

16. (Deformation principle) If the integral of a function
f (7) over the unit circle equals 3 and over the circle
lzl : 2 equals 5, can we conclude that /(z) is analytic
everywhere in the annulus t < |z| < Zt

17. (Path independence) Verify Theorem 2 for the
integral of cos z from 0 to (1 + i)n (a) over the shortest
path, (b) over the x-axis to n and then straight up to
(I + i)rr.

18. TEAM PROJECT. Cauchy's Integral Theorem.
(a) Main Aspects. Each of the problems in Examples
1-5 explains a basic fact in connection with Cauchy's
theorem. Find five examples of your own, more
complicated ones if possible, each illustrating one of
those facts.

(b) Partial fractions. Write í(z) in terms of partial
fractions and integrate it counterclockwise over the unit
circle, where

Evaluate (showing the details and using partial fractions if
necessary)

' f";=, C thecircle |.l : 3 (counterclockwise)

20. +tanh z dz, C the circle |z - irri|: } (clockwise)

^. 
6Re 2z clz,. C as shown
I

f ]z - 622.q .,- dz..Casshown
l -a 

,r-

n.ó+,,CasshownJg Z' - I

y

,'\í\
-l /// \i X

f eo'
24. Ý n dz. C consists of |z| : 2 (clockwise) and lrl : *"C T,

(counterclockwise)

653
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25. 6 
cos Z 

d:, C consists of lzI : 1 (counterclockwise)Jc z

and|z| :3(clockwise)

26. 6Ln(2 * z) dz, C the boundary of the square with
JC

vertices -| 1 , -| i

f dz.27.+*,C, (a) l.] :L, O)|z ll :Z
JC1 -f l

(counterclockwise)

f dz.++, C; (a) |z* i|: 1, 1u) lz - ll : 1
JC1 -T. I

(counterclockwise)

f sinz
29. +: dz. c: l: - a - 2i|:

JC, 1'-Ý LI
5.5 (clockwise)

of the square with
l tan (z12\

?" ,^ _ 16 
dz, C the boundary

vertices -+1, li (clockwise)

14.3 Cauchy's lntegral Formula
The most important consequence of Cauchy's integral theorem is Cauchy's integral

formula. This formula is useful for evaluating integrals, as we show below. Even more

important is its key role in proving the surprising fact that analytic functions have

derivatives of all orders (Sec. I4.4), in establishing Taylor series rePresentations

(Sec. 15.4), and so on. Cauchy's integral formula and its conditions of validity may be

stated as follows.

THEoR,EM l Cauchy's lntegral Formula

Let f(z) be analytic in a simply connected domain D. Then for any point zg in D
and any simple closed path C in D that encloses zg (Fig. 353),

(1) $ f@ dz:2rrif(zg)
"C4 <,o

(Cauchy's integral formula)

the integration being taken counterclockwise. Alternatively (for representing Í(zo)
by a contour integral, divide (1) by 2ň),

(1*)
1rík).f(z: *Q " d:

/.ŤrI "cZ- Zo
(Cauchy's integral formula).

pRooF By addition and subtraction, í(z): í(zg) + [/(z) - /(zg)]. Inserting this into (1) on the

left and taking the constant factor í(zo) out from under the integral sign, we have

(2) $ Ítzl d::f(:g){: _ +$Íkl-J3ďo,
'a l - :o - -l" ; - io 'C - - *o

The first term on the right equals f (zjS,2rri (see Example 6 in Sec. I4.2 wíth m : -l).
This proves the theorem, provided the second integral on the right is zero. This is what

we are now going to show. Its integrand is analytic, except at zg. Hence by (6) in

Sec. I4.2 we can replace C by a small circle K of radius p and center z6 $ig. 354), withOut

654
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"@
Fig. 353. Cauchy's integral formula Fig. 35a. Proof of Cauchy's integral formula

altering the value of the integral. Since í(z) is analytic, it is continuous (TeamProject26,
Sec. 13.3).Hencean >0beinggiven,wecanfinda6> 0suchthatlfrr> - /(zo)| < e
for all z in the disk |z - zol < 6. Choosing the radius p of K smaller than 6, we thus have
the inequality

í(z) - f(zo)
Z- Zo

e

p

byat each point of K. The length of K is 2rrp. Hence,

|1#o,|.ž
the ML-inequality in Sec. 14.1,

Zrrp : Zrre.

ko: Li inside C.1. l

Since (> 0) can be chosen arbitrarily small, it follows that the last integral in (2) must
have the value zero, and the theorem is proved. l

E X A M P L E t Cauchy's lntegral Formula

r e' _l9 
- 

clz:2rie'l :2rrie2:46.4268i
"Cr-. lr-z

for anY contour enclosing zo: 2 (since ez is entire), and zero for any contour for which zo: 2lies outside (by
Cauchy's integral theorem). I

EXAMPLE 2 Cauchy's lntegral Formula

f z3-6 r ].3-3
Ý.,"_,dr:? __t, d,
"Cra l JC a-ž,

: z,i|lr' - z]|
l z:i,l2

Tr: 
, -6rri

EXAMPLE 3 Integration Around Different Contours

Integrate 
zr+I ,.2+I,/ \ - 

-
ó\t' ,'-I (z+lXz-1)

counterclockwise around each of the four circles in Fig. 355,
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Solution. g(z) is not analytic at -1 and 1. These are the points we have to watch for. We consider each

circle separately.

(a) The circle |z - 1| : l encloses the point zo: 7 where s(z) is not analytic, Hence in (1) we have to

write 
z,+1 z,+I 1

8(z): 2 ,: --,Z - l a, l , Z- | '

thus

ík):

and (1) gives

l z,2+ l I r'+lf
9ž , dz:2rií(ll:2il l _ | :2ri.
Jcz - l L _ rl ]._'

(b) gives the same as (a) by the principle of deformation of path.

(c) The function s(z) is as before, but /(;) changes because we must take 46 : - 1 (instead of 1). This gives

a factor z - zo: z * 1 in (1). Hence we must write

thus

,'+7
ít -t 

-J\1l- z-I

Compare this for a minute with the previous expression and then go on:

,'+l
.+1

,r+7 1

s(z): z_ | ,ar;

f z,2r l l-r'+l1
?rrr_rdz:2tií(-l):2Ťri Lr- | 

_.] . _,:-2ti,

(d) gives 0. Why?

Fig. 355. Example 3

Multipty connected domains may be handled as in Sec. I4.2. For instance, if í(e) is
analytic on C1 and C2 and in the ring-shaped domain bounded by C, and C2 Gig. 356)

and zg is any point in that domain, then

1rf(z)|rfk,)
ZŤrl J CrZ - :g ZŤrl 'CrZ - Zg

where the outer integral (over C1) is taken counterclockwise and the inner clockwise, as

indicated in Fig. 356.

l
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Our discussion in this section has illustrated the use of Cauchy's integral formula in
integration. In the next section we show that the formula plays the key role in proving
the surprising fact that an analytic function has derivatives of all orders, which are thus
analytic functions themselves.

r coNTouR INTEGRATIoN
Integrate (z' - 4)l(z2 -l 4) counterclockwise around the
circle:

1. lr-il:z
3. |z + 3i|: 2

@ coNTouR INTEGRATIoN
Using Cauchy's integral formula (and showing the details),
integrate counterclockwise (or as indicated)

r --Las. !az. c:|z-||:z
J,/-/

f eo'6. u_,az.C;|z| :l

7. { 
g]1 

dr. c: |z|: IJ z'-fz

s. Ó __!:_ . c: lz _ 1l: tlz
"Cl - l

fdz9.Ý _;-, C:|z+l|:1
"C1 - l

le"
l0. 9, _ r, dz. C:|z- 2i|: 4

n.f ff}a,. c:lzl:i
C

12. { E+ Or, C the boundary of the triangle withJCz- l

vertices0and- 1+2i

2. lr-I|:2
4. |z|: n12

13.

14.

1 n-3lz
,, * , dz, C the boundary of the square with

vertices *I, *i

f Ln(z + 1)
Ý -# ar. C consists of |z - 2i| : 2
"C 1 -T l

(counterclockwise) and |z - 2i| : } (clockwise)

fi.{ 9 or, c:|z- 4l:z
J,/-i

C

ffi. f" h dr, Cconsists of |z| : 3 (counterclockwise)

and|z| :1(clockwise)

f coshz z
17. 9 , --:--Ž, , dz, Cas in Prob. 16.l"íZ- I - t)z'

r
18. Show that k - z)-1(z - zr)-' dz : 0 for a simple

closed putnZenclosing zl andzz, which are arbitrary.

19. CAS PROJECT. Contour Integration. Experiment
to find out to what extent your CAS can do contour
integration (a) by using the second method in Sec. 14.1,
(b) by Cauchy's integral formula.

20. TEAM PROJECT. Cauchy's Integral Theorem.
Gain additional insight into the proof of Cauchy's
integral theorem by producing (2) with a contour
enclosing zg (as in Fig. 353) and taking the limit as in
the text. choose

r z.3-6h) ? __y dr.
-C< 2'

f sinz(b) 9 . dz.
]l-L^

' ^ 
<. , ll

and (c) two other examples of your choice.

Cl

Fig. 356. Formula (3)
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14.4 Derivatives of Analytic Functions

THEoREM 1

In this section we use Cauchy's integral formula to show the basic fact that complex
analytic functions have derivatives of all orders. This is very surprising because it differs
strikingly from the situation in real calculus. Indeed, tf a real function is once

differentiable, nothing follows about the existence of second or higher derivatives. Thus,

in this respect, complex analytic functions behave much more simply than real functions
that are once differentiable.

The existence of those derivatives will result from a general integral formula, as follows.

COMMENT. For memorizing (1), it is useful to observe that these formulas are obtained

formally by differentiating the Cauchy formula (1*), Sec. 14.3, under the integral sign

with respect to zg.

Derivatives of an Analytic Function

tí f (z) is analytic in a domain D, then it has derivatives of all orders in D, which
are then also analytic functions in D. The values of these derivatives at a point zg

in D are given by the formulas

(1') í,(zo): : { -Ja_= a,
Zrri Jc (z- zď"

(1") í"(z : 2t 6 , Ík) ,- d,
Zrri Jc k - zol3

and in general

(1) f,n,(z : * f" u!fu o, (n : I,2,. . .),,

here C is any simple closed path in D that encloses lg and whose full interior belongs
to D; and we integrate counterclockwise around C (Fig. 351).

-\\ V

\u---- _--'
Fig.357. Theorem ] and its proof
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P R O O F We prove (1'), starting from the definition of the derivative

f(zo+A,z)-f(zo)

659

í'(z :Ji5 Lz

On the right we represent f (zo + Az) and f(z by Cauchy's integral formula:

í(zo+A,z)-í(zo)
A,z

We now write the two integrals as a single integral. Taking the common denominator
gives the numerator f(7){7 - zg- |z - (zo + Az)]} : f(z) Az, so thatafactorAzdrops
out and we get

f(zg+ Az)- í(zo)

;Ň[f =*+j" 
o,-f"::',f

f (z)

f (z)Lz

(z- zg- L,z)(z- zo)2

:lJ
)d J2rri Jck - zo - L^z)(z - zo)

"| = 
KL |L,z|

dz.
A,z

Clearly, we can now establish (1') by showing that, as Az > 0, the integral on the right
approaches the integral in 11'). To do this, we consider the difference between these two
integrals. We can write this difference as a single integral by taking the common
denominator and simplifying the numerator (as just before). This gives

í(z)
Lz)(z - zo)2

We show by the ML-inequality (Sec. I4.I) that the integral on the right approaches zero
as Az -+ 0.

Being analyttc, the function f (z) is continuous on C, hence bounded in absolute value,
say, l/(z)l < K.Let d be the smallest distance from e6 to the points of C (see Fig.357).
Then for all z on C,

ó Ítzl a--6J"(,-zg-AzX;-;o)"- J"
ík) ,._Á fk)Lz

(:-;6)' '" k-zo-AzX

11l- _ - 12 > -t2 hence _.______________:=_ < _|/- 40| :u . llUlILg 
k- rF = a'

dz.

Furthermore, by the triangle inequality for all z on C we then also have

a=lz - zol :lz- zg- Lz + AeI =lz- zg- Lz| + |Az|.

We now subtract |Az| on both sides and let lAzl = dl2, so that -lAzl = -dlz. Then

La=d-|^z|=lz- zg- Lz|.
|, - ,o - Azl

Let L be the length of C.If |Az| < dl2, then by the ML-inequality

2

d

l*
21
a' a'
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This approaches zero as Lz+ 0. Formula (1') is proved.

Note that we used Cauchy's integral formula (1*), Sec. 14.3, but if all we had known

about /(eo) is the fact that it can be represented by (l*), Sec. 14.3, our argument would

have established the existence of the derivative f' (zo) of /(z). This is essential to the

continuation and completion of this proof, because it implies that (1") can be proved bY

a similar argument, with f replaced by í', and that the general formula (1) follows bY

induction. l

E X A M P L E 1 Evaluation of Line Integrals

From (l';, fo. any contour enclosing the point zri (counterclockwise)

f cosz .l
+ . : dz : 2rri(cos d'| : -Trri sin z-j : 2r sinh r, I
J"(z- rri)' |z-ni

ExAM PLE 2 From (l"), forany contourenclosingthe point -j weobtainby counterclockwise integration

EXAM PLE 3 By (1'), forany contourfor which l lies inside and +2i lie outside (counterclockwise),

d,:,,,(*)l.:.
,"(z2+4)-_e'2zl : 6et.:2.05oi. l:zrri ,rz*ry l.,: Ď'

l

f
2

e

.('- D2k2 + 4)

Cauchy's lnequality. Liouville's and Morera's Theorems
As a new aspect, let us now show that Cauchy's integral theorem is also fundamental in
deriving general results on analytic functions.

Cauchy's Inequality. Theorem 1 yields a basic inequality that has many applications.

To get it, all we have to do is to choose for C in (1) a circle of radius r and center zg and

apply the ML_inequality (Sec. I4.I); with lí(z)l = 
u on C we obtain from (1)

lí(,)(eo)| : +|f.-%=4
This gives Cauchy's inequality

To gain a first impression of the importance of this inequality, let us prove a famous

theorem on entire functions (definition in Sec. 13.5). (For Liouville, see Sec. 5.7.)

nl.

2t 2Ťr.
1M 

1r-'

(2)
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THEoREM 2 Liouville's Theorem

If an entire function is bounded in absolute value in the whole complex plane, then
this function must be a constant.

P R O O F By assumption, lí(z)l i. bounded, say, lí(z)l < K for all z. Using (2), we see that

lf 'k | 1 Klr. Since í(z) is entire, this holds for every r, so that we can take r as large
as we please and conclude that í'(z : 0. Since z6 is arbitrary, f'(z) : u* l iu*: 0
for all z (see (4) in Sec. 13.4), hence u*-- u*: 0, and ua: ua: 0 by the Cauchy-Riemann
equations.Thusbt:const,u:const,andf:ulitl:consrforall z.Thiscompletes
the proof.

Another very interesting consequence of Theorem 1 is

THEoREM 3 Morera's2 Theorem (Converse of Cauchy's lntegral Theorem)

Ií f(z) is continuous in a simply connected domain D and if

(3) f 
"rrrl 

dz : 0

for every closed path in D, then í(z) is analytic in D.

P R O O F In Sec. I4.2 we showed that if /(z) is analytic in a simply connected domain D, then

is analytic in D and P'(z) : f (z).In the proof we used only the continuity ot f (z) and the
property that its integral around every closed path in D is zero; from these assumptions
we concluded that F(3) is analytic. By Theorem 1, the derivative of F(z) is analytic, that
is, "f(z) is analytic in D, and Morera's theorem is proved. l

-zlF(ň: l fk*\dz*,J
?g

7.

cos Z

,rr*'
Ln(z-|3)*cosz

(z + I12

e"

k-rY

2GIRcINto MORERA (1856-1909), Italian mathematician who worked in Genoa and Turin.

E coNTouR INTEGRATIoN
Integrate counterclockwise around the circle |z| 

: 2. (n is
a positive integer, a is arbitrary.) Show the details of your
work.

cosh 3z1.-
z'

sin z,r"
lz - rril2y"

e' cos z

k _ ,rlrÝ-

sinh az
J

,h

k: ,Y-T

tr
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INTEGRAT|ON AROUND DIFFERENT

coNToURs
TEAM PROJECT. Theory on Growth

(a) Growth of entire functions. If í(z) is not a

constant and is analytic for all (finite) z, and R and M
are any positive real numbers (no matter how large),

show that there exist values of z for which |z| > R and

lf (dl > l,t_
(b) Growth of polynomials. If í(z) is a polynomial

of degree n } O and M is an arbitrary positive real

number (no matter how large), show that there exists

a positive real number R such that |/(z)l > M for all

1.1 > n.
(c) Exponential function. Show that /(z) : e" has

the property characterizedín (a) but does not have that

characterized in (b).

