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PROOF

EXAMPLE 5

EXAMPLE 6

CHAP. 16 Laurent Series. Residue Integration

We enclose each of the singular points z; in a circle C; with radius small enough that those
k circles and C are all separated (Fig. 370). Then f(z) is analytic in the multiply connected
domain D bounded by C and Cy, - - -, C}, and on the entire boundary of D. From Cauchy’s
integral theorem we thus have

© fiera+§ f@d+§ f@det o § fd=0

the integral along C being taken counterclockwise and the other integrals clockwise (as in
Figs. 351 and 352, Sec. 14.2). We take the integrals over Cy, = * -, Cj to the right and
compensate the resulting minus sign by reversing the sense of integration. Thus,

(3) fQdz=9¢ fRdz+ P f@dz+ -+ f(2)dz
§C §C1 §C2 ﬁck
where all the integrals are now taken counterclockwise. By (1) and (2),
$ () de = 2mi Res f(2). =1,k
o =%
so that (8) gives (6) and the residue theorem is proved. &l

This important theorem has various applications in connection with complex and real
integrals. Let us first consider some complex integrals. (Real integrals follow in the next
section.)

Integration by the Residue Theorem. Several Contours

Evaluate the following integral counterclockwise around any simple closed path such that (2) 0 and 1 are inside
C. (b) 0 is inside, 1 outside, (c) 1 is inside, O outside, (d) 0 and 1 are outside.

4 — 3z
5 dz
c T —zZ

Solution. The integrand has simple poles at 0 and 1, with residues [by (3)]

R 4 — 3z |:4—3z:| 1 R 4 -3z [4*32} 4
es = = — = =1
2=0 z(z = 1) z—1 1,20 ’ e 2z—1) z =1

[Confirm this by (4).] Ans. (a) 27i(—4 + 1) = —6mi, (b) =8, (¢) 2i, (d) 0. i

Another Application of the Residue Theorem
Integrate (tan z)/(z2 — 1) counterclockwise around the circle C: |z| = 3/2.

Solution. tan zis not analytic at =#/2, =37/2, - - -, but all these points lie outside the contour C. Because
of the denominator z2 — 1 = (z — 1)(z + 1) the given function has simple poles at =1. We thus obtain from
(4) and the residue theorem

% tan z 4= (R tan z R tan z )
z = 2mi| Res + Reg ——=
2-1 =1 22— 1 21

c = z=—1 7
[ tanz
= 2mi

2z z=—1)

= 2qritan 1 = 9.7855i. |

tan z

z=1 2z
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EXAMPLE 7 Poles and Essential Singularities

Evaluate the following integral, where C is the ellipse 0xZ + y2 = 9 (counterclockwise, sketch it).

Ze’ﬂ'z
fﬁ ( + ze”/z) dz

c\z*-16

Solution. Since z* — 16 = 0 at *2j and %2, the first term of the integrand has simple poles at +2; inside
C, with residues [by (4); note that 2™ = 1]

R ZeW'Z [ Ze7rz :l 1
€S = =T T
=2 *—16 473 |9 16

R ze™ [ 7e™* :| 1
es = =—-—
==2i *—16 LS p—y 16

and simple poles at =2, which lie outside C, so that they are of no interest here. The second term of the integrand
has an essential singularity at 0, with residue 72/2 as obtained from

e = 1+1+——2+7T—3+ =z+ +7T—21+ lz| > 0)
ze"" =z N e =z+m 7 (lz .
Ans. 2mi(—{5 — & + 377 = m(w® — )i = 30.221i by the residue theorem. [ |

1. Verify the calculations in Example 3 and find the other

for calculating the residue at a pole of any order. Use 23
it for solving Probs. 3-8. )

residues. 15. jg eFdz, C:lzl =1
2. Verify the calculations in Example 4 and find the other -
: d
residue. 16. % # , Clz—1l=14
ST
RESIDUES o e
Find all the singular points and the corresponding residues. 17. 35 tan mz dz, C:lz| =1
(Show the details of your work.) c
1 cos
3. T 4. ZGZ 18. j;c tan wz dz, C:|z| =2
. 2 eZ
5, Az 6. L1 19. 313 —dn Cilo] =45
z =z c &
7. cotz1 8. Secljs 20. f# cothzdz, C:lz] =1
c
9, == 10.
_ 1 2 4 1 2
@-D ° 21, fﬁ ——dz Cli—il=15
c Tz
11. tan z 12. 4Z
F =1 cosh z
22 T:il dZ, C: |Z| =1
13. CAS PROJECT. Residue at a Pole. Write a program ¢ £ <
% tan 7z
c

= dz, C:lz+1iil=1
1 — 4z + 672
@+ P2 -2
3022 — 23z + 5
2z — 123z — 1)

RESIDUE INTEGRATION

Evaluate (counterclockwise). (Show the details.)

24, dz, C:lz] =1

o~

sin 7z y
14. dz, C:lz—i]=2 25, dz, C:lz] =1
C

Z4

o~
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16.4 Residue Integration of Real Integrals

EXAMPLE 1

It is quite surprising that certain classes of complicated real integrals can be integrated
by the residue theorem, as we shall see.

Integrals of Rational Functions of cos 6 and sin 6

We first consider integrals of the type

27
(1) J= j F(cos 6, sin 0) d0
0

where F(cos 6, sin 6) is a real rational function of cos 6 and sin 6 [for example,
(sin? 0)/(5 — 4 cos 6)] and is finite (does not become infinite) on the interval of integration.
Setting €'’ = z, we obtain

Z

(-2

Since F is rational in cos 6 and sin 6, Eq. (2) shows that F'is now a rational function of
z, say, f(z). Since dz/d0 =i ¢ we have df = dz/iz and the given integral takes the form

| S j 1 1
cos 0 = o (€0 + e = 3 (Z + —)
2

1 ) ) 1
. 0 o 0 . =0y —
sin 2 (e ) _21’

d
@) 1= 5@

and, as 0 ranges from 0 to 27 in (1), the variable z = €'’ ranges counterclockwise once
around the unit circle |z = 1. (Review Sec. 13.5 if necessary.)