(d) Fundamental theorem of algebra, Ií í(z) is a
polynomial in z, not a constant, then Í(z) : 0 for at

least one value of z. Prove this, using (a),

15. (Proof of Theorem 1) Complete the proof of Theorem

1 by performing the induction mentioned at the end,

14.

Integrate around C. Show the details.

(1 -l 2z)coszo '- --' - 
=- 

- 
, C the unit circle, counterclockwise" Qz. - I)2

sin 4z
-_------:a, C consrsts of |z| 

: 5 (counterclockwise)
(z - 4)"

and |z - 3l : $ (clockwise)

tan ŤZ,

ry . C the ellipse I6x2 + y2 : 1, counterclockwise
l.

10.

11.

12.

13.

2ze

k-,
and |z| 

: 1

e''o
'|---------1T 

,

lz - a7-

, C consists of |z - il: Z (counterclockwise)

(clockwise)

, Cthe circle |z - 2 - il : 3, counterclockwise

1. What is a path of integration? What did we assume

about paths?

2. State the definition of a complex line integral from

memory.

3. What do we mean by saying that complex integration

is a linear operation?

4. Make a list of integration methods discussed. Illustrate @ INTEGRATION

13. Is B" | .fk) a, : |. *" í'., dz? Give examples,
JC"' JC

14. How did we use integral formulas for derivatives in

integration?

1,5. What is Liouville's theorem? Give examples, State

consequences.

Integrate by a suitable method:

!6. 4z3 1- 2z from -i to 2 Ť l along any path

17. 5z - 3lz counterclockwise around the unit circle

18. z * Ilz counterclockwise around |z + 3i| : 2

19. e2" from -2 -l 3rri along the straight segment to

-2 * 5rri

""'l(z - 1)2 counterclockwise around lzl : 2

zl(z2 + 1) clockwise around |z + l| : 1

Re z from 0 to 4 and then vertically up to 4 * 3i

cosh 4z from 0 to 2i along the imaginary axis

e"lz oyer C consisting of |z| 
: 1 (counterclockwise) and

each with a simple example.

5. Which integration methods apply to analytic functions

only?

6. What value do you get if you integrate llz
counterclockwise around the unit circle? (You should

memorize this basic result.) If you integrate llz2,
Ilz3,. . .?

7. Which theorem in this chapter do you regard as most

important? State it from memory.

8. What is independence of path? What is the principle of

deformation of path? Why is this important?

9. Do not confuse Cauchy's integral theorem and Cauchy's

integral formula. State both. How are they related?

10. How can you extend Cauchy's integral theorem to

doubly and triply connected domains?

11. If integrating í(z) over the boundary circles of an

annulus D gives different values, can í(z) be analytic

in D? (Give reason.)

|rl : L (clockwise)

25. (sin z)/z clockwise around a circle containing z : 0 in

its interior

26. Ime counterclockwise around lr| : ,
27. (Lnz)t(z - 2i)2 counterclockwise around lz - Zr1 : 1

28. (tan rz)t(z- 1)'counterclockwise around l. - tl :0,2

29. |z| * e clockwise around the unit circle

30. (. - D-3k3 * sin z) counterclockwise around any

circle with center l

20.

2l.
))
23.
24.

12. Is 
|I"ru, 

or| : I"lrurl d.z? How would you find

bound for the integral on the left?

WWSTIONS AND PROBLEMS



Summary of Chapter 14

(2)

The complex line integral of a function /(z) taken over a path c is denoted by

rr(1) J fk) dz or, if C is closed, also by rU> (Sec. I4.I).
C

If f(z)rs analyticln u .r-oly connected domain D, then we can evaluate (1) as in
calculus by indefinite integration and substitution of limits, that is,

F(z) - F(zo) Ip'k) : .f (z)l

for every path C in D from a point zgto apoint z1 (see Sec. 14.1). These assumptions
imply independence of path, that is, (2) depends only on zo anď zt (and on /(2),
of course) but not on the choice of C (Sec. I4.2). The existence of an F(z) such that
P'(z): í(z) is proved in Sec. I4.2by Cauchy's integral theorem (see below).

A general method of integration, not restricted to analytic functions, uses the
equation z: z(t) of C, where a š t š b,

Ire dz:
C

Cauchy's integral theorem is the most important theorem in this chapter. It states
that if Í(z) is analytic in a simply connected domain D, then for every closed path
C in D (Sec. I4.2),

(4) f rrr, dz : 0.
C

Under the same assumptions and for any zg in D and closed path C in D containing
zg in its interior we also have Cauchy's integral formula

(5) f(z :+ó Ík) 
ar.

/.7Tl 'cZ- Zo

Furthermore, under these assumptions "f(z) has derivatives of all orders in D that
are themselves analytic functions in D and (Sec. 14.4)

(6) f,n)(z:+{,j!*.* (n:1,2,...).
L,lll "g\d - 19)

This implies Morera's theorem (the converse of Cauchy's integral theorem) and
Cauchy's inequality (Sec. 14.4), which in turn implies Liouville's theorem that an
entire function that is bounded in the whole complex plane must be constant.

írurdz-
C

(3) (,: #)
-b

J frzul>žo at

663
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Power Series, Taylor Series

Complex power series, in particular, Taylor series, are analogs of real power and TaYlor

series in calculus. However, they are much more fundamental in comPlex analYsis than

their real counterparts in calculus. The reason is that power series represent analYtic

functions (Sec. 15.3) and, conversely, every analytic function can be represented by Power
series, called Taylor series (Sec. 15.4).

Use Sec. 15.1 for reference if you are familiar with convergence tests for real series-
in complex this is quite similar. The last section (15.5) on uniform convergenceis optional,

Prerequisite: Chaps. 1,3, 14.

Sections that may be omitted in a shorter course: I4.I, 14.5.

References and Answers to Problems: App. 1 Part D, App. 2,

l5.] Sequences, S ries, Convertence Tests
In this section we define the basic concepts for complex sequences and series and discuss

tests for convergence and divergence. This is very similar to real sequences and series in

calculus. If you feel at home with the latter and want to take for granted that the ratio

test also holds in complex, skip this section and go to Sec. t5.2.

Sequences
The basic definitions are as in calculus. An infinite sequence or, briefly, a sequence, is

obtained by assigning t9 each positive integer n a numbaí zn, called a term of the Sequence,

and is written

Zl, Z2,' ' or {zt, Zz, ' ' '} or briefly {z*|.

We may also write Zg, Z1,. . . or Z2, Zg,, , , or start with some other integer if convenient.

A real sequence is one whose terms are real.

Convergence. A convergent sequ ílc z1, z2, , , , is one that has a limit c, written

}\'. 
: 

' or simply zn---> c,

By definition of limit this means that for every e ) 0 we can find an N such that

|r--cl<e forall n}N;(1)

664
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geometrically, all terms zn wíth n } N lie in the open disk of radius e and center c
(Fig. 358) and only finitely many terms do not lie in that disk. [For a real sequence, (1)
gives an open interval of length 2e and real midpoint c on the real line; see Fig. 359.]

A divergent sequence is one that does not converge.

4
)c

Fig. 358. Convergent complex sequence

Convergent and Divergent Sequences

c- c c+

Fig.359. Convergent real sequence

The sequence {i"ln} : {i, -Il2, -il3,1l4,. ..} is convergent with limit 0,
The sequence {i'} : li, -I, -i,l,. , .} is divergent, and so is {zrr} wiíh 1r: (1 + i)'r. l

Sequences of the Real and the Imaginary Parts

Thesequence{zn}with7,-:xnliyn:I-Iln2+i(2+4ln)is6i,3l4+4i,8/g+l0il3,15116+3i,....
(Sketch it.) It converges with the limit c : I -| 2l. Observe that |xn} has the limit l : Re c and {yn} has the
limit 2 : Im c. This is typical. It illustrates the following theorem by which the convergence of a complex
Sequence can be referred back to that of the two real seqtlences of the real parts and the imaginary parts. l

THEoREM t Sequences of the Real and the lmaginary Parts

A sequenc ZI, Z2, . . . , Zn, of complex numbers Zn : xn l iyn (where
ft : I,2, , , ,) conver7es to c : a -f ib if and only if the sequence of the real parts
x1, x2, , . . converges to a and the sequence of the imaginary parts !t, jz,
converges to b.

PRooF Convergence Zn -> c : a -| ib implies convergence xn ---> a and ln + Ď because if
lr. - cl 1 e, then zn lies within the circle of radius about c : a + ib, so that
(Fig. 360a)

|rn-al 1e, ly--bl<r.

y

b+e

b

b-e

ExAMPLE l

ExAMPLE 2

b*7
b

b-,

,la
a-ž

(a) (b)

Fig. 360. Proof of Theorem ]

a '2
a.- a d+e )c
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Conversely, if xn--> a anď jn+ b as nJ @, then for a given e } 0 we can choose N
so large that, for every n ) N,

These two inequalities imply that zn : xn t iyn lies in a square with center c and side

e. Hence, z,. must lie within a circle of radius e with center c (Fig. 360b). l

Series
Given asequencaZ1,Z2,,,,,Zm,,,,, w mayformthe sequenceof the sums

51: Zy 52: ZI l Zz, S3 : 21 * Zz * Zz.

and in general

sn:ZI 1zz+",tZn (n:I,2,",).

.

|r,- al< 

',

e
ly.- bl< 

'

Co

rn:I

(2)

(3)

s, is called the nth partial sum of the infinite series or series

co

- -L= l...
.1l arn- a7 | /_2 l ,

m:I

The zr, Z2, . . . are called the terms of the series. (Our usual summation letter is n,

unless we need n for another purpose, as here, and we then use m as the summation
letter.)

A convergent series is one whose sequence of partial sums converges, s&},

lim sr.: s.
lL+@

and call s the sum or value of the-series. A series that is not convergent is called a divergent
series.

If we omit the terms of s,, from (3), there remains

(4) Rn: Zn+tl Zn+z* Zn+zl ",

This is called the remainder of the series (3) after the term zn. CIearIy, if (3) converges

and has the sum s, then

S : ,. * Rn, thus R',-: S - 
"r..

Now sr,9 s by the definition of convergence; hence Rn+ 0. In applications, when s is
unknown and we compute an approximation s, of s, then |nr| is the error, and Rr, -> 0
means that we can make |Rr| as small as we please, by choosingnlarge enough.

An application of Theorem 1 to the partial sums immediately relates the convergence
of a complex series to that of the two series of its real parts and of its imaginary parts:

:

i

I
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THEoREM 2 Real and |maginary Parts

A series (3) with Zm : x* l iyrn converges and has the sum s : Lt l iu if and only
,í x, -| xz *,,, conver?es and has the sum u andy1 -| yz,| . . . converges and
has the sum u.

Tests for Convertence and Divergence
Convergence tests in complex are practically the same as in
before we use a series, to make sure that the series converges.

Divergence can often be shown very simply as follows.

of Series
calculus. We apply them

THEoREM 3 Divergence

If a series 21 * 12 *
the series diverges.

, , , converges, then Iím 7,n: 0. Hence if this does not hold,

PROOF If z1 -| Zzl...converges,withthesum,,then, since Zm,: syn- sm_\,

I\r"r:E*(s,n- sn _r) :}i^ rnr-}i^ r*_1 : s - s:0. l

CAUTION! Zrn+ O is necessary for convergence but not sfficient, aswe see from the
harmonic series I + + + t + j + " , , which satisfies this condition but diverges, as is
shown in calculus (see, for example, Ref. [GR11] in App. 1).

The practical difficulty in proving convergence is that in most cases the sum of a series
is unknown. Cauchy overcame this by showing that a series converges if and only if its
partial sums eventually get close to each other:

THEoREM 4 Cauchy's Convergence Principle for Series

A series zt -| zz + , " is convergeni if and only if for every given e ) 0 (no matter
how small) we can find an N (which depends on e) in general) such that

(5) lzn*tl zn+z + ... * zn*ol 1, forevery n) Nandp:1,2,...

The somewhat involved proof is left optional (see App. 4).

Absolute Convergence. A series zt * zz + , , , is called absolutely conyergent if the
series of the absolute values of the terms

Ž,n*r: lzrl + lz,l+ " ,

is convergent.
Ife1 -| zz * ", converges but l.rl + lrrl +. . . diverges, then the series zt * zz+ . . .

is called, more precisely, conditionally convergent.
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ExAMPLE 3

CHAP. l5 Power Series, Taylor Series

A Conditionally Convergent Series

Theseries t _ L+ á - á + converges,butonlyconditionallysincetheharmonicseriesdiverges, as

mentioned above (after Theorem 3). l

If a series is absolutely convergent, it is convergent,

This follows readily from Cauchy's principle (see Team Project 30). This PrinciPle also

yields the following general convergence test,

Comparison Test

If aseries zt* Zz+ ", is givenandwe canfindaconver7ent seriesbI+ b2 + ",
with nonnegative real terms such that l.rl = 

br,lzrl a br, , , , , then the given series

con erges, even absolutely.

converges, for any given e ) 0 we can find

Tl{EoREM 5

P R O O F By Cauchy's principle, since bl + b2 +

an N such that

bn*t t

From this and |z1|

...+ bn+pl forevery

a bl, |zr| = 
br, , , , we conclude

|r-*rl+,,, * lzn-r| š bn*t l

Hence, againby Cauchy's principle, |e1| + |zr| + ,

is absolutely convergent.

A good comparison series is the

n)Nandp:I,2,, ,

that for those n anď p,

...+ bn+p1 .

, , converges, so that z1 a zz +
l

geometric series, which behaves as follows.

THEoREM 6

pRooF If |q|> I,
Now let

then |q*| > 1 and Theorem

lql < 1. The nthpartial sum
3 implies divergence.
is

+ , , , l q".sn: I l q

From this,

Qsn: q + ", * qn * qn*'.

on subtraction, most terms on the right cancel in pairs, and we are left with

Sn- Qsn: (1 - q)sn: I - qn*',

Geometric series

The geometric series

(6*)

conver7es with the sum

Žr*:1+ q*q2+",
m:O

UQ - d if lql 1 I and diverges iílql 
=

1.
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Now 1 - q * 0 since q + I, and we may solve for s, finding

:I-qn*' _ 1 _ qn*'
I-q I-q I-q

Since lq| < 1, the last term approaches zero as n -> m. Hence if lql < 1, the series is
convergent and has the sum 1/(l - q).This completes the proof. l

Ratio Test
This is the most important test in our further work. We get it by taking the geometric
series as comparison series Ď, + bz t . . . in Theorem 5:

THEoREM 7 Ratio Test

If a series zt -| zz +,,, with zn * 0 (n -- I, 2,,, .) has the property that for
every n greater than some N,

(1)
Zn+1,

Zn
5q<I (n>AD

(where q < I isfixed),this series conver7es absolutely. If for every n} N,

(8)

the series diverges.

Zn+l

Zn
>1 (n ) Il/]-,

PROOF If (8) holds, then|zn*tl=lr.lfor n > N, so that divergence of the series follows from
Theorem 3.

If (7) holds, then lzn*tl = lr"l 
q for n ž IÝ, in particular,

Ir**rl í lr**rlq, l.r*rl 5 lzr*rl q 5lz**,,,lq', etc.,

and in general, |r**ol = l.r*rl qo-t. Since q < 1, we obtain from this and Theorem 6

|.r*rl + lzr*rl + |zr*r| + S lzr*rl 0 + q-| q'+ . ..) S lzr*r| 1-q

Absolute convergence of zl -| Zz + . . . now follows from Theorem 5. l

convergence, as we see from the harmonic series, which satisfies zn+tlZn: nl(n + 1) < l
for all n but diverges.

If the sequence of the ratios in (7) and (8) converges, we get the more convenient

Sn(6)
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THEoREM 8 Ratio Test

If aseries Zt-| zz + . .. withzn* 0(n: I,2,...) ls suchthat|ím
then:

(a) Ií L < I, the series conver7es absolutely.

(b) r L > I, the series diverges-

(c) Ií L : 1,, the series may conver7e or diverge, so that the test fails and

permits no conclusion.

Zn+I

Zn
:L,

pRooF (a)Wewrite kn:|zn*llzn|andlet L: l - b < 1. Thenbythedefinitionof limit,the

k,musteventuallygetcloseto 1- b,say,knaq: I -lU { 1for a|lngreaterthan
some N. Convergence of e1 * Zz * , , , now follows from Theorem 7.

(b) Similarly, for L : ! * c ) 1 we have knž I + lc ) 1 for aII n } N* (sufficiently

large), which implies divergence of z1 a zz + , , , by Theorem 7.

(c) The harmonic series I + + + + +,,, has zn+tlzn : nl(n + 1), hence L : t, and

diverges. The series

111ll+--| * -| _ i4 9 16 25

,n'
has

Zn+l

-:
zn (n -l |)2 '

hence also Z : 1, but it converges. Convergence follows from (Fig. 361)

Sn:
r"dx 1
l 

-aJ| x2 - 
L 

n

1I+i+ 1._L-<1r
lo:l|

n'

(l00 + 75i)?? l

T : l + (100 + 15i) + i rtoo +,75D2+ ...

so that , 1, s2, . . . is a bounded sequence and is monotone increasing (since the terms of

the series are all positive); both properties together are sufficient for the convergenCe of

the real sequence . 1, s2: . . . . (In calculus this is proved by the so-called integral test,

whose idea we have used.)

|2
Fig. 36l. Convergence of the series ]

Ratio Test

Is the following series convergent or divergent? (First guess, then calculate.)

l

34x,
_1-]_11_1'| _1_...l4'9'16

EXAM,PLE',4

rc

n:O
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Solution. By Theorem 8, the series is convergent, since

I r,*r l ltoo + zsi|n+ll(n + 1)l |too + zs;|

l ,l: 1roo-rr,l'r^ 
: ,+l

125 L: 0. l

ExAMPLE 5

ntI

Theorem 7 More General than Theorem 8

Let an: il23n and bn: l23'+1.Is the following series convergent or divergent?

ag -| bg -| a1 -| b1 -|
i

64

li
-llll 28

l
G

1

128

Solution. The ratios of the absolute values of successive terms are j,l,+,i, , , , . Hence convergence follows
from Theorem 7. Since the sequence of these ratios has no limit, Theorem 8 is not applicable. l

Root Test
The ratio test and the root test are the two practically most important tests. The ratio test
is usually simpler, but the root test is somewhat more general.

THEoREM 9 Root Test

If a series zt -| zz + , , , is such that for evelj n greater than some N,

(9) tlÁíq<l (n>IÝ)

(where q < I is fixed), this series conver7es absolutely. If for infinitely many n,

(l0) Ýá= y

the series diverges.

PROOF If (9)holds, then|z.|íqn { 1for aIIn} N.Hencetheseries l.rl + |zr|+...converges
by comparison with the geometric series, so that the series zt t Zz l . . . converges
absolutely. If (10) holds, then|z.| > 1 for infinitely many n. Divergence of zt l zz + . . .

now follows from Theorem 3. l

CAUTION! Equation (9) implie, W < 1. but this does not imply convergence, as

we see from the harmonic series, which satisfies tn]" < 1 (for n> I) but diverges.
If the sequence of the roots in (9) and (10) converges, we more conveniently have

THEoREM l0 Root Test

If a series zt -| zz+,,, is such that lim W : L, then:

(a) The series con er3es absolutely"iT a t.

(b) The series diverges if L > I.
(c) Ií L -- l, the test fails; that is, no conclusion is possible.
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The proof parallels that of Theorem 8.

(a) Let L : l - a* < 1. Then by the definition of a limit we have

rE; 1 q : l - !a* { 1 for aII n greaíer than some (sufficiently

V.l a qn < 1 for all n ž N*, Absolute convergence of the series z1

follows by the comparison with the geometric series,

PRooF

large) N*. Hence
1zz+",now

(b) If L > I,then we also have W ) 1 for all sufficiently large n. Hence |zn|

for those n. Theorem 3 now implies that z1 1 zz + , , , diverges.

(c) Both the divergent harmonic series and the convergenl series

1iá + + + # *ut +... giveL: l.Thiscanbeseenfrom (Lnn)ln__+0and

>1

111: 
,W 

: 
7ur,,t" " -> ď ,

1--)el1

,2ln

1

pia;Éa
1

9n'

@ sEQuENcEs
Are the following sequences Zy Z2, , , , , Zn,

Convergent? Find their limit points. (Show

your work.)

I. 7r: (,-l)" + ilz" 2.

3. 7n: (-l)"l(n + i) 4.

5. zn: Ln ((2 + i)n) 6,

7. zn: sin (nnl4) -l in 8.

9, zn: (0.9 + 0.u)2n 10.

11. Illustrate Theorem 1 by an example of your own,

12. (Uniqueness of limit) Show that if a sequence

converges, its limit is unique.

13. (Addition) If z1, z2, , , , converges with the limit l and

Z1*, Z2*, " , convefges with the limit /x, show that

zt l zt*, zz * zz*,,,, converges withthe limit l + ť.
14. (Multiplication) Show that under the assumptions of

Prob. 13 the sequenca ZlZ1*, Z2Z2*, , , , converges

with the limit //*.

15. (Boundedness) Show that a complex sequence is

bounded if and only if the two corresponding sequences

of the real parts and of the imaginary parts are bounded,

V6.z4 sERlEs

Are the following series convergent or divergent? (Give a

reason.)

,r,,
. , ,bounded?

the details of

-n ri 14 24'
<,n

z,,: (I + i)"
zn: (3 * 4i)"lnt,

zn: l(I + 3i)l\/Ál"
zn: (5 + 5i)-"

(-I)n(I + 2)2n+I 30.

(2n + I)|

What is the difference between (7) and just stating

|zn*llzn| < I?
Illustrate Theorem 2by an example of your choice,

For what n do we obtain the term of greatest absolute

value of the series in Example 4? About how big is it?

First guess, then calculate it by the Stirling formula in

Sec,24.4.

Give another example showing that Theorem 7 is more

general than Theorem 8.

CAS PROJECT. Sequences and Series. (a) Write a

program for graphing complex sequences. Apply it to

sequences of your choice that have interesting

"geometrical" properties (e.g,, lying on an ellipse,

spiraling toward its limit, etc.).

(b) Write a program for computing and graphing

numeric values of the first n partial sums of a series

of complex numbers. Use the program to experiment

with the rapidity of convergence of series of your

choice.

TEAM PROJECT. Series. (a) Absolute convergence,

Show that if a series converges absolutely, it is

convergent.

(b) Write a short report on the basic concepts and

properties of series of numbers, explaining in each case

whether or not they caffy over from real series

(discussed in calculus) to complex series, with reasons

given.

,r.2,#;
rr,:O

ln!t3

(3n)!

ž,*(;I
,

26.

27.

29.

š (l0 - 15i)"
16' > 

,,n

,-:.#
@1

20. > ;-
n:2 Ifl ft

17.
n:O

@

n:l

1_
:,/n

in
n

19.

q)

2I. >
n:l
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(c) Estimate of the remainder.Let|zn*l/znl = q < 1,

so that the series zt -| zz + . . . converges by the ratio
test. Show that the remainder Rn : Zn+t l Zn+z + . . .

satisfies the inequality |n,| < |z**r|l1t - q\.

(d) Using (c), find how many terms suffice for
computing the sum s of the series

673

n-li
Z""

with an error not exceeding 0.05 and compute s to this
accuracy.

(e) Find other applications of the estimate in (c).

@

n:l

15.2 Power Series
Power series are the most important series in complex analysis because we shall see that
their sums are analytic functions, and every analytic function can be represented by power
series (Theorem 5 in Sec. 15.3 and Theorem 1 in Sec. I5.4).

A power series in powers oí z - z6 is a series of the form

Ž"r^, 
- zo)n : ao * a{z - zo) * az(z - zo)2 l

where z is a complex variable, ag, a1, , , , are complex (or real) constants, called the
coefficients of the series, anď zg is a complex (or real) constant, called the center of the
series. This generalizes real power series óf calculus.

1f zo : 0, we obtain as a particular case a power series in powers of z:

Žo,,r':aola *a2z2 l
n:O

Convertence Behavior of Power Series
power series have variable terms (functions of z),blt if we fix z, then atl the concepts
for series with constant terms in the last section apply. Usually a series with variable
terms will converge for some z and diverge for others. For a power series the situation is
simple. The series (1) may converge in a disk with center zoor in the whole z-plane or
only at z6. We illustrate this with typical examples and then prove it.

EXAMPLE l Convertence in a Disk. Geometric Series

The geometric series

zn:I,|z*r'+-..

converges absolutely if |zl < 1 and diverges if |z| > 1 (see Theorem 6 in Sec. l5.1).

EXAMPLE 2 onvergence for Every z

The power series (which will be the Maclaurin series of e" in Sec. 15.4)

oD
zo ,u:1+r*i *:l *..

(1)

(2)

m

n:O

mrD

2n|
n-O

l
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is absolutely convergent for every :, In fact, by the ratio test, fbr any fixed z,

n --) ďJ.

Convergence Only at the Center, (Useless Series)

The following power series converges only aí z :0, but diverges for every z * 0, as we shal1 show,

,tz*: 1 + 7 + 2z2 + 6z3 -| ...
n:O

In fact, from the ratio test we have

Iz'-lltn-tlt l: t.t _ 0
l ,"," |- n+l

l t, + t)!z'*l I

l=-, l 
: ,n + ll |zl ---> oc

.'---\\\\Divergent
\

1-\ - \
? \ al

,' Coo.r. 
qr' 

\
lo1l
\ Zn t Az^\"rYz\*;/ l/

|o.(z - zo)n| : 
|o*rr, 

- zo)n (=I l ='

l

ExAMPtE 3

THEoREM 1

PRooF

n-) @ (z fixed and * O), l

Convergence of a Power Series

(a) Every power series (I) converges at the center zg,

(b) Ií (I) converges at a point Z : Zt * Zo, it converges absolutely for every Z

closer to zg than zt, that is, |z - zol < |,, - zol, See Fig,362,

(c) Ií (l) diverges at a Z -_ zz, it diverges for every z farther away from zg

than z2. See Fig. 362.

\- -/

Fig.362. Theroem l

(a) For z : zo the series reduces to the single term ag,

(b) Convergence at z __ z1 ives by Theorem 3 in Sec. 15.1 an(zt _ zo)" _+ 0 as n __+ @

This implies boundedness in absolute value,

|onkr- z *|<M for every n : 0, I,

Multiplying and dividing an(z - zo)n by (z, _ zg)n we obtain from this

ln,
IL 10 l

-l

I
I11 40l
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Summation over n gives

675

(3) ; b-k-z nl<M
n-l

;
n:l

In4- 40 l_l{,r-dol

Nowourassumption lr- ,ol<lrr- zolimpliesthat |(7 - z t(zt - zo)l { 1. Hencethe
series on the right side of (3) is a converging geometric series (see Theorem 6 in
Sec. 15.1). Absolute convergence of (1) as stated in (b) now follows by the comparison
test in Sec. 15.1.

(c) If this were false, we would have convergence at a zg farther away from zg than z2.

This would imply convergence at zz, by (b), a contradiction to our assumption of
divergence at z2. l

Radius of Convergence of a Power Series
Convergence for every z (the nicest case, Example 2) or for no z * Zo (the useless case,
Example 3) needs no further discussion , and we put these cases aside for a moment. We
consider the smallest circle with center zg that includes all the points at which a given
power series (1) converges. Let R denote its radius. The circle

lz - zo|: p (Fig. 363)

is called the circle of convergence and its radius R the radius of convergence of (1).
Theorem 1 then implies convergence everywhere within that circle, that is, for all z fot
which

(4) |z-zo|<n

(the open disk with center zg and radius R). Also, since R is as small as possible, the series
(1) diverges for aII z for which

|z-zo| >R.

No general statements can be made about the convergence oť a power series (I) on the
circle of convergence itself. The series (1) may converge at some or all or none of these
Points. Details will not be essential to us. Hence a simple example may just give us the
idea.

Fig. 3ó3. Circle of convergence

(5)
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EXAMPLE 4 Behavior on the Circle of Convertence

On the circle of convergence (radius R : 1 in all three series),

2 z'lr2 converges everywhere since ) Ilnz converges,

2 znln converges at - 1 (by Leibniz's test) but diverges at l,

2 zn diverges everywhere. l

Notations R = m and R = 0. To incorporate these two excluded cases in the present

notation, we write

R : oo if the series (1) converges for all z (as in Example 2),

R : 0 if (1) converges only at the center z: zo (as in Example 3).

These are convenient notations, but nothing else.

Real Power Series. In this case in which powers, coefficients, and center are real,

formula (4) gives the convergence interval l" - "ol 
{ R of length 2R on the real line.

Determination of the Radius of Convergence from the Coefíicients. For this

important practical task we can use

THEoREM 2 Radius of Convergence R

Suppose that the sequence |an*llan|, fr : I, 2, , , , , converges with limit L*. If
L* : O, then R : oo, that is, the power series (I) converges for all z. If L* + 0
(hence L* > 0), then

(6)
1R: .* : lim

L' rL+@
(Cauchy-Hadamard formula1).

an

an+I

If |a-*1lanl- oo, then R : 0 (convergence only at the center zo).

P R O O F For (1) the ratio of the terms in the ratio test (Sec. 15.1) is

an*t(Z - Zo)n*l
|, - ,ol. The limit is L:L*lz-zol.

an(z - zg)'

LetL* * 0, thus L* > 0. Wehaveconvergence If L: L*lr- zol< 1, thus |z- z"l<IIL*,
and divergence if l, - ,ol > IlL*. By (4) and (5) this shows that IlL* is the convergence

radius and proves (6).

If L* : 0, then L: 0 for every z, which gives convergence for all zby the ratio test.

If |an*llanl- oo, then |an*llan||z - zol ) 1 for any z * zganď all sufficiently large n.

This implies divergence for aII z * zoby the ratio test (Theorem7, Sec. 15.1). l

an+I

an

lNamed after the French mathematicians A. L.
(l865-1963). Hadamard made basic contributions
partial differentiaI equations.

CAUCHY (see Sec. 2.5) and JACQUES HADAMARD
to the theory of power series and devoted his lifework to
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Formula (6) will not help if L* does not exist, but extensions of Theorem 2 are still
possible, as we discuss in Example 6 below.

EXAMPLE 5 Radiusof Convertence

By (6) the radius of convergence of the power series ) ffi t, - 3i)n is
rr:0

(n+I)2 1

limi-- (2n + 2)(2n +

f t2nl| / 12n + 2)| l l- Qn\| ((rr + l)l)2 l
R : nlll lm l (, - l)! _] 

:"'ll 
|a* ,| ' -,;Ý- ):

The series converges in the open disk |z - 3rl < } of radius } and center 3i,

EXAMPLE 6 Extension of Theorem 2

Find the radius of convergence R of the power series

= l- tl t / l\
) l l *1-1,n l |-n-2r 

=r_lz+,lr'*í"L 
') ' 2" ]1 -J' 2- \- 4)'

1) 4,

I

* .'* (r - *)." *

Solution, The sequence of the ratios 1/6, 2(2 + Ž), Il(8(2 + i;l, . . . does not converge, so that Theorem
2 is of no help. It can be shown that

(6*) R : IÍ,,
n, /-t : lim Ylo"l.

7L+@

This still does not help here, since 1ffiL does not converge because Ýá : {Uť : ll2 for odcl n,

whereas for even n we have

Ýá:ÝZ* Ut---,t as n-->@,

so that ÝbÁhas the two limit points Il2 and 1. It can further be shown that

(6*x, R:Il , 7the greatest limit point of the sequence {Ýá}

Here l : 1, so that R : I. Answer. The series converges for |z| < 1. l

Summary. Power series converge in an open circular disk or some even for every e (or
some only at the center, but they are useless); for the radius of convergence, see (6) or
Example 6.

Except for the useless ones, power series have sums that are analytic functions (as we
show in the next section); this accounts for their importance in complex analysis.

1. (Powers missing) Show that if 2 arz' has radius of
convergence R (assumed finite), then ž anz2' has radius
of convergence VR. Give examples.

2. (Convergence behavior) Illustrate the facts shown by
Examples 1-3 by further examples of your own.

@ RADlus oF coNvERGENcE
Find the center and the radius of convergence of the
following power series. (Show the details.)

3. ; 
k-l_i)"

,n- o.),ff r, + 2i)n

nl.
^ (z. + 1)"

n"

/ a\"

\r)*

(n - i)"z"

( - 1),*1 _n

-1,

2lOOn
_yL

nl. 
1

( - 1)' q^^
_a ll

22nlnt12 '

(2z)2'

(2n)|

4"
(z - 5|"

(1 + i)"

10.

7.

9.

@

n:O

@

n-O

@

n:O

cr)

n:l

;
n:O

oo

n-O

n-O

a

n-O

8.