An Integral of the Type (1)

2
do
Show by the present method that f — =2m.
¥ B 0 V2 — cos 0

Solution. We use cos 0 = %(z + 1/z) and d@ = dz/iz. Then the integral becomes

et e

CVi-3 € -2@-2Viz+ 1)

e

,_E#, dz
T VI V2+

We see that the integrand has a simple pole at z; = V2 + 1 outside the unit circle C, so that it is of no interest
here, and another simple pole at zg = V2 -1 (where z — V2 + 1 = 0) inside C with residue [by (3), Sec. 16.3]

1 1
R =
Fi -V2-Dz—-V2+1 [z—\fzﬂlzﬁ_l
1

R

Answer: 2mi(—2/i)(—1/2) = 2. (Here —2/i is the factor in front of the last integral.) ||
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As another large class, let us consider real integrals of the form

) f o) e

Such an integral, whose interval of integration is not finite is called an improper integral,
and it has the meaning

o0 0 b
") | feoar=tim | ey dr+ jim, J 1 v

If both limits exist, we may couple the two independent passages to —o and °, and write

oo R
) f_ f0 dv = fim f_Rf(x) dx.

The limit in (5) is called the Cauchy principal value of the integral. It is written

oc

pr. v. f f(x) dx.

It may exist even if the limits in (5") do not. Example:

R R2 R2 b
lim xdc=lim |\— — — ] =0, but lim X dx = o,
R—w J_p R—o00 2 2 b—x Jg

We assume that the function f(x) in (4) is a real rational function whose denominator
is different from zero for all real x and is of degree at least two units higher than the
degree of the numerator. Then the limits in (5") exist, and we may start from (5). We
consider the corresponding contour integral

(5%) $ 1 d:

around a path C in Fig. 371. Since f(x) is rational, f(z) has finitely many poles in the
upper half-plane, and if we choose R large enough, then C encloses all these poles. By
the residue theorem we then obtain

R
3£f(z) dz = f f(z) dz + f f(x) dx = 27 >, Res f(2)
C S —-R

-R R X ]
Fig. 371. Path C of the contour integral in (5*)
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EXAMPLE 2

CHAP. 16 Laurent Series. Residue Integration

where the sum consists of all the residues of f(z) at the points in the upper half-plane at
which f(z) has a pole. From this we have

R
©) || 0 dx = 2mi 3 Res 0 - | 10

We prove that, if R — oo, the value of the integral over the semicircle S approaches
zero. If we set z = Re'’, then S is represented by R = const, and as z ranges along S, the
variable 0 ranges from O to 7. Since, by assumption, the degree of the denominator of
f(z) is at least two units higher than the degree of the numerator, we have

k
[f@) < T (|2l = R > Ry)

for sufficiently large constants k and Ry. By the ML-inequality in Sec. 14.1,

k k
<F7TR:7 (R > Ry).

[ 1 a

Hence, as R approaches infinity, the value of the integral over S approaches zero, and (5)
and (6) yield the result

(7 f f(x) dx = 27 >, Res f(2)

where we sum over all the residues of f(z) at the poles of f(z) in the upper half-plane.

An Improper Integral from 0 to

Using (7), show that

ol
A

Fig. 372. Example 2

Solution. Indeed, f(z) = 1/(1 + z4) has four simple poles at the points (make a sketch)

7 = e7T/L/4’ 5 = 63771/4, 3= 6_37”/4, 4= €_7n/4.

The first two of these poles lie in the upper half-plane (Fig. 372). From (4) in the last section we find the residues
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Il
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o
|
w
3
=
s
|
N
o
3
=

|
Res f(z) =
2510 [(Hz‘*)’]ml

1 1 1 ; 1 ;
Res f(z) = - - 6—971'1/4 — e—7T’L/4.
z=z2 el [ (I + 2 :lz:22 [ 43 J 2=z 4 4

(Here we used ¢™ = —1 and ¢~ 2™ = 1.) By (1) in Sec. 13.6 and (7) in this section,
“ Vi 2mi
Y o wi = wild T i P T
= —— (e —e = ———+2i{*sin — = msin — = — .
f_m 1+ x* 7 ) 4 4 4 \2
Since 1/(1 + x4) is an even function, we thus obtain, as asserted,
©da 17 d
X X
f 4 ) f —4 = L ’ .
o 1 +x 2 J_ o 1 +x 2V2

Fourier Integrals

The method of evaluating (4) by creating a closed contour (Fig. 371) and “blowing it up”
extends to integrals

oo

(8) f f(x) cos sx dx and f f(x) sin sx dx (s real)

oC

as they occur in connection with the Fourier integral (Sec. 11.7).
If f(x) is a rational function satisfying the assumption on the degree as for (4), we may
consider the corresponding integral

f}g f(2)e"* dz (s real and positive)
c
over the contour C in Fig. 371 on p. 719. Instead of (7) we now get

) f F(0)eS* dx = 2mi >, Res [ f(z)€™] (s > 0)

where we sum the residues of f(z)e®* at its poles in the upper half-plane. Equating the
real and the imaginary parts on both sides of (9), we have

j F(x) cos sx dx = —2a >, Im Res [f(z)e**7],
(10) e -

j f(x) sin sx dx = 27 >, Re Res [f(2)e**?].

To establish (9), we must show [as for (4)] that the value of the integral over the
semicircle S in Fig. 371 approaches 0 as R — . Now s > 0 and S lies in the upper

half-plane y = 0. Hence
‘eisz| — |€z‘s<x+iy)} — leisx‘ Je—sy' =1l =1 (S > 0, y = 0)_

From this we obtain the inequality |f(z)e"*| = |f(2)| [¢**] = [f(z)] (s >0, y Z 0). This
reduces our present problem to that for (4). Continuing as before gives (9) and (10). M
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An Application of (10)

" cos sx T s “ Sinsy
Show that I 2dx=?e s de:() (s >0,k>0).
s X 6o X

Solution. 1n fact, ¢*%(k? + z2) has only one pole in the upper half-plane, namely, a simple pole at z = ik,
and from (4) in Sec. 16.3 we obtain

eisz eisz e—ks
Res ——— = = .
z=ik k2 + 72 27 la—in 2ik

Thus
f:” oi5% e—ks - e
—— dx=2mi = T,
o K2+ 52 * m 2ik k ¢
Since ¢ = cos sx + i sin sx, this yields the above results [see also (15) in Sec. 11.7.] [ |

Another Kind of Improper Integral

We consider an improper integral

B
an [ #0o) ax
A
whose integrand becomes infinite at a point « in the interval of integration,

lim [f(x)] = <.

By definition, this integral (11) means

B a—e B
(12) fAf(x) dx = lim fA fx) dx + lim, f £(x) dx

a+mn

where both € and 7 approach zero independently and through positive values. It may happen
that neither of these two limits exists if € and 7 go to 0 independently, but the limit

a—e B
(13) lim [ fA foyax+ [ g dle

a+te

exists. This is called the Cauchy principal value of the integral. It is written

B
pr. V. fA () dx.

fl dx 7 f_sdx +f1dx _ 0
pr.v. | —3 =lim e I

For example,

the principal value exists, although the integral itself has no meaning.
In the case of simple poles on the real axis we shall obtain a formula for the principal
value of an integral from —o¢ to . This formula will result from the following theorem.
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THEOREM 1

PROOF

Simple Poles on the Real Axis

If f(z) has a simple pole at z = a on the real axis, then (Fig. 373)

tim [ 1) dz = i Res 1)

Fig. 373. Theorem 1

By the definition of a simple pole (Sec. 16.2) the integrand f(z) has for 0 < |z — a| < R
the Laurent series

by

f) = + 8, by = Res f(2).