12.11.
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13.; n(n- 1)(a- 3+2Dn
n-2
Ť / l \n m

14. > !__}l__ ,2n 15. > 2nQ_ il4n
n:O \Zn)! yt-O

@4

(z- n)" 17. > T ,'"
n-o"TeY

oo tAn\l

'*.: ffi11 *rri)"

19. CAS PROJECT. Radius of Convergence. Write a

program for computing R from (6), (6x), or (6xx), in
this order, depending on the existence of the limits
needed. Test the program on series of your choice and

such that all three formulas (6), (6*), and (6x*) will
come up.

20. TEAM PROJECT. Radius of Convergence. (a)

Formula (6) for R contains |anlan*1|, not |an*llan|.
How could you memorize this by using a qualitative
argument?

(b) Change of coefficients. What happens to
R (0 < R < oo) if you (i) multiply aII an by k * 0,

(ii) multiply a,b! kn + 0, (iii) replace anby llan?
(c) Example 6 extends Theorem 2 to nonconvergent
cases of anlan*r. Do you understand the principle of
"mixing" by which Example 6 was obtained? Use this
principle for making up furlher examples.

(d) Does there exist a power series in powers of e that

converges at z: 30 + 10i and diverges at z : 3I - 6i?
(Give reason.)

;
n:O

anZn(1)

(2)

l5.3 Functions Given by Power Series
The main goal of this section is to show that power series represent analytic functions
(Theorem 5). Along our way we shall see that power series behave nicely under addition,
multiplication, differentiation, and integration, which makes these series very useful in
complex analysis.

To simplify the formulas in this section, we take zo : 0 and write

This is no restriction because a series in powers of 2 - zo with any zg cln always be
reduced to the form (1) if we set 2 - zg : z.

Terminology and Notation. If any given power series (1) has a nonzero radius of
convergence R (thus R > 0), its sum is a function of z, say í(z). Then we write

d)

f (z) :2 onrn : ao l a -| a2z2 l
n-O

(lzl < n).

We say that f(z) is represented by the power series or that ir is developed in the power
series. For instance, the geometric series represents the function í(z) : Il(I - z) in the

interior of the unit circle l.| : t. (See Theorem 6 in Sec. 15.1.)

Uniqueness of a Power Series Representation. This is our next goal. It means that
a function f(z) cannot be represented by two dffirent power series with the same
center. We claim that if í(z) can at all be developed in a power series with center 79, the
development is unique. This important fact is frequently used in complex analysis (as well
as in calculus). We shall prove it in Theorem 2. The proof will follow from
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THEoREM l Continuity of the Sum of a Power Series

If afunction Í(z) can be represented by a power series (2) with radius of convergence
R > 0, then .f(z) is continuows at z : 0.

PROOF From (2) with z:0 wehave/(0): a6. Hencebythe definition of continuity wemust
show that lim.-o Ík): /(0) : ao. That is, we must show that for a given e ) 0 there
is a 6 ) 0 such that |e| < 6 implies l/(z) - aol { e. Now (2) converges absolutely for
l"l < y with any r such that 0 1r 1R, by Theorem 1 in Sec. I5.2.Hence the seriesl!l 

-

ž b-lr'-' :
n-l

converges. Let S * 0 be its sum. (S : 0 is trivial.) Then for 0 < |rl = r,

|:rlcccE

Vrrl - aol: |2 o,r'| 
= |.| Ž lr.l|z|.-t = 1.1 Ž lonlrn-r: |.lslr,:' l n:t n:]_

1.1S < óS < (e/S)S : e. This proves the theorem. l

From this theorem we can now readily obtain the desired uniqueness theorem (again
assuming zo : 0 without loss of generality):

ldentity Theorem for Power Series. Uniqueness

Letthepowerseríesao* alz* a2z2 l...andbo1- b6* b2z2 +... bothbe
Convergent for |z| 1 R, where R is positive, and let them both have the same sum for
all these z. Then the series are identical, that is, ag : bo, a1 : b1, a2 : b2, .

Hence if a function Í(z) can be represented by a power series with any center 7o,
this representation is unique.

P R O O F We proceed by induction. By assumption,

ag * alz + a2z2 + . . . : bo l b6 -| b2z2 + (lzl < nl.

The sums of these two power series are continuous at Z : 0, by Theorem 1. Hence if we
consider lal > O and let z -+ O on both sides, we see that ag : boi the assertion is true
for n: 0. Now assume that an: bnfor n: 0, 1, , . . , m. Then on both sides we may
omit the terms that are equal and divide the result by z**'(+ 0); this gives

am+I* arn*2Z* a**gzz +... : brn+ll brrl2Z+ brr*"zz *

Similarly as before by letting z ---, 0 we conclude from this that atn+l: b**1. This
completes the proof. l

1
r žb,l,,

n:I

THEoREM 2
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Operations on Power Series
Interesting in itself, this discussion will serve as a preparation for our main goal, namely,
to show that functions represented by power series are analytic.

Termwise addition or subtraction of two power series with radii of convergence R,
and R, yields a power series with radius of convergence at least equal to the smaller of
R1 and R2. Proof. Add (or subtract) the partial sums s,, and sff term by term and use

lim (s," t s,Ť) : lim s, t lim sff.

Termwise multiplication of two power series

and

means the multiplication of each term of the first series by each term of the second series

and the collection of like powers of z. This gives a power series, which is called the

Cauchy product of the two series and is given by

agb, + (aoh * aůg)z -l (agb2 * alb. + azbo)zz +,,,

:Ž (aobn* albn_1+ ", -l anbg)zn,

We mention without proof that this power series converges absolutely for each z within
the circle of convergence of each of the two given series and has the sum s(z) : f (z)sk).
For a proof, see [D5] listed in App. 1.

Termwise differentiation and integration of power series is permissible, as we show
next. We call derived series of the power series (1) the power series obtained from (1)

by termwise differentiation, that is,

;
n:7

nanzn-T : at l 2a2z -| 3a3z2 +

Termwise Differentiation of a power series

The derived series of a power series has the same radius of convergence as the

original series.

PROOF This follows from (6) in Sec. 15.2 because

f (z) : Ž ooro -- ag
k:o
@

g(z):Ž brrz-:bo
m-O

* a6 + ",

-l b6 + ",

(3)

Tl{EoREM 3

1im
,lL-Cp

,lo.1

(n + I) |a-*tl

n:lim 

- 

limTL+.E n -l 1 rL+dJ

an

an+I
: lim

,lL-da

an

an+7

or, if the limit does not exist, from (6**) in Sec. I5.2by noting thatÝi-+ 1 as n --ž @. l

CHAP. l5 Power Series, Taylor Series
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EXAMPLE l Application of Theorem 3

Find the radius of convergence R of the following series by applying Theorem 3.

:r\r) 
zn : z2 + 3z3 + 6z.4 -| 10z5 -r . . ..

SOlUtiOn. Differentiate the geometric series twice term by term and multiply the result by z2/2. This yields
the given series. Hence R : 1 by Theorem 3.

THEoREM 4 Termwise lntegration of Power Series

The power series

oo

obtained 
', 

*r;:ri,rJ ,'r, series ao l alz * a2z2 l . . . term by term has the
same radius of convergence as the original series.

The proof is similar to that of Theorem 3.

With Theorem 3 as a tool, we are now ready to establish our main result in this section.

Power Series Represent Analytic Functions

Tl{EoREM,5 Analytic Functions. Their Derivatives

A power series with a nonzero radius of convergence R represents an analytic
function at eyery point interior to its circle of convergence. The derivatives of this
function are obtained by dffirentiating the original series term by term. Alt the
series thus obtained have the same radius of convergence as the original series.
Hence, by the first statement, each of them represents an analytic function.

P R O O F (a) We consider any power series (1) with positive radius of convergence R. Let í(z) be
its sum and f 1Q) the sum of its derived series; thus

(4) í(z):Žo,r' and
n-O

oo

f{z):) nanzn-l.
n-7

We show that Í(z) is analytic and has the derivative /r(z) in the interior of the circle of
convergence. We do this by proving that for any fixed z with 1.1 < n and Lz -+ 0 the
difference quotient lfk + Lz) - 7(7)]lL^z approaches /r(z).By termwise addition we first
have from (4)

(5)
Í(z+Ló-fk)

L,z f{z):2""| 17+Lz)"-zn
L,z

_,r"-'f 
.

Note that the summation starts with 2, since the constant term drops out in taking the
difference f (z + A,z) - f (7), and so does the linear term when we subtract f {z) from the
difference quotient.
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(b) We claim that the series in (5) can be written

a,,lz[(z + Lz)n-' + 2z(z + L,z)n-s +,,, + (n -

The somewhat technical proof of this is given in App. 4.

(c) We consider (6). The brackets contain n - 1 terms, and

n - L Sirrce (n - I)2 < n(n - 1), we see that for |z| = 
Ro an0

the absolute value of this series (6) cannot exceed

ax)

(6) zJ
n:2

2)z--3(z + Az)

+ (n - I)z--2l.

the largest coefficient is

|z+Ae| ÉRo,Ro{R,

(1) l^iŽ @)n(n - DR--'

This series with aninstead of |a*| is the second derived series of (2) at z : R6 and converges

absolutely by Theorem 3 of this section and Theorem 1 of Sec. 15.2. Hence our present

series (7) converges. Let the sum of (7) (without the factor |Az|) Ue K(Ro). Since (6) is

the right side of (5), our present result is

í(z+L,z)-Í(z)

Letting A,z --> 0 and noting that R6 (< R) is arbitrary, we conclude that Í(z) is analytic at

any point interior to the circle of convergence and its derivative is rePresented bY the derived

series. From this the statements about the higher derivatives follow by induction. l

Summary. The results in this section show that power series are about as nice aS We

could hope for: we can differentiate and integrate them term by term (Theorems 3 and 4).

Theorem 5 accounts for the great importance of power series in complex analysis: the

sum of such a series (with a positive radius of convergence) is an analytic function and

has derivatives of all orders, which thus in turn are analytic functions. But this is only

part of the story.In the next section we show that, conversely, every given analytic function

f (7) can be represented by power series, called Taylor series and being the comPlex

analog of the real Taylor series of calculus.

A,z
i,(.)l = |Az| K(Ro).

E RADlus oF coNvERGENcE By
DlFFERENT|ATIoN oR lNTEGRAT|oN

Find the radius of convergence in two ways: (a) directly by

the Cauchy-Hadamard formula in Sec, I5-2, (b) from a

series of simpler terms by using Theorem 3 or Theorem 4.

L; "'^;" .-- 2i)n
n-2 5"

mAn
o ' -n-' Í, nfu -l I)

0 (;I
(-1)"

oo

4.>
n-O

@

5.>
n:l

6.>
n-k

@

7.>
n:l

da

8.>
n:l

,.ž +
n,:t -

z'n

(z + i)2n

n(n ]- I)(n + 2)

2n(2n - I) o
-alb-Z

nn
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@ AppLlcATtoNs oF THE IDENTITv
THEoREM

State clearly and explicitly where
Theorem 2.

and how you afe using

16. (Bionomial coefficients)
(1 + z)e(1 * 3)q : (1 *
relation

15.4 Taylor and Maclaurin Series
The Taylor seriess of a function /(z), the

(1) f(z):žo.k-zo)n
n:I

or, by (1), Sec. 14.4,

In (2) we integrate counterclockwise around a simple closed path C that contains zg in
its interior and is such that f (7) is analytic in a domain contain ing c and every póint
inside C.

A Maclaurin seriesS is a Taylor series with centef zo : 0.

2LPoNRRoo oF PISA, called FIBoNACCI (: son of Bonaccio), about 1180-125O, ltalian mathematician,
credited with the first renaissance of mathematics on christian soil.3nRoor TAYLOR (l685-173l), English mathematician who introduced
MACLAURIN (1698-1 746), Scots mathematician, professor at Edinburgh.

real Taylor series. COLIN

á [(,;)] 

1 

,n*k

ž (' 
***) 

*

9.

ž,() (,:,): (*,,)

10.

11. (Addition and subtraction) Write out the details of
the proof on termwise addition and subtraction of
power series.

12. (Cauchy product) Show that

1t - z)-' : 27:o @ -l l)an (a) by using the Cauchy
product, (b) by differentiating a suitable series.

13. (Cauchy product) Show that the Cauchy product of
27_o zn/n|, multiplied by itself gives 2T,:n (Zz).ln!.

14. (On Theorem 3) Prove that Ýi -> 1 as n --- oo (as
claimed in the proof of Theorem 3).

'r. l?;.rheorems 
3 and 4) Find further examples of your

(Odd function) If í(z) in (1) is odd (i.e.,

Í(-Z) : -f (z)), show that an: 0 for even n. Give
examples.

(Even functions) If f (z) in (1) is even (i.e.,

Í(-z) : í(z)), show that a,,:0 for odd n. Give
examples.

19. Find applications of Theore m 2 indifferential equations
and elsewhere

20. TEAM PROJECT. Fibonacci numbers.2 1a; the
Fibonacci numbers ate recursively defined by
ao : al : I, an+l : an t ar_1 iÍ n : I,2,.,
Find the limit of the sequence (an*tla),
(b) Fibonacci's rabbit problem. Compute a list of
ab . . , at2.Show that a2 : 233 is the number of
pairs of rabbits after 12 months if initially there is 1

pair ?nd each pair generates 1 pair per month,
beginning in the second month of existence (no deaths
occurring).
(c) Generating function. Show that the generating
function of the Fibonacci numbers is
í(z) : Il(I - z - z'); that is, if a power series (1)
represents this í(z), its coefficients must be the
Fibonacci numbers and conversely. Hint. Start from
í(z) (I - z - z2):1 and use Theorem 2.

17.

18.

Using
z)P*q, obtain the basic

complex analog of the real Taylor series is

where an: 1

nl.
í'n'(zo)

(2)
l r [(z.1,|tt --O rl-*"'n 2ni Jc (z* - Zo)n, , u/-
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The remainder of the Taylor series (1) after the term an(z - ao)' is

í(z*)
(z*-zo)n*I(7*-7S

(proof below). Writing out the coíTesponding partial sum of (1), we thus have

dz*

t- 
- - \ft

, \( 10) r(n),++I'n'(z +R,(z).
(4)

This is called Taylor's formula with remainder.

We see that Taylor series are power series. From the last section we know that Power
series represent analytic functions. And we now show that every analYtic function can be

represented by power series, namely, by Taylor series (with various centers). This makes

Táylor series very important in complex analysis. Indeed, they are more fundamental in

complex analysis than their real counterparts are in calculus.

THEoR,EM"l Taylor's Theorem

Let f (z) be analytic in a domain D, and let z : zg be any point in D. Then there

exists precisely one Taylor series (l) with center zg that represents f(Z). This

representation is valid in the largest open diskwith center zginwhich f (z) is analYtic.

The remainders R.(z) of (I) can be represented in the form (3). The cofficients
satisfy the inequality

M(5) loÁ = 7
where M is the maximum oí lí@l on a circle lz - zol : r in D whose interior is

also in D.

p R o o F The key tool is Cauchy's integral formula in Sec. 14.3; writing z and z* instead of z6 and

e (so that z* is the variable of integration), we have

(6) f(:):+ó I"*, n,*
/.TrI L" Z." - Z

z lies inside C, for which we take a circle of radius r with center zg anď interior in D
(Fig. 36a). We develop 1i(z* - z) in (6) in powers of z - eo. By a standard algebraic

manipulation (wotíh remembering!) we first have

(7)
<'<' z*-zo-k-zo) (z*-..l(r- ffi)
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For later use we note that since z* is on C while z is inside C, we have

(7*)
110

-*-1'- 19

Fig. 36a. Cauchy formula (6)

To (7) we now apply the sum formula for a finite geometric sum

l-rn+t 1

<1 (Fig. 36a).

qn*'
(8*) I + q + ", * qn _ (q * I),I-q l-q I-q

which we use in the form (take the last term to the other side and interchange sides)

lim Rnk) : 0.
rL+@

(8)
on+Il+q+...lq''+i=

Applying this with Q : (z - z l(z* - z to the right side of (7), we get

-+:+;[,- =:-(7)'* 
-(: 

)")1'-1 1'-Zo L Z'-Zo \Z''-

+ _I í z- zo \?z+1

z*1 \.-;/
We insert this into (6). Powers of z - z6 do not depend on the variable of integration z*,
so that we may take them out from under the integral sign. This yields

l r f(z,*l ,-ro Á ík*) r]z*1. .Í(d:2- 
"ňdz*l 

2rri J.(z*- zo)2u* 
|

(z -'n)' Ó,, Í('*',,,,, 
dz* l Rnk)"'-r zri Y.k--r"Y

with RnQ) given by (3). The integrals are those tn (2) related to the derivatives, so that
we have proved the Taylor formula (4).

Since analytic functions have derivatives of all orders, we can take n in (4) as large as
we please. If we let n approach infinity, we obtain (1). Clearly, (1) will converge and
represent f (z) if and only if

1

-:
I-q

(9)
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We prove (9) as follows. Since 1* lies on C, whereas z lies inside C (Fig. 364), we have

l.* - zl > 0. Since /(z) is analytic inside and on C, it is bounded, and so is the function

í(z*)l(z* - z), say,

í(z*)
=ffl

for all z* on C. Also, C has the radius r : lz* - z6| and

ML-inequality (Sec. I4.I) we obtain from (3)
the length 2rr. Hence by the

1R,1 : y-#:\ 
"

í(z*)
(z*-zn*l(z*-z) o,-\

thus f'(zo): o,

thus í"k : Z|.az

l- _ ln+7
< l4-dol: 

2rr

Now |z - zo| { r because z lies inside C. Thus l, - ,ollr 1 I, so that the right side

approaches 0 as n --> @. This proves the convergence of the Taylor series. Uniqueness

follows from Theorem 2 tn the last section. Finally, (5) follows from (1) and the Cauchy

inequality in Sec. 14.4. This proves Taylor's theorem, l

Accuracy of Approximation. We can achieve any preassinged accuracy in
approximating f (7) by a partial sum of (1) by choosingnlarge enough. This is the practical

aspect of formula (9).

Singularity, Radius of Convergence. On the circle of convergence of (1) there is at

least one singular point of í(z), that is, a point z : c at which í(z) is not analytic (but

such that every disk with center c contains points at which f (z) is analytic). We also say

that í(z) is singular at c or has a singularity at c. Hence the radius of convergence R of
(1) is usually equal to the distance from zg to the nearest singular point of Í(z).

(Sometimes R can be greater than that distance: Ln z is singular on the negative real

axis, whose distance from Zo : - 1 + i is_1, but the Taylor series of Ln e with center

zo : -I + i has radius of convergence r/Z.>

Power Series as Taylor Series
Taylor series are power series-of course! Conversely, we have

Relation to the Last section

A power series with a nonzero radius of convergence is the Taylor series of its sum.

(10)

Given the power series

f(z): ao l al(z - zo) +

Then f(zg) : ao. By Theorem 5 in Sec,

az(z- z 2 + as(z- zo)3 +

15.3 we obtain

I l--- lntl
Ň-=2lrr: rlťl

THEoREM 7

PRooF

í'(z):a1 -l 2a2(,-, ,l 3a3Q-z2+,,,

í"(r):2a2 l3.2(z-z + ,,
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lmportant Special Taylor
These are as in calculus, with x replaced
coefficient formulas are the same.)

EXA M P LE l Geometric Series

Let í(z) : Il(| - z). Then we have í@(r) : n|t(I
ll(I - a) is the geometric series

687

and in general í'n'(z : fl|.an. With these coefficients the given series becomes the Taylor
series of f (z) with center z6. l

Comparison with Real Functions. One surprising property of complex analytic
functions is that they have derivatives of all orders, and now we have discovered the other
surprising property that they can always be represented by power series of the form (1).

This is not true in general for realfunctionsl there are real functions that have derivatives
of all orders but cannot be represented by a power series. (Example f(x): exp (-Ilxz)
if x * 0 and /(0) : 0; this function cannot be represented by a Maclaurin series in an
open disk with center 0 because all its derivatives at 0 are zero.)

Series
by complex z. Can you see why? (Answer. The

- z)n*Í, "f(')(O) 
: n|. Hence the Maclaurin expansion of

(11)
@

).":l+z.+z,2+
n:O

/(z) is singular at z : 1; this point lies on the circle of convergence.

E X A M P L E 2 Exponential Function

We know that the exponential function e" 1Sec. 13.5) is analytic for all z, and (e")'

Zo : 0 we obtain the Maclaurin series

1

I-z. (lzl < t).

I

: e'.Hence from (1) with

(12)
@ aTLe':2 

=n-O n!

,
7'

-1l_t*|-l-rl.Í---r-2|

This series is also obtained if we replace x in the familiar Maclaurin series of e' by z.
Furthermore, by setting z: iy in (l2) and separating the series into the real and imaginary parts (see

Theorem 2, Sec. 15.1) we obtain

@

-s- Z-J
k-o

Cu)

_iy _c -,2
n:O

, . ,n
( l)')

,r)
(- 1)k

2k} ,,š
(2kl| ' 'Ío (-1)k#

Since the series on the right are the familiar Maclaurin series of the real functions cos y and sin y, this shows
that we have rediscovered the Euler formula

(13) eiU:cosy*isiny.

Indeed, one may use (12) for defining e' and derive from (12) the basic properties of e'. For instance,
differentiation formula (r")' : e" follows readily from (l2) by termwise differentiation.

the

ffi
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ExAMPLE 3 Trigonometric and Hyperbolic Functions

By substituting (I2) into (1) of Sec. l3.6 we obtain

(14)

@

n:O

sinz: ž (-t)'
n:O

,2n*-t

-l(2n)l

,2n+l
(r"+ry

Z,2 Z4

-+-+.2l. 4l,

Z3 Z5
-_.L_I-1 l 3! ' 5!

+....

When z : x these are the familiar Maclaurin series of the real functions cos J and sin x. SimilarlY, bY substituting

(12) into (11), Sec. 13.6, we obtain

(15)

oc ,2n

(2n)t,
n-O

co ,2n+l
sinhz:: Qr-||--

l

ExAMPLE 4 Logarithm

From (1) it follows that

z2(16) Ln(l +z)-r-T+

Replacing zby -z and multiplying both sides by -1, we get

--+aJ
(lzl < t).

o1) -Ln(1 - z): Ln tlzl < 1l.

By adding both series we obtain

( 18) f )
(lzl < t). l

Practical Methods
Ihe fol|owing examples show ways of obtaining Taylor series more quickly than by the

iffijl:;:"iH,ilJ"Jffil:l :?[ťiTJ"TT il:,n"u 
used, the result will be the same

EXAMPLE 5 Substitution

Find the Maclaurin series of í(z) : Il(I + z2),

Solution. By substituting -z2 for z in (11) we obtain

í19) _r. :i,-.rr" :3 (_ l)nz2n - I- z' + zn - ru +.,. (lzl<r). l
1 l z' I - (-z') n__o n_o

1z'z3
--L-L-!-..|-z-'' 2 3

,' ,u
1-1--!T_3'5I-|z.Lfl--:zI-z,

r
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EXAMPLE 6 lntegration

Find the Maclaurin series of ,f (z) : arctan z.

Solution. We have í'(z):1(1 + z'1.Irt"gruting (l9) term by term and using í(0) = 0 we get

arctanz: *_r!: r2n+I :z- + - +- +... (lzl<t);
n:O

this series represents the principal value of w : u -l iu : arctan z defined as that value for which

|u| < rrl2. l

EXAM PLE 7 Development by Using the Geometric Series

Develop ll(c - z) in powers of z - z6, where c - zg * 0.

Solution. This was done in the proof of Theorem 1, where c : z*. The beginning was simple algebra and

then the use of (11) with z replaced by (z - z l(c - zd:

::;á(=)"

(;Ť)'- 
)

(c-zo)(,-=Ť)

(, * '-'o *
c-zo \ c-zo

l- - l

|' 'o|.'. thatis, lz- zol<l.-zol.
lc-Zol

EXAMPLE 8 Binomial Series, Reduction by Partial Fractions

Find the Taylor series of the following function with center zo : 1.

272+)7+5
i(;) : z\ zr= 8z - n

Solution. We develop /(z) in partial fractions and the first fraction in a binomial series

: (1 + Z)-*:ž (-:) 
"

This series converges for

(I + z)*

l

(20)

mfu -l l\
-l-mz, l 2! '.-

with m : 2 and the second fraction in a geometric series, and then add the two series term by term. This gives

J\<l- 
17-1 ;;'2- r-' - t3+k-|)P 2-(z-1) q \[r +*tz-li'l t-jtz-ll
l ffi /_1\: ;ž (;) ( +)" -ž (+)" :ž tq-#] +l,, -,,,

83123.275o:- 9-e (z-t;- 
108 k-11'- I%4 

(z-1)"

We see that the first series converges for |z - 1l < 3 and the second for |z - ll < 2, This had to be expected
because ll(z + 2)2 is singular at -2 andZl(z - 3) at 3, and these points have distance 3 and 2, respectively,
from the center zo: l. Hence the whole series converges for |z - t| < Z. I

m(m -| I)(m + 2) z3+",
3!

l
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@ TAyLoR AND MAcLAuRlN sERlEs

Find the Taylor or Maclaurin series of the given function

with the given point as center and determine the radius of
convergence.

I. e-2", 0

3. e", -2i
2. 1l(I - z3), 0

4. cosz Z, 0

defines the Bernoulli numbers Br. Using undetermined
coefficients, show that

Bt:
(23)

Bq:

Bs:0,1

- Bn: -6
1

-,
1

-30
1Bs:0. Bu: ^ -",4/

5. sin z, rrl2 6.

7. Il(1 - z), 
' 

8.

9, n-"2lz, 0 10.

!'l,. z6 - z4 + z' - !, I 12.

B-161 HlGHER TRANScENDENTAL
FUNcTloNs

Find the Maclaurin series by termwise integrating the

integrand, (The integrals cannot be evaluated by the usual

methods of calculus. They define the error function eď z,

sine integral Si(z), and Fresnel integralsn S(z) and C(z),
which occur in statistics, heat conduction, optics, and other

applications. These are special so-called higher
transcendental functions. )

r' f'
15. S(z) : I sin t2 dt 16. C(z) : I cos t2 dt

Jo Jo

17. CAS PROJECT. sec, tan, arcsin. (a) Euler numbers.
The Maclaurin series

(2I) secz : Er- + r' * t zn - + ",

defines the Euler numbers E2r". Show that Eg : I,

Ez : -I, E+ : 5, Ee : -61. Write a program that

computes the Ern from the coefficient formula in (1)

or extracts them as a list from the series. (For tables

see Ref. [GRl], p. 810, listed in App. 1.)

(b) Bernoulli numbers. The Maclaurin series

Write a program for computing Bn.

(c) Tangent. Using (1), (2), Sec. 13.6, and (22), show
that tan z has the following Maclaurin series and

calculate from it a table of 86, , , , , Bzo|

2i(24) tan z : -;;- -- ezlz_I ,aiz _ 1
-l

:Ž(-|),-, !# Br,r,"-,.

18. (Inverse sine) Developing I^n -? and integrating.

show that

arcsin z: Z- (+) Ť - (#) +

*(t'z's\ " +... (lzl <r).\z.4.6l 1

Show that this series represents the principal value of
arcsin z (defined in Team Project 30, Sec. 13.1).

19. (Undetermined coefficients) Using the relation
sin z : tan z cos e and the Maclaurin series of sin z and

cos z, find the first four nonzero terms of the Maclaurin
series of tan z, (Show the details.)

20. TEAM PROJECT. Properties from Maclaurin
Series. Clearly, from series we can compute function
values. In this project we show that properties of
functions can often be discovered from their Taylor or
Maclaurin series. Using suitable series, prove the

following.

(a) The formulas for the derivatives of e", cos z, sin Z,

cosh z, sinh z, and Ln 1t + e)

(b) *@i. + e-i") : cos z

(c) sin e * 0 for all pure imaginaíy z : iy * 0

Il z,

Ln (1
^z

o"I
Jo

sinh (z

1

- z), i

"'" ,lt, 0

- 2i), 2i

1,3. erf , : + |" u-r' d, 14. Si(;) : |' 
sin t ,,- \/rr Jo Jo t

839

-7ú+3!
(22) *:liB1;* ?-'*

aAUGUSTIN FRESNEL (1't88-1821), French physicist and engineer, known for his work in optics,
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l 5.5 Uniform Convertence.
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(1)

Optional
We know that power series are absolutely convergent (Sec. I5.2, Theorem 1) and, as
another basic property, we now show that they arc uniformly convergent. Since uniform
convergence is of general importance, for instance, in connection with termwise integration
of series, we shall discuss it quite thoroughly.

To define uniform convergence, we consider a series whose terms are any complex
functions f ok), í tk), . . . :

š
m:O

f,-(z) : fok) + flk) + fzk) +

(This includes power series as a special case in which f *(z) : a,n (z - z *.) We assume
that the series (1) converges for all z in some region G. We call its sum s(e) and its nth
partial sum srr(z); thus

sn(z) : fok) + ftk) + . . . + f.(z).

Convergence in G means the following. If we pick a z : zl in G,then, by the definition
of convergence at zy for given e } 0 we can find an Nr(e) such that

|r(zr)-s,"(zr)l <e foralln>N{e).

If we pick a z2 in G, keeping e as before, we can find an N2(e) such that

|r(zr)-snk)l<e forall n)N2(e),

and so on. Hence, given an e ) 0, to each z in G there corresponds a number N"(e).
This number tells us how many terms we need (what sn we need) at a z to make
|r(z) s.(z)l smaller than e. Thus this number 

^L(e) 
measures the speed of

convergence.
Small 

^L(e) 
means rapid convergence, large Nr(e) means slow convergence at the point

z considered. Now, if we can find an N(e) larger than all these N"(e) for all z in G, we
say that the convergence of the series (1) in G is uniform. Hence this basic concept is
defined as follows.

Uniform Convergence

A series (1) with sum s(e) is called uniformly conyergent in a region G if for every
e } 0 we can find an N : N(e), not depending on Zl such that

ls(z) - s.(z)l < e for all n > N(e) and all z in G.

Uniformity of convergence is thus a property that always refers to an infinite set in
the z-plane, that is, a set consisting of infinitely many points.

DEFlNlTloN
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ExAMPLE t

THEoREM l

PRooF

CHAP. l5 Power Series, Taylor Series

Geometric series

Showthatthegeometricseries 1i z * ,'+...is(a)uniformlyconvergentinanycloseddisklzl Í r'-I,
(b) not uniformly convergent in its whole disk of convergence 1.1 < t.

Solution. (a) For z in that closed disk we have |t - .l > 1 - r (sketch it). This implies that

1/|1 - z| < 1/(1 - r). Hence (remember (8) in Sec. 15.4 with q -- z)

l - | | _ri+l l ,.n*1

|s(z) -sn(z)| :l.?_,.-l :|t;l=;
Since r { 1, we can make the right side as small as we want by choosing nlarge enough, and since the right

side does not depend on z (in the closed disk considered), this means that the convergence is uniform.

(b) For given real K (no matter how large) and n we can always find a z in the disk 1.1 < t such that

l nll | |_|n.l
|' l: ,|'| , >K.
I r -. l - lt -.l

simply by taking z close enough to 1. Hence no single N(e) will suffice to make lr(z) - srr(z)| smaller than a

given . ž 0 throughouí the whole disk. By definition, this shows that the convergence of the geometric series

in lzl < 1 is not unifo.rn. I

This example suggests thatfor a power series, the unformity of conver?ence maY at most

be disturbecl near the circle of convergence. This is true:

Uniform Convergence of Power Series

A power series

(2) 
ž"o,,r, 

- zo)*

with a nonzero radius of convergence R is unifurmly convergent in everY circular

disk|z- zolarof radius r{R.

For |z - zol š r and any positive integers n andp we have

(3) |an*t(z- zo)n*t + ", l an*o(z - eo)'*ol =|an*l,|rn+l a ",+ |on*o|,n*o,

Now (2) converges absolutely if |z - zol : r { R (by Theorem 1 in Sec. I5.2). Hence it

follows from the Cauchy convergence principle (Sec. 15.1) that, an)r > 0 being given,

we can find an N(e) such that

|on*rlrn*' +,,, -l |an*o|rn*P 1, for n > N(e) and p -- I,2,

From this and (3) we obtain

lar*t(z - zo)n*I +,,, * an*o(z - zg)n+e| <

forall zinthedisk|z - zol š r,every nž N(e), andevery p: I,2,",. Sincel(e)is
independent of z, this shows uniform convergence, and the theorem is proved. l

Theorem 1 meets with our immediate need and concern, which is power series. The

remainder of this section should provide a deeper understanding of the concept of uniform
convergence in connection with arbitrary series of variable terms.
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Properties of Uniformly Convertent Series
Uniform convergence derives its main importance from two facts:

1. If a series of continuous terms is uniformly convergent, its sum is also continuous
(Theorem 2, below).

2. Under the same assumptions, termwise integration is permissible (Theorem 3).

This raises two questions:

1. How can a converging series of continuous terms manage to have a discontinuous
sum? (Example 2)

2. How can something go wrong in termwise integration? (Example 3)
Another natural question is:

3. What is the relation between absolute convergence and uniform convergence? The
surprising answer: none. (Example 5)

These are the ideas we shall discuss.