Here g(z) is analytic on the semicircle of integration (Fig. 373)

Cy: z=a + re¥ 0=60=n

and for all z between C, and the x-axis, and thus bounded on C,, say, |g(z)] = M. By

integration,
i bl . 6 .
[ f@de= [ 2 ird? a0+ [ g dz=bymi+ [ g dz
Cy o re Cy Cy

The second integral on the right cannot exceed M7rr in absolute value, by the ML-inequality
(Sec. 14.1), and ML = M7mr — 0 as r — 0. [

Figure 374 shows the idea of applying Theorem I to obtain the principal value of the
integral of a rational function f(x) from — to . For sufficiently large R the integral over
the entire contour in Fig. 374 has the value J given by 27 times the sum of the residues
of f(z) at the singularities in the upper half-plane. We assume that f(x) satisfies the degree

-R a-r a a+r R

Fig. 374. Application of Theorem 1
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condition imposed in connection with (4). Then the value of the integral over the large
semicircle S approaches 0 as R — . For r — 0 the integral over Co (clockwise!)
approaches the value

K = —mi Res f(z)
z=a
by Theorem 1. Together this shows that the principal value P of the integral from — to
« plus K equals J; hence P = J — K =J + mi Res,_, f(z). If f(z) has several simple

poles on the real axis, then K will be —ri times the sum of the corresponding residues.
Hence the desired formula is

(14) pr.v. [ 00 de = 2mi 3 Res @) + mi 2 Res f@

where the first sum extends over all poles in the upper half-plane and the second over all
poles on the real axis, the latter being simple by assumption.

EXAMPLE 4 Poles on the Real Axis

Find the principal value

co

J dx
PEY ) @ - +2a®+ )

Solution. Since

2 -3x+2=(x- DHx-2),

the integrand f(x), considered for complex z, has simple poles at

1
z=1, l}fi f@) = [—_—(z @+ 1)]2:1
!
5
1
7=2, 1}3; fl@) = [———(Z STV B i| .
1
5>
} 1
z=1i, l}:egf(z) = [——_(Zz et ] -
3
6 + 2i 20
and at z = —i in the lower half-plane, which is of no interest here. From (14) we get the answer
. dx 3 (I w
pr.v.J-—w (x2—3x+2)(x2+ D = 2mi (7)—) + i (*E + g) =0 [ |

More integrals of the kind considered in this section are included in the problem set. Try
also your CAS, which may sometimes give you false results on complex integrals.
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1-8| INTEGRALS INVOLVING COSINE AND SINE 23-27| IMPROPER INTEGRALS:

Evaluate the following integrals. (Show the details of your POLES ON THE REAL AXIS
work.) Find the Cauchy principal value (showing details):
1 f277 d9 2 fﬂ' d9 . . ,
"Jo T4 6cos 0 “Jo 2+ coso 23.f X112 2. T
e X3+ x |
3 IZW d0 4 fzﬂ d@
. _ . _ 3 (o e] + 5
o 37— 12cos 6 o 8—2sin#d 25, f x3 I
oo Xo — x
5 f U 6. f 0,
“Jo 5—4sin6 5 —dcos 6 o dx
e
. f“‘" cos 6 e 0 3 — 4
) 13 — 12 cos 26

= dx
1) 27. ~ x4—l

1
Hint. cos 20 = — |2* + — ~
m 0s B (Z z2

2
8. f 1_+4CL9 28. TEAM PROJECT. Comments on Real Integrals.

17— 8 cos 0 (a) Formula (10) follows from (9). Give the details.
(b) Use of auxiliary results. Integrating ¢~ around
9-22| IMPROPER INTEGRALS: the boundary C of the rectangle with vertices —a, a,
INFINITE INTERVAL OF INTEGRATION a + ib, —a + ib, letting a — , and using
Evaluate (showing the details):
oo (o} . —x2 \/7_7
9J & 10f * g fexdx:T’
SR R ST 0
- show that
[ P
L | ) (6% = 2x + 5)? Sl VE
f e " cos 2bx dx = = e,
13 f = dx 14 J‘ dx 0
2 2 2
—o (7 +4) —0 X° + 16 (This integral is needed in heat conduction in Sec.
o 3 - 12.6.)
X dx . )
1s. f_ e dx 16. f_ L T DR+ ) Inspectlon. Solve Probs. 15 and 21 without
calculation.
1% “ x s 29. CAS EXPERIMENT. Check your CAS. Find out to

what extent your CAS can evaluate integrals of the
form (1), (4), and (8) correctly. Do this by comparing

oo (3% = 2x 4+ 2)2

T2+ “ sinx the results of direct integration (which may come out
18. f_ w XTF1 dx 1. f_ oot false) with those of using residues.
- - 30. CAS EXPERIMENT. Simple Poles on the Real
20 f cos x 21 f sin 3x Axis. Experiment with integrals 1%, fx) dx,
. 1 X . 4 X _ 1
oo X5+ 1 oo XF 1 f&) =[(x —apx —ay) -+ - (x — ap)]” , a; real and
- all different, kK > 1. Conjecture that the principal value
23 f cos 4x dx of these integrals is 0. Try to prove this for a special
) xP+ 5%+ 4 k, say, k = 3. For general k.
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ESTIONS AND PROBLEMS

1. Laurent series generalize Taylor series. Explain the )1 cosh 5z

details. e Clz—il=2
2. Can a function have several Laurent series with the same 4% + Tz
center? Explain. If your answer is yes, give examples. 22, —— ,C: |z + 1| =1

COS Z

3. What is the principal part of a Laurent series? Its
s 18 DO 23. cot 8z, C: |z = 02

significance?
2] .
4. What is a pole? An essential singularity? Give 24, fﬁ LCilz—1=2
examples. 4z —
N 9 S i -
5. What is Picard’s theorem? Why did it occur in this 25, Z =12, Cld =1
chapter? g%
6. What is the Riemann sphere? The extended complex 241 1
plane? Its significance? 26. 5 — 2 C 5 2 +y?*=1
7. Is e analytic or singular at infinity? cosh 27 (z — 4)3? is g
: +
Explain. 7. 3z = Cile—3=2
8. What is the residue? Why is it important? :
9. State formulas for residues from memory. 28. 12 Z_+99 ,C:lz| =4
10. State some further methods for calculating residues. :
11. What is residue integration? To what kind of complex
integrals does it apply? 29-35| REAL INTEGRALS
12. By what idea can we apply residue integration to real Evaluate by the methods of this chapter (showing the

integrals from —oe to %? Give simple examples. details):

13. What is a zero of an analytic function? How are zeros 2m 46
29 f 75—

o g () e
classified? 24 cos 6

14. What are improper integrals? Cauchy principal values?
Give examples. f” 4o

30. — k>

15. Can the residue at a singular point be 0? At a simple o k+cosb

pole?

2

16. What is a meromorphic function? An entire function? 33, —ﬂ_

Give examples. 0 — g sin 0

. j s1n 0
17-28| COMPLEX INTEGRALS 3+ cos
Integrate counterclockwise around C. (Show the details.)
a

tan z e (1 + x
17. ,C:lz] =1 T+

sin 2 34. f - 222
18. o5 Cle =1 o (1 +27

10 35 J l + 2x2
z

19. N — 20l = 1+ 4

2+ ,Crlz—2il=3 0 X

iz +1 36. Obtain the answer to Prob. 18 in Sec. 16.4 from the

20. —2—.——,C:|z——l|=3

“—iz+2 present Prob. 35.
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F~ JMMARY-OF-CH:

Laurent Series. Residue Integration

A Laurent series is a series of the form
oo " [o'e] bn
(1) f@ = az — 2" + 2 — (Sec. 16.1)

n=0 n=1 (Z - ZO)

or, more briefly written [but this means the same as (1)!]

< 1 f@*)
1% = - Z n’ n = % dz*
= @ nzz_x“"(z 2 T omi Jo @ -t
where n = 0, =1, =2, - - - . This series converges in an open annulus (ring) A with

center zo. In A the function f(z) is analytic. At points not in A it may have

‘ singularities. The first series in (1) is a power series. In a given annulus, a Laurent
' series of f(z) is unique, but f(z) may have different Laurent series in different annuli
with the same center.

Of particular importance is the Laurent series (1) that converges in a nei ghborhood
of zo except at zq itself, say, for 0 < |z — zo| < R (R > 0, suitable). The series (or
finite sum) of the negative powers in this Laurent series is called the principal part
of f(z) at zo. The coefficient by of 1/(z — zo) in this series is called the residue of
f(z) at z, and is given by [see (1) and (1%)]

1
(2) by =Res f(z) = = jg f(z*¥) dz*.  Thus fﬁ f(z*) dz* = 2i Res f(2).
z—2g 2771 C C =29

b, can be used for integration as shown in (2) because it can be found from

1 dm—l
3) Res f(z) = ——— lim (W [z — ZO)mf(Z)]) . (Sec. 16.3),

2=z (m - 1)' 2—2g

provided f(z) has at zo a pole of order m; by definition this means that that principal
part has 1/(z — zo)™ as its highest negative power. Thus for a simple pole (m = 1),

Res f(z) = lim (z — 29)f(2); also, Res Pa) = p/(ZO) .
2=z, 2—2g =29 Q(Z) q (z0)

If the principal part is an infinite series, the singularity of f(z) at zo is called an
essential singularity (Sec. 16.2).

Section 16.2 also discusses the extended complex plane, that is, the complex plane
with an improper point < (“infinity”) attached.

Residue integration may also be used to evaluate certain classes of complicated
real integrals (Sec. 16.4).
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CHAPTER-I 7

Conformal Mapping

If a complex function w = f(z) is defined in a domain D of the z-plane, then to each point
in D there corresponds a point in the w-plane. In this way we obtain a mapping of D onto
the range of values of f(z) in the w-plane. We shall see that if f(z) is an analytic function,
then the mapping given by w = f(z) is conformal (angle-preserving), except at points
where the derivative f'(z) is zero.

Conformality appeared early in history in connection with constructing maps of the
globe, which can be conformal (can give directions correctly) or “equiareal” (give areas
correctly, except for a scale factor), but cannot have both properties, as can be proved
(see [GR8] in App. 1).

Conformality is the most important geometric property of analytic functions and gives
the possibility of a geometric approach to complex analysis. Indeed, just as in calculus
we use curves of real functions y = f(x) for studying “geometric” properties of functions,
in complex analysis we can use conformal mappings for obtaining a deeper understanding
of properties of functions, notably of those discussed in Chap. 13.

Indeed, we shall first define the concepts of conformal mapping and then consider
mappings by those elementary analytic functions in Chap. 13.

This is one purpose of this chapter. A second purpose, more important to the engineer
and physicist, is the use of conformal mapping in connection with potential problems. In
fact, in this chapter and in the next one we shall see that conformal mapping yields a
standard method for solving boundary value problems in (two-dimensional) potential
theory by transforming a complicated region into a simpler one. Corresponding
applications will concern problems from electrostatics, heat flow, and fluid flow.

In the last section (17.5) we explain the concept of a Riemann surface, which fits well
into the present discussion of “geometric” ideas.

Prerequisite: Chap. 13.
Sections that may be omitted in a shorter course: 17.3 and 17.5
References and Answers to Problems: App. 1 Part D, App. 2.
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17.1 Geometry of Analytic Functions:
Conformal Mapping

EXAMPLE 1

A complex function

(D w = f(z) = u(x,y) + iv(x, y) (z=x+1iy)

of a complex variable z gives a mapping of its domain of definition D in the complex
z-plane info the complex w-plane or onto its range of values in that plane.! For any point
7o in D the point wy = f(zo) is called the image of z, with respect to f. More generally,
for the points of a curve C in D the image points form the image of C; similarly for other
point sets in D. Also, instead of the mapping by a function w = f(z) we shall say more
briefly the mapping w = f(2).

Mapping w = f(z) = 2?

Using polar forms z = re*® and w = Re'®, we have w = 7% = r%*"%. Comparing moduli and arguments

gives R = r2 and ¢ = 26. Hence circles r = rq are mapped onto circles R = r02 and rays 6 = 6, onto rays
¢ = 26,. Figure 375 shows this for the region 1 = |z| = 3/2, w/6 = 0 = @/3, which is mapped onto the region
1 = |w| =94, w3 = 0= 27/3.

In Cartesian coordinates we have z = x + iy and

u = Re (52) =x% - yz, v =1Im (zz) = 2xy.

Hence vertical lines x = ¢ = const are mapped onto u = 2 - yz, v = 2cy. From this we can eliminate y. We
obtain y2 =¢2 — yand v? = 4c2y2. Together,

v? = 4c%(c? - w) (Fig. 376).