If we addfinitely many continuous functions, we get a continuous function as their sum.
Example 2 w1II show that this is no longer true for an infinite series, even if it converges
absolutely. However, if it converges uniformly, this cannot happen, as follows.

THEoREM 2 Continuity of the Sum

Let the series

žor*u):fok)+f{z)+",

be unifurmly convergent in a region G. Let F(z) be its sum. Then if each term f ,,r(7)
is continuous at a point zl in G, the function F(z) is continuous at z1.

P R O O F Let snQ) be the nth partial sum of the series and RnQ) the corresponding remainder:

sn: ío* fl,+... l fn, Rn:fn*tlín+z+....

Since the series converges uniformly, for a given e } 0 we can find an 1/ : 1(e) such
that

for all z in G.

z1, this sum is

lnrtell . i
3

Since slr(z) is a sum of finitely many functions that are continuous at
continuous at 4. Therefore, we can find a 6 > 0 such that

lrr(.) - sx(zr)l < ; for al1 z\nGforwhich lz - zrl < a.
J

Using F: sru t Rnr and the triangle inequality (Sec. l3.2), for these z we thus obtain

lPk) - F(z)l: lsr(z) + Rr(z) - [sr(zr) + Rl,,(zr)]l

= lrr(z) - sl,,(er)l + lnr(z)l + |Rrtz1)l . i + ; * i : ..
JJJ

This implies that F(z) is continuous at 71, and the theorem is proved. l
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ExAMPLE 2
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series of continuous Terms with a Discontinuous sum

consider the series
22_.2

^.2- X - ' +
^ | l-|x2' 1l+x2 l2 (l+x2)3

This is a geometric series with q : 1l(1 + x2) times a factor 
"2, 

It, nth partial sum is

l-lll-l
Jn(ll - -r l l - _L l -? - T|-W-r "'-r íl +x2t'_.] '

We now use the trick by which one finds the sum of a geometric series, namely, we multiPlY

s,"(x) by -q - _ ll i' + x2),

l o[ l l l -l

- T_" sn(r) : -" L1 -" + "' * 
,, * rrr + (-;ŤtT)

(x real).

Adding this to the previous formula, simplifying on the left, and canceling most terms on the right, we obtain

thus

*2 "l-, 
l ]

1 * _, sn(,r) :," 
L' - ,,+x ťTT] 

.

sn@.):1*x2 T:rF
The exciting Fig. 365 "explains" what is going on. We see that if x * 0, the sum is

s(x) :,,l31 sn(x) : | -| x2,

but for x : 0 we have sr"(0) : 1 - 1 : 0 for all n,hence s(0) : 0. So we have the surPrising fact that the

sum is discontinuous (at x : 0), although all the terms are continuous and the series converges even absolutelY

(its terms are nonnegative, thus equal to their absolute valueI).

Theorem 2 now tells us that the convergence cannot be uniform in an interval containing -r : 0. We can also

verify this directly. Indeed, for x * 0 the remainder has the absolute value

1

ln,(r)l : |s(x)-s,,(x)| í _W

andweseethatforagiven (< 1)wecannotfindanNdependingonlyone suchthat|Rr| ( e foralln>NG)
and all.r, say, in the interval 0 é x = 1,. l

Fig. 365. Partial sums in Example 2
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Termwise lntegration
This is our second topic in connection with uniform convergence, and we begin with an
example to become aware of the danger of just blindly integrating term-by-term.

EXAMPLE 3 Series for which Termwise lntegration is Not Permissible

Let uro@) : 1nr"-,7L,2 and consider the series

@

m:O

in the interval 0 < x < l. The nth partial sum is

Sn: UI- uol u2- ul + ", * un- Uyt_l: lln- Ltg: Lln.

Hence the series has the sum F(x) : lim sr"(x) :lim un@) : Q (0 š .r š l). From this we obtainTL+ď) 7L+(r)

^I
l
I F{x) dx:0.
'o

On the other hand, by integrating term by term and using ít + íz + . . . * ín: sr, we have

,mfln"|.l

Ž. l r*,-) dx: rim j l í-,r, dx: lim I s,rx,l dx.

-_i"O n-**:|Jo _ '--Jo

Now sr, : un and the expression on the right becomes

r' r' ....2lim I ur(x| dx : lim I nxe-"' dx : lim
}?....Ť Jo n-Cn Jo 11 -@

but not 0. This shows that the series under consideration cannot be
x : 1.

11
,0-e-"):2.

: integrated term by term from x : 0 to
I

The series in Example 3 is not uniformly convergent in the interval of integration, and
we shall now prove that in the case of a uniformly convergent eries of continuous
functions we may integrate term by term.

THEoREM 3 Termwise lntegration

Let

F(z):Žor*u): fok) + f {z)+ ...

be a unifurmly convergent series of continuous functions in a region G. Let C be
any path in G. Then the series

@

is convergrr, 
";:;r"rr",ru 

,u^ | Ora Or.JC

695
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P R O O F From Theorem 2 it follows that F(z) is continuous. Let srr(z) be the nth partial sum of the

given series and R,(z) the corresponding remainder. Then F : sn l Rnand by integration,

I nrl dz: I s,rzl dz t I n,trl ar.
"C -C

Let L be the length of C. Since the given series converges uniformly, for e]very given

e ) 0 we can find a numberNsuch that|R.(z)| < elL for all n} N and all e in G. By
applying the ML-tnequality (Sec. 14.I) we thus obtain

lt", l e

lr"?,(.) 
orl. í L: '

Since R,.: F - sn, this means that

|Í"rro 
a, - [",.(z) d.zl . .

forall n}N.

THEoREM 4

THEoREM 5

forall n)N.

Hence, the series (4) converges and has the sum indicated in the theorem. l

Theorems 2 and 3 characterize the two most important properties of uniformly convergent

series. Also, since differentiation and integration are inverse processes, Theorem 3 implies

Termwise Differentiation

Let the series fok) + ítk) + fzk) +,,, be conver7ent in a region G and let F(z)

be its sum. Suppose that the series f[k) + f'r(z) + flk) +,,, converges unformly
in G and its terms are continuous in G. Then

p'(z): f[k) + f'r(z) + flk) +... forallzinG.

Test for Uniform Convergence
Uniform convergence is usually proved by the following comparison test.

Weierstrasss M-Test for Uniform Convert nce

Consider a series of the form (I) in a region G of the z-plane. Suppose that one can

find a convergent series of constant terms,

(5) Mo*MttMzt",,

such that lí,.k)l a M,n for all z in G and every ffi : 0, 1,,,, . Then (1) ls
unifurmly conver7ent in G.

sKARL WEIERSTRASS (18l5*1897), great German mathematician, whose lifework was the development

of complex analysis based on the concept of power series (see the footnote in Sec. 13.4). He also made basic

contributions to the calculus, the calculus of variations, approximation theory, and differential geometry. He

obtained the concept of uniform convergence in 1841 (published lB94, sicl); the first publication on the concept

was by G. G. STOKES (see Sec 10.9) in 1847.
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ExAMPLE 4

The simple proof is left to the student (Team Project 18).

Weierstrass M-Test

Does the following series converge uniformly in the disk |z| < l ?

Ť_l7lt1

f̂
1l 2r]|, m Ť cosn /?? Z|

Solution. Uniform convergence follows by the Weierstrass M-test

Sec. 15.1, in the proof of Theorem 8) because

697

and the convergence of žl/rz2 (see

I z*-l | |.|-*l|-| , 

-
| ,,,' + cosh ,n|:| | 

: 
n,2

,2n+ I
rd'' ín (2n -t- I||, '

Ť*n
1 " ,2' lrlJ. 1J4r.1.1

n^n:U

l2<-
2m

ExAMPLE 5

E uNlFoRM coNvERGENcE
Prove that the given series converges uniformly in the

indicated region.
@

1. > (z - 2i;2", |z - zi| < 0.gg9

No Relation Between Absolute and
Uniform Convergence
We finally show the surprising fact that there are series that converge absolutely but not

uniformly, and others that converge uniformly but not absolutely, so that there is no

relation between the two concepts.

No Relation Between Absolute and Uniform Convertence

The series in Example 2 converges absolutely but not uniformly, as we have shown. On the other hand, the series

(x real)

converges uniformly on the whole real line but not absolutely.
Proof. By the familiar Lelbniz test of calculus (see App. A3.3) the remainder R, does not exceed its first

term in absolute value, since we have a series of alternating terms whose absolute values form a monotone

decreasing sequence with limit zero. Hence given e ) 0, for all r we have .-,

11 1

l x4-1 nl7 n

This proves uniform convergence, since N(e) does not depend on x.

The convergence is not absolute because íor any fixed x we have

l t-l)--t I r

l z l- 2Ix Ťm I x Ťm

k

';
where ft is a suitable constant, and k}|lm diverges. l

L.| = to,o

< 0.56
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4.>
n:t

@

<

n:l
m

6.>
n-|

oo

7.>
n:O

É.;
n-l

sin'lrrzl
n(n + I)

zn

;F;"rh,lr<

tanh'|z|
-"'+t

cos n|z|
,n'

ZznW

zn
,n'

<1
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< 105

<1

< 1010

š 1020

(d) Example 2. Find the precise region of
convergence of the Series in Example 2 with -í replaced

by a complex variable z.

(e) Figure 366. Show that x2 2i._r, (l + x21-* : 1

if x * 0 and 0 if x : 0. Verify by computation that the

partial suítls , 1, s2, 3, look as shown in Fig. 366.

_1 0

T í;,"í, 
","T 

; :[liili"]'

Elrol HEAT EQuATloN
Show that (9) in Sec. 12.5 with coefficients (10) is a solution

of the heat equation for / ) 0, assuming that /(x) is continuous

on the interval 0 < x a L and has one-sided derivatives at

all interior points of that interval. Proceed as follows.

19. Show tbat |B*| is bounded, say |B,| { K for all n.

conclude that

|u.l < Ke-^,2to if t>to>0

and, by the Weierstrass test, the series (9) converges

uniformly with respect to x and t for t - /o, 0 š x š L.

Using Theorem 2, show that u(x, r) is continuous for
t ž to and thus satisfies the boundary conditions (2)

fot t >- tg.

20. Show tl,tat |3url6tl 1 tn'Ke-^n'to if t 
= 

ro and the

series of the expressions on the right converges, by the

ratio test. conclude from this, the weierstrass test, and

Theorem 4 thatthe series (9) can be differentiated term

by term with respect to / and the resulting series has

the sum 6ul6t. Show that (9) can be differentiated twice

with respect to x and the resulting series has the sum

02ul6x2. Conclude from this and the result to Prob. 19

that (9) is a solution of the heat equation for all
t >- tg. (The proof that (9) satisfies the given initial
condition can be found in Ref. tC10] listed in App. 1,)

POWER SERIES

region of uniform convergence. (Give reason.)

(z+I-2i)*
4"

,o.ž#
zn u.ž,(:) ,, - i)n

14. > (3'tanh n)z2n

,už#

8.;
n:t

E
Find the

@

9.>
n:O

,,ž#
r,; \ ,"

n:l ft

17. CAS PROJECT. Graphs of Partial Sums. (a) Figure
365. Produce this exciting figure using your software

and adding further curves, say, those ofs256, Slg24, atC.

(b) Power series. Study the nonuniformity of
convergence experimentally by plotting partial sums neaí

the endpoints of the convergence interval for real z: x.

18. TEAM PROJECT. Uniform Convergence.
(a) Weierstrass M-test. Give a proof.

(b) Termwise differentiation. Derive Theorem 4

from Theorem 3.

(c) Subregions. Prove that uniform convergence of a

series in a region G implies uniform convergence in

any portion of G. Is the converse true?

1. What are power series? Why are

important in complex analysis?

2. State from memory the ratio test, the

Cauchy-Hadamard formula for
convergence.

3. What is absolute convergence? Conditional convergence?

Uniform convergence?

4. What do you know about the convergence of power

series?

5. What is a Taylor series? What was the idea of obtaining

it from Cauchy's integral formula?

6. Give examples of practical methods for obtaining

Taylor series.

7. What have power series to do with analytic functions?

these series very

) root test, and the

the radius of

698
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Summary of Chapter 15

8. Can properties of functions be discovered from their
Maclaurin series? If so, give examples.

9. Make a list of Maclaurin series of e", cos Z, sin Z,

cosh z, sinh z, Ln (1 - z) from memory.

10. What do you know about adding and multiplying power
series?

El-r01 RADlus oF coNvERGENcE
Find the radius of convergence. Can you identify the sum
as a familiar function in some of the problems? (Show the

details of your work.)

699

Pt-sol TAyLoR AND MAcLAuRtN sERlEs
Find the Taylor or Maclaurin series with the given point as

center and determine the radius of convergence. (Show
details.)

21,. e", rri 22.

23. Il(1 -z), -1 24.

25. It(l - z)3, 0 26.

27. 1lz, -i 28.

29. cos z, trr 30.

31. Does every function í(z) have a Taylor series?

32. Does there exist a Taylor series in powers of z - 1 - i
that diverges at 5 * 5i but converges aí.4 + 6i?

33. Do we obtain an analytic function if we replace xby z
in the Maclaurin series of a real function /(x)?

34. Using Maclaurin series, show that if í(z) is even, its
integral (with a suitable constant of integration) is
odd.

35. Obtain the first few terms of the Maclaurin series of
tanzby using the Cauchy product and

sinZ: cosztanz.

Lnz, 2

1/(4-3z), I+i
Ilz2, i
-z
l ,-'tn' - I| dí. 0

Jo

sin2 z. 0

11.i 9,r 12. 

'ío nl' n:7
oo ,2nl1 ó

13.>+ , 14.>
Zn+ ln,-O -'- ' n:O

m_5m

15. > i t. - 3il2" 16. >n!n-l'- n-O

17. ; nn(z - 2i)2n 18. ;
n-O n-O

19. š T,^ -n 20. i"' 
Í, 

"O 
n-0

Sequences, series, and convergence tests are discussed in Sec. 15.1. A power series
is of the form (Sec. l5.2)

@

n:O

z6 is its center. The series (1) converges for |z zol { R and diverges for

|, - ,ol ) R, where R is the radius of conyergence. Some power series converge
for all z (then we write R : @). In exceptional cases a power series may converge
only at the center; such a series is practically useless. Also, R : lim |anlan*1| if this
limit exists. The series (1) converges absolutely (Sec. I5.2) and uniformly
(Sec. 15.5) in every closed disk |z - zol š r 1R (R > 0). It represents an analytic
function í(z) for l, - ,ol < R. The derivatives f'(z), f"(z),, , , are obtained by
termwise differentiation of (1), and these series have the same radius of convergence
R as (1). See Sec. 15.3.

Power Series, Taylor Series



Series, Taylor Series

(2)

Conversely, every analytic function f (z) canbe represented by power series. These

Taylor series of í(z) are of the form (Sec. I5.4)

í(z) : Í<n)k k - zo)n tle-zol <R),

as in calculus. They converge for all e in the open disk with center 26 and radius

generally equal to the distance from z6 to the nearest singularity of Í(z) (Point at

which í(z) ceases to be analytic as defined in Sec. 15.4).If f(z) is entire (analytic

for all z,. see Sec. 13.5), then (2) converges for all e. The functions e", cos Z, SinZ,

etc. have Maclaurin series, that is, Taylor series with center 0, similar to those in

calculus (Sec. 15.4).

š1Z.J .n!n.:O

700



CHAPTER ]

Laurent Series.
Residue lntegration

Laurent series generalize Taylor series. Indeed, whereas a Taylor series has positive integer
powers (and a constant term) and converges in a disk, a Laurent series (Sec. 16.1) is a
series of positive and negative integer powers of z - z6 and converges in an annulus (a
circular ring) with center e6. Hence by a Laurent series we can represent a given function
f(z)that is analytic in an annulus and may have singularities outside the ring as well as
in the "hole" of the annulus.

We know that for a given function the Taylor series with a given center zg is unique.
we shall see that, in contrast, a function f(z) can have several Laurent series with the
same center zg and valid in several concentric annuli. The most important of these series
is that which converges for 0 ( l, - ,ol { R, that is, everywhere near the center z6 except
at eg itself, where z6 is a singular point of f (z). The series (or finite sum) of the negative
powers of this Laurent series is called the principal part of the singularity of f (z) &t zo,
and is used to classify this singularity (Sec. 16.2). The coefficient of the power ll(z - zo)
of this series is called the residue ot í(z) at zo.Residues are used in an elegant and
powerful integration method, called residue integration, for complex contour integrals
(Sec. 16.3) as well as for certain complicated real integrals (Sec. 16.4).