These parabolas open to the left. Similarly, horizontal lines y = k = const are mapped onto parabolas opening
to the right,

v? = 4k3%k2 + w) (Fig. 376). M

® -4 -3 -2 -1 0 4 2 3 4 u

(z-plane) (w-plane)

Fig. 375. Mapping w = z Lines |z| = const, arg z = const and their images in the w-plane

1The general terminology is as follows. A mapping of a set A into a set B is called surjective or a mapping
of A onto B if every element of B is the image of at least one element of A. It is called injective or one-to-one
if different elements of A have different images in B. Finally, it is called bijective if it is both surjective and
injective.
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Fig. 376. Images of x = const, y = const under w = z°

Conformal Mapping

A mapping w = f(z) is called conformal if it preserves angles between oriented curves
in magnitude as well as in sense. Figure 377 shows what this means. The angle
@ (0 = a = m) between two intersecting curves C, and C, is defined to be the angle
between their oriented tangents at the intersection point Zo. And conformality means that
the images C;* and Cy* of C; and Cy make the same angle as the curves themselves in
both magnitude and direction.

Conformality of Mapping by Analytic Functions

The mapping w = f(z) by an analytic function f is conformal, except at critical
points, that is, points at which the derivative f' is zero.

w = 7% has a critical point at z = 0, where f'(z) = 2z = 0 and the angles are doubled
(see Fig. 375), so that conformality fails.
The idea of proof is to consider a curve

(2) C: z(t) = x(1) + iy(?)
in the domain of f(z) and to show that w = f(z) rotates all tangents at a point zo (where

f'(z0) # 0) through the same angle. Now 2(f) = dz/dt = %(¢) + iy(t) is tangent to C in
(2) because this is the limit of (z; — Zo) /At (which has the direction of the secant z; — 2o

(z-plane) (w-plane)

Fig. 377. Curves C, and C, and their respective images
C.* and C,* under a conformal mapping w = f(z)
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EXAMPLE 2

EXAMPLE 3

in Fig. 378) as z; approaches z, along C. The image C* of Cis w = f(z(1)). By the chain
rule, w = f'(z(r))2(1). Hence the tangent direction of C* is given by the argument (use
(9) in Sec. 13.2)

3) argw = arg f + arg z

where arg z gives the tangent direction of C. This shows that the mapping rotates all
directions at a point z, in the domain of analyticity of f through the same angle arg f'(z,),
which exists as long as f'(zy) # 0. But this means conformality, as Fig. 377 illustrates
for an angle a between two curves, whose images C;* and C,* make the same angle
(because of the rotation). |

z, :z(t0 + At)

zy= z(to)

Curve C
Tangent

Fig. 378. Secant and tangent of the curve C

In the remainder of this section and in the next ones we shall consider various conformal
mappings that are of practical interest, for instance, in modeling potential problems.

Conformality of w = z”

The mapping w = z", n = 2, 3, - - -, is conformal, except at z = 0, where w’ = nz" " = 0. For n = 2 this is
shown in Fig. 375; we see that at O the angles are doubled. For general n the angles at 0 are multiplied by a
factor n under the mapping. Hence the sector 0 = 6 = w/n is mapped by z" onto the upper half-plane v = 0
(Fig. 379). [

X u

Fig. 379. Mapping by w = z”
Mapping w = z + 1/z. Joukowski Airfoil
In terms of polar coordinates this mapping is
1
w=u+iv=r(cos 0+ isinf) + — (cos 6 — isin ).
”
By separating the real and imaginary parts we thus obtain
u = acos 0, v = bsin @ where a=r+ —, b=r— —.

Hence circles |z| = r = const # 1 are mapped onto ellipses x%a® + yz/bz = 1. The circle r = 1 is mapped
onto the segment —2 = u = 2 of the u-axis. See Fig. 380.
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Fig. 380. Example 3

Now the derivative of w is

1 z+Diz—1
w=1l-—5=""">3
Z z
which is 0 at z = + 1. These are the points at which the mapping is not conformal. The two circles in Fig. 381
pass through z = —1. The larger is mapped onto a Joukowski airfoil. The dashed circle passes through both —1

and 1 and is mapped onto a curved segment.
Another interesting application of w = z + 1/z (the flow around a cylinder) will be considered in Sec. 18.4. M

Fig. 381. Joukowski airfoil

EXAMPLE 4 Conformality of w = e*

From (10) in Sec. 13.5 we have |¢?| = ¢” and Arg z = y. Hence ¢* maps a vertical straight line x = xo = const
onto the circle |w| = ¢"° and a horizontal straight line y = yo = const onto the ray arg w = yo. The rectangle
in Fig. 382 is mapped onto a region bounded by circles and rays as shown.

The fundamental region —7 < Argz = 7 of ¢* in the z-plane is mapped bijectively and conformally onto
the entire w-plane without the origin w = 0 (because ¢* = 0 for no z). Figure 383 shows that the upper half
0 < y = m of the fundamental region is mapped onto the upper half-plane 0 < arg w = r, the left half being
mapped inside the unit disk [w| = 1 and the right half outside (why?). |

Fig. 382. Mapping by w = e*

=

0 x -1 0 1
(z-plane) (w-plane)

Fig. 383. Mapping by w = ¢*

¥
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EXAMPLE 5 Principle of Inverse Mapping. Mapping w = Ln z

Principle. The mapping by the inverse 7 = f~(w) of w = f(2) is obtained by interchanging the roles of the
z-plane and the w-plane in the mapping by w = f(z).
Now the principal value w = f(z) = Ln z of the natural logarithm has the inverse ;7 = f_l(w) = ¢". From
Example 4 (with the notations z and w interchanged!) we know that f _l(w) = ¢" maps the fundamental region
of the exponential function onto the z-plane without z = 0 (because ¢ # 0 for every w). Hence w = f(z =Lnz
maps the z-plane without the origin and cut along the negative real axis (where § = ImLn z jumps by 2)
conformally onto the horizontal strip —7 < v = 7 of the w-plane, where w = u + jv.
Since the mapping w = Ln z + 27 differs from w = Ln z by the translation 277i (vertically upward), this
function maps the z-plane (cut as before and 0 omitted) onto the strip 7 < v = 3. Similarly for each of the
| infinitely many mappings w = Inz = Lnz *+ 2nmi (n =0, 1,2, ). The corresponding horizontal strips
'i of width 27 (images of the z-plane under these mappings) together cover the whole w-plane without

I‘ overlapping.

H Magnification Ratio. By the definition of the derivative we have

f@) — f(zo)

lim = |f'(zo)|-
Z— Jo

27y

;i. )

Therefore, the mapping w = f(z) magnifies (or shortens) the lengths of short lines by
approximately the factor |f'(zo)|. The image of a small figure conforms to the original
figure in the sense that it has approximately the same shape. However, since f'(z) varies
from point to point, a large figure may have an image whose shape is quite different from
that of the original figure.

More on the Condition f'(z) # 0. From (4) in Sec. 13.4 and the Cauchy-Riemann
equations we obtain

/ IND) du o |? ou \? av \2 du  dv du v
&Y foP=|l—+i—| =(—] + =] =& & _ v
ox ox 0x ox ox dy dy ox
that is,
Ju du
0x ay a(u, v)
5) If' QP = il
v v a(x, y)
ox dy

This determinant is the so-called Jacobian (Sec. 10.3) of the transformation w = f@
written in real form u = u(x, y), v = v(x, ). Hence f'(z5) # 0 implies that the Jacobian
is not 0 at z. This condition is sufficient that the mapping w = f(z) in a sufficiently small
neighborhood of z, is one-to-one or injective (different points have different images). See
Ref. [GR4] in App. 1.

1. Verify all calculations in Example 1. MAPPING OF CURVES

Find and sketch or graph the image of the given curves
under the given mapping.
4. x=1,2,3,4,y = 1,2,3,4,w=22
5. Curves as in Prob. 4, w = jz (Rotation)
6. ‘z| =1/3,1/2,1,2,3; Argz =0, = 7/4, = /2, *+37/2,
Tmw=1/z

2. Why do the images of the curves |z| = const and
arg z = const under a mapping by an analytic function
f(2) intersect at right angles, except at points at which
) =0?

3. Does the mapping w = 7 = x — iy preserve angles in
size as well as in sense?
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MAPPING OF REGIONS

Find and sketch or graph the image of the given region
under the given mapping.
7. —mld < Argz < /4,
S.x=1l,w=1/z
9. |z] > 1,w =23z
10. Imz>0w=1—1z
11. x =0,y =0, z\ §4;w:z2
12. —1=x=1, —7<y< W =€
13. n3<x<Ins5 w=¢€
4, —a<y=3mw=¢
15. 2=z =3, w4 = 0= 72, w=Lnz

7 <12,w=2"

16. CAS EXPERIMENT. Orthogonal Nets. Graph the
orthogonal net of the two families of level curves
Re f(z) = const and Im f(z) = const, where
@ f@ = 2 0 f@ = 1k © f@ = 12
@ fz) = (z + DA + iz). Why do these curves
generally intersect at right angles? In your work,
experiment to get the best possible graphs. Also do the
same for other functions of your own choice. Observe
and record shortcomings of your CAS and means to
overcome such deficiencies.

FAILURE OF CONFORMALITY

Find all points at which the following mappings are not
conformal.

17. zz* — 5) 18. 22 + 1/22
19. cos 7z 20. cosh 2z
21. 2 +az+ b 22. exp (z° — 802)

23. (z — a)®, (% — a)?

MAGNIFICATION RATIO, JACOBIAN

Find the magnification ratio M. Describe what it tells you
about the mapping. Where is M equal to 1? Find the
Jacobian J.

24, w = 37" 25. w=¢e°
26. w =7 27. w=1Lnz
28. w=1/z

29. Magnification of Angles. Let f(z) be analytic at Zo.
Suppose that f'(zp) = 0, -+, f#7P(z) = 0. Then
the mapping w = f(z) magnifies angles with vertex at
zo by a factor k. Illustrate this with examples for
k=12,3,4

30. Prove the statement in Prob. 29 for general k = 1,
2, - -+ . Hint. Use the Taylor series.

17.2 Linear Fractional Transformations

Conformal mappings can help in modeling and solving boundary value problems by first
mapping regions conformally onto another. We shall explain this for standard regions
(disks, half-planes, strips) in the next section. For this it is useful to know properties of
special basic mappings. Accordingly, let us begin with the following very important class.
Linear fractional transformations (or Mobius transformations) are mappings

az + b

1 =
) Y mtd

(ad — bc # 0)

where a, b, ¢, d are complex or real numbers. Differentiation gives |

a(cz + d) — claz +b) _ ad — bc |

@ v (cz + d)? IRCE |

This motivates our requirement ad — bc # 0. It implies conformality for all z and excludes
the totally uninteresting case w' = 0 once and for all. Special cases of (1) are

w=2z+tDb (Translations)
w=az withla =1 (Rotations)
3) |
w=a+b (Linear transformations)
w = 1/z (Inversion in the unit circle).
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Properties of the Inversion w = 1/z (Fig. 384)

In polar forms z = re'® and w = Re'® the inversion w = 1/z is

Rt = — = — ¢ and gives R=—, $=-0.

. o
=R=1;w=¢?=¢"" Fora general z

w

Hence the unit circle |z| = r = 1 is mapped onto the unit circle
the image w = 1/z can be found geometrically by marking |[w| = R = 1/r on the segment from 0 to z and then

reflecting the mark in the real axis. (Make a sketch.)
Figure 384 shows that w = 1/z maps horizontal and vertical straight lines onto circles or straight lines. Even

the following is true.

= 1/z maps every straight line or circle onto a circle or straight line.

Fig. 384. Mapping (Inversion) w = 1/z

Proof. Every straight line or circle in the z-plane can be written

A+ +Bx+ Cy+ D=0 (A, B C, D real).

A = 0 gives a straight line and A # 0 a circle. In terms of z and Z this equation becomes

2i

- =
Z <

+D=0.

Azz + B +C

Now w = 1/z. Substitution of z = 1/w and multiplication by ww gives the equation

w+w w—w
+C

2 2i

+ Dww =0

A+ B

or, in terms of « and v,

A + Bu — Cv + D@u?® + v?) = 0.
This represents a circle (if D # 0) or a straight line (if D = 0) in the w-plane. =
The proof in this example suggests the use of z and 7 instead of x and y, a general principle

that is often quite useful in practice.
Surprisingly, every linear fractional transformation has the property just proved:

Circles and Straight Lines

Every linear fractional transformation (1) maps the totality of circles and straight
lines in the z-plane onto the totality of circles and straight lines in the w-plane.
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This is trivial for a translation or rotation, fairly obvious for a uniform expansion or
contraction, and true for w = 1/z, as just proved. Hence it also holds for composites of
these special mappings. Now comes the key idea of the proof: represent (1) in terms of
these special mappings. When ¢ = 0, this is easy. When ¢ # 0, the representation is

1

ad — bc
cz+d ’