Prerequisite: Chaps. 13, 14, Sec. 15.2.
Sections that may be omitted in a shorter course: 16.2, 16.4.
References and Answers to Problems: App. 1. Part D, App. 2.

16.1 Laurent Series
Laurent series generalize Taylor series. If in an application we want to develop a function
f(z) in powers of z - z6 when /(z) is singular at z6 (as defined in Sec. I5.4), we cannot
use a Taylor series. Instead we may use a new kind of series, called Laurent seriesr1
consisting of positive integer powers of z - zo (and a constant) as well as negative integer
powers of z - zo] this is the new feature.

Laurent series are also used for classifying singularities (Sec. 16.2) and in a powerful
integration method ("residue integration", Sec. 16.3).

A Laurent series of f (z) converges in an annulus (in the "hole" of which /(7) may have
singularities), as follows.

1pIgRRB ALPHONSE LAURENT (1Bl3-1854), French military engineer and mathematician, published the
theorem in 1843.
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THEoREM l

CHAP. 16 Laurent Series. Residue lntegration

íig.367, Laurent's theorem

COMMENT. Obviously, instead of (1), (2) we may write (denoting bnby a_n)

(1') rr.l:i an(z-zo)n
7L: -q)

Laurent's Theorem

Let í(z) be analytic in a domain containing two concentric circles Cl and C2with

,rriu zg and. the annulus between them (blue in Fig. 361). Then í(z) can be

represented by the Laurent series

(1)

consisting of nonnegative andnegative powers. The cofficients of this Laurent series

are given by the integrals

f (z) : 
Žoo*r, 

- zo)n - Ž c+e
:ao*at(z-Z +-a2(z-z2+

b, b"

z-zo (z-zd'

Ó , , "'*]",,-, '.*, 
b,,:J. (z* - Zo)n*'

lr
; Ý.(z*

l
(2) an,: :-zŤrl

- zo)n-t f (z*) dz*,

taken counterclockwise around any simple closed path C that lies in the annulus

and encircles the inner circle, as in Fig. 367. [The variable of integration is denoted

by z* since z is used in (1).]

This series converges and represents í(z) in the enlarged open annulus obtained

fromthe given annulus by continuously increasing the outer circle Cland decreasing

C2 until each of the two circles reaches a point where f (z) is singular,

In the important special case that zg is the only singular point oÍ Í(Z) inside C2,

this circle can be shrunk to the point zg, giving conver7ence in a disk excePt at the

center. In this case the series (or finite sum) of the negative powers oÍ (I) is called

the principal part of the singularity oí f (z) at zo.

O
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where all the coefficients are now given by a single integral formula, namely,

ík*) (n : 0, *1, *2, . . .).
(z* - Zo)nnt

PROOF We prove Laurent's theorem. (a) The nonnegative powers are those of a Taylor series.

To see this, we use Cauchy's integral formula (3) in Sec. 14.3 with z* (instead of z) as

the variable of integration anď z instead of zo. Let sk) anď h(z) denote the functions
represented by the two terms in (3), Sec. 14.3. Then

(2') an: * f"

l r fk.*| | r fk*)(3) íQ): 8k) + h(d : 2ri Ý",= dz* - 2ni ?r,fi a:*'

Here z is any point in the given annulus and we integrate counterclockwise over both C1

andC2, so thatthe minus sign appears since in (3) of Sec. 14.3 the integration over C2 is
taken clockwise. We transform each of these two integrals as in Sec. 15.4. The first integral
is precisely as in Sec. 15.4. Hence we get precisely the same result, namely, the Taylor
series of 8(z),

1 r ík*l ,+é) g(z\: -+ * 0:,:)cl,(:-]o)"
zŤrl "C,, Z* - Z n:o

with coefficients [see (2), Sec. 15.4, counterclockwise integration]

f (z,*\

k* _ Zo)"*l 
dZ*(5)

lr
a^^:-O," 2Ťri J 

a,

Here we can replace C1 by C (see Fig. 367), by the principle of deformation of path, since

zo, the point where the integrand in (5) is not analytic, is not a point of the annulus. This
proves the formula for the an in (2).

(b) The negative powers in (1) and the formula for bnin (2) are obtained if we consider
h(z) (the second integral times -ll(2rri) in (3). Since z lies in the annulus, it lies in the

exterior of the path C2. Hence the situation differs from that for the first integral. The
essential point is that instead of [see (7*) in Sec. 15.4]

(6) we now have (b) <1.

Consequently, we must develop the expression 1/(z* - z) in the integrand of the second
integral in (3) in powers of (z* - z l(z - z (instead of the reciprocal of this) to get a
convergenl series. We find

(a)
110

-*-1'- 19
<1

->k{,' - 10

<, <,o

-1
{., - 1 z*--o-k-zg) (z-z (,-=)
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Compare this for a moment with (7) in Sec. 15,4, to really understand the difference. Then

go on and apply formula (8), Sec. 15.4, for a finite geometric sum, obtaining

74--7
: -=; {, 

- 

= 

- (=)'* - (:_;)}

_*(=)"-,

Multiplication by -í(z*)tTti and integration over C2 on both sides now Yield

ll(:):-+ó f(z*) 4_*
Z7TI .l g, Z-'- - Z

lr+- ó' (z - zo\" 
'",

+ ---L- _-. ó (:x
t- _, \n4 t J '\<. <,O) C2

- z 'í(z-) dď| + R|.k)

(8)

with the last term on the right given by

.* l _ ó 
(z*-zo)'-1 

í(z*)dz*.(1) R}{z): 
,Tri(z _ z ,-1 Y", z _ z*

As before, we can integrate over C instead of C2 in the integrals on the right. We see that

on the right, the power ll(z - zo)' is multiplied by bn as given ln (2). This establishes

Laurent's theorem, provided

Jg n*r,) : 0,

(c) Convergence proof of(8). Very often (1) will have only finitely many negative Powers.

Then there is nothing to be proved. Otherwise, we begin by noting that f (z*)l(z - z*) in

(7) is bounded in absolute value, say,

í(z")
.L

<tI for all z* on C,

because f (z*) is analytic in the annulus and on C2, and z* lies on C2 anď z outside, so

that z - z* + 0. From this and the ML-inequality (Sec. I4.I) applied to (7) we get the

inequality (L : Iength of Cr,lz* - zol: radius of C2 : const)

2n|z - ,oln*'

(z* - z n-lí(z*)dz*

lr* - zoln*' n, : Y2r
-,- ln+l

<, (ol

-|
<, <,o l

lnír.ll =
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From (6b) we see that the expression on the right approaches zero as n approaches infinity.
fhis proves (8). The representation (1) with coefficients (2) is now established in the given
annulus.

(d) Convergence oí (|) in the enlarged annulus, The first series in (1) is a Taylor
series [representing s(z)]; hence it converges in the disk D with center zg whose radius
equals the distance of the singularity (or singularities) closest to zg. Also, g(z) must be
singular at all points outside C1 where /(z) is singular.

The second series in (1), representingh(z), is a power series inZ: 1l(z - zo). Let the

given annulus be 12 < |z - zol < 11, where rl and T2 Aía the radii of C1 and C2, respectively
(Fig. 367). This colTesponds to llr, ž lZl > Ilry. Hence this power series in Z must

;:::rff"l[fi :ilffi ťi5,"j,;::i:,;]T;T[::ižňi:;t::ffilT|l*:,|i;,.:j

#?/ilffl,# Tí;,"";: :;ir; f,1:""ď,T:;,.;:' klffifT,ffi: H*TTH:
singularities of í(e) inside C2.The domain common to D and E is the enlarged open annulus
characterized near the end of Laurent's theorem, whose proof is now complete. l

Uniqueness. The Laurent series of a given analytic function f(z) in its annulus of

i:T:,::;;:;;ť;:::;:":":::":;,i?"ť::;l:,;!"Í?:?^:T:l{;:?,:Z:::":,:i";:
for a Taylor series, to obtain the coefficients of Laurent series, we do not generally use the

integral formulas (2); instead, we use various other methods, some of which we shall illustrate
in our examples. If a Laurent series has been found by any such process, the uniqueness
guarantees that it must be the Laurent series of the given function in the given annulus.

EXAMPLE l Useof MaclaurinSeries

,;:i:;,::,il 
ffi ;::,, ;:;JJTnter 

0
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- : (-l)' _zn_+_ l _z-'sin ,: 
" 

12, -. 1, z-' 
: j -

ll1

-l- 

_2r_
6z,2 l20 5040

1l
_l-L...

3|z ' 4|z.2

(lzl > o).

rlzl > ol. l

Here the "annulus" of convergence is the whole complex plane without the origin and the principal part of
the series at 0 is z-4 - L z-2. l

EXAMPLE 2 Substitution

Find the Laurent series of ,'"'l' *iíh center 0.

Solution. From (12) in Sec. 15.4 with a replaced by |tz we obtain a Laurent series whose principal part is

an infinite series,

72gll'-r'(r-+- +- ): z'+:*I*

EXAMPLE 3 Developmentoí1/(1 -z|
Develop 1l(I - z) (a) in nonnegative powers of e, (b) in negative powers of ;.

Solution.

(a)
1- x$ -n, -ZJ<l - ?' n- O

-Išl -_\
-ll _-1, - Z,J _n+7z\l-z ) n_oZ

(valid if 1.1 < t).

(valid if l.| > t). l2
z

1

I-z(b)

l



1

/.L

1- -- "1,L
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ExAMPLE 4

ExAMPLE 5

lrc1'_n-3_-t-3 4 -.a, -3<, 4 rr-O

l 
-_š 

l 
-3 4 - .4,1 _nts4

1 /- n,:O .

(0<lzl <t),

(lzl > t). l

CHAP. 16 Laurent Series. Residue lntegration

Laurent Expansions in Different Concentric Annuli

Find all Laurent series of lt(zs - za) *ith center 0,

Solution. Multiplying by 1/z3, we get from Example 3

1+-+1
z(I)

(II)

use of partial Fractions

Find all Taylor and Laurent series of f (z) :

Solution. In terms of partial fractions,

11
fl,z):- 

-1 
-- 2l.r{

(a)and(b)inExample3takecareofthefirstfraction.Forthesecondfraction,

(c)

(d)

-)z*7
= 

-* * 
,,vith center 0.

z."-3z+2

(lzl < z;.

(lzl > zl.

(I) From (a) and (c), valid for |z| < 1 (see Fig, 368),

/(z) :Ž(l *#) .":
n:O \

(II) From (c) and (b), valid for 1 ( |r| < Z,

Í@ :2 .n+l - .1-,l 7rL+I
n:o L rr-O'

(III) From (d) and (b), valid for |z| > 2,

ď)1
/tzt: -2 2" + l) nil

n:O Z,

Fig. 368. Regions of convergence in Example 5

If í(z) in Laurent,s theorem is analytic inside Cr, the coefficients bnin (2) are zerobY

Cauchy's integra| theorem, so that the Laurent series reduces to a Taylor series, Examples

3(a) and 5(I) illustrate this.

359,
-T1l^d248

t1 ,-
7zu

l1l,
1- 4'' 8"
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LAURENT sERlEs NEAR A S|NGULARITY
AT0

Expand the given function in a Laurent series that
converges for 0 ( 1.1 < n and determine the precise region
of convergence. (Show the details of your work.)

E5_x1 TAyLoR AND LAuRENT sERlEs
Find all Taylor and Laurent series with center z : zg a,nd

determine the precise regions of convergence.

11,_n-
1, -{.
e-z?,-
Z."

5. ,-3rltz2

e"
l. 

-

z-I
19._z,"lI

@ LAuRENT sERlEs NEAR A slNGuLARlTy
AT zo

Expand the given function in a Laurent series that
converges for 0 { l, - ,ol { R and determine the precise
region of convergence. (Show details.)

24. TEAM PROJECT. Laurent Series. (a) Uniqueness.
Prove that the Laurent expansion of a given analytic
function in a given annulus is unique.
(b) Accumulation of singularities. Does tan (1/z)

have a Laurent series that converges in a region
0 < 1.1 < R? (Give a reason.)
(c) Integrals. Expand the following functions in a
Laurent series that converges for |z| > O:

CAS PROJECT. Partial Fractions. Write a program
for obtaining Laurent series by the use of partial
fractions. Using the program, verify the calculations in
Example 5 of the text. Apply the program to two other
functions of your choice.

1

2. zcos-
z

cosh 2z4."
7"

e'
6.n

-o1, -{.

- _ l . sinz
. *O- l U. . , ."(z - firr)"

(z+i)2-(z+i)

1

15. , 3. Zo:UI-7.-
97'

17. uL. *o:0
I-7.-

-3 a:-21, - Zl1.19. , ^2 . Zo: i
lz - ts,

4z,- I,, l - : 04l'(O1, -I

sin z
'J' _ l t_ -o- 2"1 -1- ,.ll

1ló. , 2. Zo: I

|-7.-

sinh z
_ _1

Ta-IF, d6-t
l - -;
'1(()l7-

_ _ I_10 - 4,1l

1

18. - , Zg: I
Z

l r'et-| 1 f'sinl
? J"- dt- i J"= t]r.11.

*o:i l0..'o='.r.io:7
\z - rrs-

- - *:40- l

_2A
13. lo: lz,- I

7u
12. ,-:- -(z + t)'

14. z2 sinh

16.2

- _ _;40- l

Zo:0I
Z

Singu larities and Zeros. lnfinity
Roughly, a singular point of an analytic function /(z) is a zo at which í(z) ceases to be
analytic, and a zero is a z at which f (z) : 0. Precise definitions follow below. In this
section we show that Laurent series can be used for classifying singularities and Taylor
series for discussing zeros.

Singularities were defined in Sec. 15.4, as we shall now recall and extend. We also
remember that, by definition, a function is a single-valued relation, as was emphasized
in Sec. 13.3.

We say that a function í(z) is singular or has a singularity at a point z : zo if í(z) is
not analytic (perhaps not even defined) at z : zg, but every neighborhood of z : zo
contains points at which í(z) is analytic. We also say that z: zois a singular point of í(z).

we call z : zo an isolated singularity of f (z) if z : zo has a neighborhood without
further singularities of f (z). Example: tan zhas isolated singularities at + nl2, +3rrl2, etc.;
tan(llz) has a nonisolated singularity at 0. (Explain!)

707



708 CHAP. l6 Laurent Series. Residue lntegration

Isolated singularities of f(z) at z -- zo can be classified by the Laurent series

(1)

Poles. Essential Singularities

The function

1

íkl : ,l, -

has a simple pole at z : 0 and a pole of fifth order aí z :
singularityatz:Oare

f(z):Ž",^r- zo), -Ž 
"+e

ool

'Il- - ž , , : l +

,,:O ftlZ

(Sec. 16.1)

valid in the immediate neighborhood of the singular point z: zg, except at zo itself, that

is, in a region of the form

0<lz-zol <R.

The sum of the first series is analytic at z : zg, as we know from the last section. The

second series, containing the negative powers, is called the principal part of (1), as we

remember from the last section. If it has only finitely many terms, it is of the form

(2) b, +",+--!,"-
Z- Zo (z*z- (b"+0),

Then the singularity of í(z) at z: zo is called a pole, and m is called its order. Poles of
the first order are also known as simple poles.

If the principal part of (1) has infinitely many terms, we say that Í(z) has at z : zg &TI

isolated essential singularity.
We leave aside nonisolated singularities.

ExAMPLE 1

EXA]MFLE 2

J
l-lo

(z - 21'

2. Examples of functions having an isolated essential

11
-l-J...

lo
z 1l -'! -.<,

and

,in!:; '-')'= , - 1--l*+-+",
'"'r-íoortlyr2n-t- z 3|z3' 5,.z5

Section 16.1 provides further examples. For instance, Example 1 shows thaí z-5 sin z has a fourth-order pole

at 0. Example 4 shows that 1l(z3 - za) hu, a third-order pole at 0 and a Laurent series with infinitely many

negative powers. This is no contradiction, since this series is valid for lzl > 1; it merely tells us that in classifying

singularities it is quite important to consider the Laurent series valid in the immediate neighborhood of a singular

point. In Example 4 this is the series (I), which has three negative powers. l

The classification of singularities into poles and essential singularities is not merely a

formal matter, because the behavior of an analytic function in a neighborhood of an

essential singularity is entirely different from that in the neighborhood of a pole.

Behavior Near a Pole

ík) : 1lz2 has a pole at z : 0, and l/(z)l -, oo as z -+ 0 in any manner. This illustrates the following

theorem. l
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The proof is left to the student (see Prob. 12).