C

a

w=K + — where K=-
c

This can be verified by substituting K, taking the common denominator and simplifying;

this yields (1). We can now set

wy = ¢z, wy = wy + d, Wy = —, wy = Kws,

and see from the previous formula that then w = w, + a/c. This tells us that (1) is indeed
a composite of those special mappings and completes the proof. |

Extended Complex Plane

The extended complex plane (the complex plane together with the point % in Sec. 16.2)
can now be motivated even more naturally by linear fractional transformations as follows.
To each z for which ¢z + d # 0 there corresponds a unique w in (1). Now let ¢ # 0.
Then for z = —d/c we have ¢z + d = 0, so that no w corresponds to this z. This suggests
that we let w = o be the image of z = —d/c.
Also, the inverse mapping of (1) is obtained by solving (1) for z; this gives again a
linear fractional transformation

dw — b
—cw+a’

@) 7

When ¢ # 0, then ew — a = 0 for w = a/c, and we let alc be the image of z = o. With

these settings, the linear fractional transformation (1) is now a one-to-one mapping of the

extended z-plane onto the extended w-plane. We also say that every linear fractional

transformation maps “the extended complex plane in a one-to-one manner onto itself.”
Our discussion suggests the following.

General Remark. If z = o, then the right side of (1) becomes the meaningless expression
(a-© + b)/(c-° + d). We assign to it the value w = alcifc # 0and w = w0 if ¢ = 0.

Fixed Points

Fixed points of a mapping w = f(z) are points that are mapped onto themselves, are “kept
fixed” under the mapping. Thus they are obtained from

w = f(z) = z

The identity mapping w = z has every point as a fixed point. The mapping w = Z has
infinitely many fixed points, w = 1/z has two, a rotation has one, and a translation none
in the finite plane. (Find them in each case.) For (1), the fixed-point condition w = z is

az + b
cz+d’

(5 7= thus c2—(@@a—dz—b=0.

(3 §
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This is a quadratic equation in z whose coefficients all vanish if and only if the mapping
is the identity mapping w = z (in this case, a = d # 0, b = ¢ = 0). Hence we have

THEOREM 2 Fixed Points

A linear fractional transformation, not the identity, has at most two fixed points. If
a linear fractional transformation is known to have three or more fixed points, it
must be the identity mapping w = z.

To make our present general discussion of linear fractional transformations even more
useful from a practical point of view, we extend it by further facts and typical examples,
in the problem set as well as in the next section.

"

‘ 1. Verify the calculations in the proof of Theorem 1. FIXED POINTS

2. (Composition of LFTs) Show that substituting a linear

Find the fixed points.
fractional transformation (LFT) into a LFT gives a

_ 5 - .
LET. 8. w=38lz . 9. w=(>4+ z)2z
3. (Matrices) If you are familiar with 2 X 2 matrices, 10. w =z + 4i .w=@=-0
i prove that the coefficient matrices of (1) and (4) are 12 =22 1 B = 2iz — 1
i inverses of each other, provided ad — bc = 1, and z+1 z+ 2
I that the composition of LFTs corresponds to the 3z 4+ 2
‘;|‘ multiplication of the coefficient matrices. 14. w =

z—1
| [47] INVERSE

. : . . Fi L i — .
Find the inverse z = z(w). Check the result by solving z(w) 15. Find a LFT whose (only) fixed points are —2 and 2

for W, 16. Find a LFT (not w = z) with fixed points 0 and 1.

| 4z + | 3z 17. Find all LFTs with fixed points —1 and 1.

“ bw=T T W= 5 18. Find all LFTs whose only fixed point is 0.

l 4 27 + 5i 19. Find all LFTs with fixed points 0 and oo,

1 b= w=—pr 20. Find all LFTs without fixed points in the finite plane.

17.3 Special Linear Fractional Transformations

In this section we shall see how to determine linear fractional transformations

az + b

(1) W:cz+d (ad — bc # 0)

for mapping certain standard domains onto others and how to discuss properties of (1).

A mapping (1) is determined by a, b, ¢, d, actually by the ratios of three of these
constants to the fourth because we can drop or introduce a common factor. This makes it
plausible that three conditions determine a unique mapping (1):
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Three Points and Their Images Given

Three given distinct points 2y, 29, 23 can always be mapped onto three prescribed
distinct points w1, wa, wg by one, and only one, linear fractional transformation
w = f(z). This mapping is given implicitly by the equation

w — Wy Wo — W3 22 Zo i7m 43
(2) . = .

w— W3 Wg — Wy Z = %3 22_21.

(If one of these points is the point =, the quotient of the two differences containing

this point must be replaced by 1.) J

Equation (2) is of the form F(w) = G(z) with linear fractional F and G. Hence
w = F~YG(2)) = f(z), where F —1 is the inverse of F and is linear fractional (see (4) in
Sec. 17.2) and so is the composite F ~1(G(z)) (by Prob. 21), that is, w = f(z) is linear
fractional. Now if in (2) we set w = wq, Wy, w3 on the left and z = zy, 25, 73 On the right,
we see that

F(wy) =0, F(wg) = 1, F(wg) = ®
G(zy) = 0, G(zo) = 1, G(z3) = .

From the first column, F(w,) = G(z;), thus wy = F “Y(G(zy)) = f(z7). Similarly, wy = f(z2),
ws = f(z3). This proves the existence of the desired linear fractional transformation.

To prove uniqueness, let w = g(z) be a linear fractional transformation, which also
maps z; onto wj, j = 1, 2, 3. Thus w; = g(zj). Hence g_l(wj) = gz, where w; = f(z;).
Together, g~'(f(zj)) = %, a mapping with the three fixed points z;, Zg, z3. By Theorem 2
in Sec. 17.2, this is the identity mapping, g Y(f(z)) = z for all z. Thus f(z) = g(2) for all
z, the uniqueness.

The last statement of Theorem 1 follows from the General Remark in Sec. 172. N

Mapping of Standard Domains by Theorem 1

Using Theorem 1, we can now find linear fractional transformations according to the
following

Principle. Prescribe three boundary points zy, 22, 23 of the domain D in the z-plane.
Choose their images w1, W, w3 on the boundary of the image D* of D in the w-plane.
Obtain the mapping from (2). Make sure that D is mapped onto D*, not onto its
complement. In the latter case, interchange two w-points. (Why does this help?)

Mapping of a Half-Plane onto a Disk (Fig. 385)

Find the linear fractional transformation (1) that maps z; = —1, z9 = 0, z3 = 1 onto wy = =1, wg = —1,
wg = 1, respectively.