Behavior Near an Essential Singularity

The function í(z,) : nll" hu" an essential singularity at 7:0. It has no limit for approach along the imaginary
axis; it becomes infinite if l -+ 0 through positive real values, but it approacnes zeió if z _+ 0 through n"gutiu"
real values. It takes on any given value C : Co Lo * 0 in an arbitrarily small e-neighborhood of ; : 0. To see
the letter, We Set Z: 

'riu, 
and then obtain the following complex equation for r and 0, which we must solve:

e1l, _e(cos - isin orl, : rorio.

Equating the absolute values and the ar8uments, we have ,kos 0) lr : c6, that is

cos0: rlncg, and -sin 0 : ar

resPectivelY. From these two equations and cos2 0 -| sin2 0 : r2(1n co)2 + o2r2 : l we obtain the formulas

2r-
(lnco)2 + a2 ln c6

Hence r canbe made arbitrarilY small by adding multiples of 2rto a, leaving c unaltered. This illustrates the
verY famous Picard's theorem (with e : 0 as the exceptional value). For the rather complicated proof, see Ref.
[D4], vol. 2,p.258. For Picard, see Sec. 1.7. I

'lTlFlEOREM,, 2 Picard's Theorem

Ií í(z) is analytic and has an isolated essential singularity at a point zo, it takes on
every value, with at most one exceptional value, in an arbitrarily small e-n;i,hborhood
oÍ zo.

Removable singularities. we say that a function /(z) has a removable singularity atZ: Zoit ,f(d is not analytic zt 7: zg,but can be made analytic there by assigning a
suitable value f (z . such singularities are of no interest since they can be removed as
just indicated. Example: f (7) : (sin z)lzbecomes analytic zt 7 :0 ii we define .f(0) : 1.

Zeros of Analytic Functions
Azero of ananalyticfunction í(z)in adomainDis a z: zoinDsuchthat/(a6):0,
Azero has order nif not only / but also the derivatives /',f", . . . , f(n-tl áre all 0 at
Z: Zoblt f@(zo) + 0.A first-order zero is also called u,irnpt. zero.For a second-order
zeío, f(zo): f'(zo): 0 but f"(zo) l 0. And so on.

EXAMPLE 4 Zeros

The function l |r' has simple zeros at +i. The function (| - za)2 has second-order zeros at +1 and +i. The
function (z - a13 has a third-otder zero zt 7 - a,The function e'has no zeros (see Sec. 13.5), The function
sinz has simple zeros aí 0, Xr, t2rr, ,. ., and sin2; has second-ordet zeíos at these points. The function
1 - cosz has second-order Zeros at O, -r2r, t4rr," ,, and the function (1 - cosz)2 tras fourth_order zeros
at these points. l

Poles

IÍ Í(z) is analytic and has a pole At z : zo, then lí(dl -- oo as z _-> zo in any manner.
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Taylor Series at a Zero. At an nth-ord eí zeto z : Zoof .f(z), the derivatives /'(zo)' ' ' ' 
'

jri-rr(ro) are zeío, by definition. Hence the first few coefficients 46, ' ' , an-1, of the

Taylor series (1), Sec. !5.4, are Zero, too, whereas an * 0, So that this series takes the

form

f(z) : an(z - zo)n + an+t(z - zj)nn| +,,,
(3) : (z- zo),"lan+ an+|(z- zo) l an*r(z- zo)2 + ",] (ar* O),

This is characteristic of such a zero, because if /(7) has such a Taylor Series, it has an

nth-order zero at Z : Zo, as follows by differentiation,

Whereasnonisolatedsingularitiesmayoccur,forzeroswehave

THEoREM 3

PRooF Thefactof(z-zo)nin(3)iszeroonlyatz-- z6.Thepowerseriesinthebrackets

t": i il"Jln,* .í "rarir. 
ion.tion (by Theorem 5 in Sec. 15.3), call it g(z). Now

^f +Li ^ ^^_fi_rlif rr

!r..i :;;;';,since an analytic function is continuous, and because of this continuitY,
,1 -__-^ l_^-|l^ ^f f/-\ l

also g(z) * 0 in Some neighborhood of Z : Zo. Hence the same holds of í(e),

This theorem is illustrated by the functions in Example 4.

poles are oíten caused byzeros in the denominator. (Example: tanz has Poles where

cos z is zero.) This is a major reason for the importance of zeros. The key to the connection

is the following theorem, whose proof follows from (3) (see Team Project 24),

THEoREM 4

Riemann Sphere. Point at lnfinity
When we want to study complex functions for large |zI, the complex plane will generally

become rather inconvenient. Then it may be better to use a representation of complex

numbers on the so-called Riemann sphere. This is a sphere s of diameter 1 touching the

complex z_plane at Z :0 (Fig. 369), and we let the image of a point P (a number e in the

plane) be the intersection P* of the segment Pl with , , where N is the "North Pole"

diametrically opposite to the origin in the plane. Then to each zthere corresponds a point

on S.

ConverselY, each point on ,S represents a complex number Z, except for N, which does

not conespond to any point in the complex plane. This suggests that we introduce an

additional point, catteo the point at infinity and denotg6 m ("infinity") and let its image

be N. The complex plane together with m is called the extended complex plane, The

complex plane is often called the finite complex plane, for distinction, or simPlY the

Zeros

The zeros oJ an clnalytic function í(z) (+ 0) are isolated; that is, each of them has

a neighborhoocJ that contains no further zeros of f(ó,

poles and zeros

Let f(z) be analytic at z : Zg and. have a zero of nth order at Z : zg, Then llf (z)

haia' pole of nth order at z : zo, and so does h(z)lí(z), provided h(z) is analytic

at z : zg and. h(z * 0.

I
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Fig. 369. Riemann sphere

complex plane as before. The sphere S is called the Riemann sphere. The mapping of
the extended complex plane onto the sphere is known as a stereographic projection.
(What is the image of the Northern Hemisphere? Of the Western Hemisphere? Of a straight
line through the origin?)

Analytic or Singular at lnfinity
If we want to investigate a function í(z) for large |z|, *e may now set z : Ilw andinvestigate

f (z) : f (I/w) = g(w) in a neighborhood of w : 0. We define í(z) to be analytic or singular
at infinity if s(w) is analytic or singular, respectively, at w : 0. We also define

g(0) : j,1,^ srrl

if this limit exists.
Furthermore, we say that /(7) has an nth-order zero at infinity tt f (Llw) has such a zero

at w : 0. Similarly for poles and essential singularities.

EXAMPLE 5 Functions Analytic or Singular at lnfinity. Entire and Meromorphic Functions

The function f(z): llz2 isanalytic at co since s@): f(llw): ,2 i, analytic atw:0, and/(1) has a second-

order zero at cc. The function í(d :13 is singular at rc and has a third-order pole there since the function

s(ru) : f(llw) : 7lw3 has such a pole aíw :0. The function e'has an essential singularity aí q since eU-
has such a singularity at w : 0. Similarly, cos z and sin z have an essential singularity at co.

Recall that an entire function is one that is analytic everywhere in the (finite) complex plane. Liouville's
theorem (Sec. l4.4) tells us that the only bounded entire functions are the constants, hence any nonconstant
entire function must be unbounded. Hence it has a singularity atcr, á pole if it is a polynomial or an essential
singularity if it is not. The functions just considered are typical in this respect.

An analytic function whose only singularities in the finite plane are poles is called a meromorphic function.
Examples are rational f'unctions with nonconstant denominator, tan z, cot í, sec z, and csc z. l

In this section we used Laurent series for investigating singularities. In the next section
we shall use these series for an elegant integration method.
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(4)

@ slNGuLARlTlEs

Determine the location and kind of the singularities of the
following functions in the finite plane and at infinity. In the

case of poles also state the order.

1. tanz rz

3. coí z2

5. cosz - sinz

23
_l1,-T - - --;

77o

=3_1ltz-1^l{,c

l/(cosz - sinz)

)

4.

6.
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n sin 3zl' 
k4 - I14

CHAP. 16 Laurent Series. Residue lntegration

8

Gl]F
!0. ellQ-r)l(e" _ 7)

21^. (t - cos z)2 22. e" - e2"

23. (Zeros) If /(z) is analytic and has a zero of order n at

z : zg, show that í2(z) has a zeío of order 2n,

24. TEAM PROJECT.Zeros. (a) Derivative. Show that

if í(z) has a zero of order n } I at z: z6, then f/(1;
has a zero of order n - 1 at zg.

(b) Poles and zeros. Prove Theorem 4.

(c) Isolated k-points. Show that the points at which
a nonconstant analytic function í(e) has a given value

k are isolated.
(d) Identical functions. If ílk) are analytic in a

domain D and equal at a sequence of points zn in D
that converges in D, show that f {z) : ízk) tn D.

25. (Riemann sphere) Assuming that we let the image of
the x-axis be meridians 0o and 180o, describe and

sketch (or graph) the images of the following regions

on the Riemann sphere: (u) lzl > 100, (b) the lower
half-plane, (c) + < |r| = Z.

11. (Essential singularity) Discu r, 
"Ilz2 

in a similar way

as e'l' is discussed in Example 3.

12. (Poles) Verify Theorem 1 for í(z) : z-3 - z'', Prove

Theorem 1.

Fqz1 zERos
Determine the location and order of the zeros.

42
8. z- | tz- tÝ

9. cosh lttk' + 1)]

13. (, + 16i)4

!5. z-3 sin3 n,z

t7. (3z2 * I)e-"

19. (r' + 4)(ez - l)'

14. (za - t6)n

16. coshz z

18. (z2 - 1;21e"' - I;

20. (sinz - 1)3

16.3 Residue lntegration Method

r
Q.ftz) dz : 2rribt
JC

The purpose of Cauchy's residue integration method is the evaluation of integrals

r
?"fe) a,

taken around a simple close path C. The idea is as follows.
If í(z) is analytic everywhere on C and inside C, such an integral is zero by Cauchy's

integral theorem (Sec. I4.2), and we are done.

If /(z) has a singularity at a point z : zo inside C, but is otherwise analytic on C and

inside C, then f(2) has a Laurent series

í(z):Ž",.u- zo)n - :a -:;s +...

that converges for all points neaí z: z9 (except at z : zo itself), in some domain of the

form 0 < lz - zol < R (sometimes called a deleted neighborhood, an old-fashioned term

that we shall not use). Now comes the key idea. The coefficient b1 of the first negative

power ll(z - eo) of this Laurent series is given by the integral formula (2)ín Sec. 16.1

withn:l,namely,

b,:!6fu>or,
Z7Tl 'C

Now, since we can obtain Laurent series by various methods, without using the integral

formulas for the coefficients (see the examples in Sec. 16.1), we can find b1 by one of
those methods and then use the formula for bl for evaluating the integral, that is,

(1)
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Here we integrate conunterclockwise around a simple closed path C that contains z :
in its interior (but no other singular points of í(z) on or inside C!).

The coefficient b1 is called the residue of f (z) at z : zg and we denote it by

Ďr : Res í(z).Z:?o

EXAMPLE l Evaluation of an lntegral by Means of a Residue

Integrate the function ír4 : z-4 sin z counterclockwise around the unit circle C.

Solution. From (14) in Sec. 15.4 we obtain the Laurent series

sin z
í(z): 4 :

z

whichconvergesforlzl >0(thatis,forallz*0).Thisseriesshowsthatí(z)hasapoleofthirdorderatz:0
and the residue bt: - 1/3!, From (1) we thus obtain the answer

f sinz niÓ a dz:2rribl:- 3 l
Jc z-

EXA M P LE 2 CAUTION! Use the Right Laurent Series!

Integrate í(z) : Il(r' - za) clockwise around the circle C: |z| : ttZ.

Solution. z'- rn: r"(I - z)shows thatí(z) issingular atz: Oandz: 1.Nowz: 1liesoutsideC,
Hence it is of no interest here. So we need the residue of í(z) at 0. We find it from the Laurent series that

converges for 0 { 1.1 < t.This is series (I) in Example 4, Sec. 16.1,

111
q f z+ _ +l+74-",

7.z1,

713

(2)

llzzo
-3 3,- 5! J,.<, J.4

(o<|z| <t).34
l, <.

We see from it that this residue is l. Clockwise integration thus yields

f dz,

9 3 4 : _ZtiResí(z) : -Zrri.,C i - : z-o

CAUTION! Had we used the wrong series (II) in Example 4, Sec. 16.1,

Res /(z) - bt : lim (z - z í(z)
?-?o Z+Zg

and, assuming that í(z) : p(z)lq(z), pk * 0, and q(7)has a simple zeto at zo (so that

/(x) has at zg a simple pole, by Theorem 4 in Sec. 16.2),

_3 _4 _4 _5 _6
(lzl > t),

we would have obtained the wrong answer, 0, because this series has no power llz. l

Formulas for Residues
To calculate a residue at a pole, we need not produce a whole Laurent series, but, more

economically, we can derive formulas for residues once and for a11.

Simple Poles. Two formulas for the residue of í(z) at a simple pole at zg are

(3)

(4) Res /(e)
Z:Zo

p(zo)

q'(zo)

pk.)
: ReS :--j-: :

z-zo 4(Z,)
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PROOF For a simple pole at z : zothe Laurent series (1), Sec. 16.1, is

,f(z): 
bI laglat(z-zo)+ az(z-zo)2+", (0<lz-eol <R).

Z-*o

Here b' + O. (Why?) Multiplying both sides by z - zg and then letting z -> z6, we obtain

the formula (3):

!:,(,- z f(z):bl,*)::"(,- z lao-l at(z- zď t,,,l: b,,

where the last equality follows from continuity (Theorem 1, Sec. 15.3).

We prove (4). The Taylor series of q(z) at a simple zero Z6 is

/- - l2

Qk) : k - zo)4' ko\ * + q" (zo) + " "

Substituting this into / : plq and then / into (3) gives

Res /(z) : lim tz _ zol *Z:Zo Z-zo q\Z)

Z - zo cancels. By continuity, the

EXAMPLE 3 Residue at a Simple Pole

(z- z pk): lim,-zo 1, - z lq'k +

limit of the denominator

(z-z q"(z 12+,,,]

i, q'(z and (4) follows. I

ík):Qz+i)l(zsfz)hasasimplepoleatibecauser'+1:(zt'Xz-l),and(3)givestheresidue
9z-i 9z-|i [ 9z-ri l lOi

ReS--" :llnl(Z-tl- , :
z- i z(z' -t ]) z-i .1; + iltz - i) L z(z + il _.] .-i -2

By (4) with p(j) : 9i + i and q'() : 3z2 -| 1 we confirm the result,

9zti [ 9z+r l 10'
*", á: L 3P- _] . ,: =: 

-'', l

Poles of Any Order. The residue of f (z) at an mth-order pole at z6 is

l Í.d*-7 i -".l1(5) 
}_e.s 

/tzl : @ - |)! JT. tár-- L'. 
- .o)"'Í(.)_.lJ ,

In particular, for a second-order pole (m : 2),

(5*) Resí(z) : li- {[r. - z 'ík)]'} .

p R o o F The Laurent series of f (z) converging near zg (except at z6 itselfl is (Sec, 16.2)

í(z): ,+, - é_!ffi_ + ", - :á l ao+ at(z_ zo) + ",
\1 - 1o)

where b,, * 0. The residue wanted is b1. Multiplying both sides by (z - zo)* gives

(z - z *í(z) : b,n t brn_{z - z + ", * b,,,(r - zo)*-7 -l ao(z - zo)* + "



SEC. l6.3 Residue lntegration Method

1
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' (m - |)!

1

(m - I)l

EXAMPLE 4 Residue at a Pole of Higher Order

THEoREM 1

We see thatb1- is now the coefficient of the power (z - z *-1 of the power series of
8k) : k - z */(z). Hence Taylor's theorem (Sec. I5.4) gives (5):

8'*-" (zo)

#:[r.- z,*í(z)]. l

ík) : 5}zl(z3 + 2z,2 -'7z, t 4) has a pole of second order at z: 1because the denominator equals
(z + 4')(z - l)2 (verifyl). From (5x) we obtain the residue

d
Res /rzl : ]l ,r, |,, - t l',rtzll

-tl.a/50,\:-l dz \ .--r- 4 /

200: ,:B,
5,

Several Singularities lnside the Contour.
Residue Theorem
Residue integration can be extended from the case of a single singularity to the case of
several singularities within the contour C. This is the pulpose of the residue theorem. The
extension is surprisingly simple.

Residue Theorem

Let f(z) be analytic inside a simple closed path C and on C, except for finitely many
síngular points zt, z2, , , , , zp inside C. Then the integral oí f (d taken counterclockwise
around C equals 2rri times the sum of the residues oí f (z) at zt, . . . , zp|

(6) Ó rtr' dz : 2riiRes /(z).
"C .j:Iz 

z:

Fig. 37O. Residue theorem
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