Solution. From (2) we obtain

w=(-) —i-1 _z=() _0-1
w—1 —i—(-1) z—-1 0—-(=D”’

thus
z=1i

—iz+ 1
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EXAMPLE 3

Fig. 385. Linear fractional transformation in Example 1

Let us show that we can determine the specific properties of such a mapping without much calculation. For
z = xwe have w = (x — i)/(—ix + 1), thus |w = 1, so that the x-axis maps onto the unit circle. Since z = i
gives w = 0, the upper half-plane maps onto the interior of that circle and the lower half-plane onto the exterior.
=0, i, % goonto w = —i, 0, i, so that the positive imaginary axis maps onto the segment S: u = 0, =1 =v = L.
The vertical lines x = const map onto circles (by Theorem 1, Sec. 17.2) through w = i (the image of z = )
and perpendicular to [w| = 1 (by conformality; see Fig. 385). Similarly, the horizontal lines y = const map onto
circles through w = i and perpendicular to S (by conformality). Figure 385 gives these circles for y = 0, and
for y < 0 they lie outside the unit disk shown. ]

Occurrence of ©

Determine the linear fractional transformation that maps z; = 0, zg = 1, z3 = ® onto wy; = —1, wg = —1,
wg = 1, respectively.

Solution. From (2) we obtain the desired mapping

z—i
z+i

w =

This is sometimes called the Cayley rramy"ormation.2 In this case, (2) gave at first the quotient (1 — *)/(z — %),
which we had to replace by 1. i |

Mapping of a Disk onto a Half-Plane

Find the linear fractional transformation that maps z; = —1, 29 = i, z3 = L onto wy = 0, wg = i, wg = &,
respectively, such that the unit disk is mapped onto the right half-plane. (Sketch disk and half-plane.)

Solution. From (2) we obtain, after replacing (i — »)/(w — =) by 1,

S 4 =

Mapping half-planes onto half-planes is another task of practical interest. For instance,
we may wish to map the upper half-plane y = 0 onto the upper half-plane v = 0. Then
the x-axis must be mapped onto the u-axis.

2ARTHUR CAYLEY (1821-1895), English mathematician and professor at Cambridge, is known for his
important work in algebra, matrix theory, and differential equations.
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Mapping of a Half-Plane onto a Half-Plane

Find the linear fractional transformation that maps z; = —2, z3 = 0, z3 = 2 onto wy = %, wy = 1/4,
wsg = 3/8, respectively.

Solution. You may verify that (2) gives the mapping function

z+ 1
2z +4

w=
What is the image of the x-axis? Of the y-axis? &S

Mappings of disks onto disks is a third class of practical problems. We may readily
verify that the unit disk in the z-plane is mapped onto the unit disk in the w-plane by the
following function, which maps z, onto the center w = 0.

Ve
(3) w = ———0 s C:ZO, |ZOI< 1.
cz — 1

To see this, take |z| = 1, obtaining, with ¢ = Zj as in (3),

|t — 2ol =z — ¢
=ld |z -
=lz—cz =1 —cz = |ez — 1]
Hence
Wl = |z = zolllez — 1] =1
from (3), so that |z| = 1 maps onto |w| = 1, as claimed, with zo going onto 0, as the

numerator in (3) shows.
Formula (3) is illustrated by the following example. Another interesting case will be

given in Prob. 10 of Sec. 18.2.

Mapping of the Unit Disk onto the Unit Disk
Taking zg = % in (3), we obtain (verify!)

2z — 1 .
w= i (Fig. 386). |

Fig. 386. Mapping in Example 5
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EXAMPLE 6 Mapping of an Angular Region onto the Unit Disk

Certain mapping problems can be solved by combining linear fractional transformations with others. For instance,
to map the angular region D: — /6 = arg z = /6 (Fig. 387) onto the unit disk [w| = 1, we may map D by
Z = z° onto the right Z-half-plane and then the latter onto the disk [w| = 1 by

Z-1 . 2-1
=i ) combined w =i

(z-plane) (Z-plane) (w-plane)
Fig. 387. Mapping in Example 6

This is the end of our discussion of linear fractional transformations. In the next section
we turn to conformal mappings by other analytic functions (sine, cosine, etc.).

dk

"1 1. Derive the mapping in Example 2 from (2). 7. —1,0, 1 onto —0.6 — 0.8i, —1, —0.6, + 0.8i

il 2. (Inverse) Find the inverse of the mapping in Example
1. Show that under that inverse the lines x = const are
the images of circles in the w-plane with centers on the 9. 2i, =2, 4onto —4 + 2i, =4 — 2i, 0
linev = 1. 10. i, —1, 1 onto —1, —i, i

. Verify the formula (3) for disks.

4. Derive the mapping in Example 4 from (2). Find its 1. 0, 1, = onta:e, 1,10

8.0,1,20nt0o 1,41

w

“ inverse and prove by calculation that it has the same 12. 0, —i, i onto —1, 0,

‘ fixed points as the mapping itself. Is thI.S surprising? 13. 2i, i, 0 onto 3i, 2i,

H 5. (Inverse) If w = f(z) is any transformation that has an ] )

u} inverse, prove the (trivial!) fact that f and its inverse 14. 0, 2i, —=2i onto —1, 0,
have the same fixed points. 15. —1,0,1 onto 0, 1, —1

i 6. CAS EXPERIMENT. Linear Fractional
Transformations (LFTs). (a) Graph typical regions

(squares, disks, etc.) and their images under the LFTs in 16. Find all LFTs w(z) that map the x-axis onto the u-axis.

Examples 1-5. 17. Find a LFT that maps |z| = 1 onto |w| = 1 so that
(b) Make an experimental study of the continuous z = i/2 is mapped onto w = 0. Sketch the images of
dependence of LFTs on their coefficients. For instance, the lines x = const and y = const.
change the. LFT. in Example 4 Conﬁnuo“lSlY and grz.lph 18. Find an analytic function that maps the second quadrant
the changing image of a fixed region (applying of the z-plane onto the interior of the unit circle in the
animation if available). w-plane.

7-15| LFTs FROM THREE POINTS AND 19. Find an analytic function w = f(z) that maps the region

THEIR IMAGES 0 = arg z = 7/4 onto the unit disk |w| = 1.

Find the LFT that maps the given three points onto the three 20. (Composite) Show that the composite of two LFTs is
given points in the respective order. a LFT.
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17.4 Conformal Mapping by Other Functions

So far we have discussed the mapping by z", ¢ (Sec. 17.1) and linear fractional
transformations (Secs. 17.2, 17.3), and we shall now turn to the mapping by trigonometric
and hyperbolic analytic functions.

(z-plane) (w-plane)

Fig. 388. Mappingw = u + iv =sinz

Sine Function. Figure 388 shows the mapping by

(1) w=u+ iv =sinz = sinx coshy + i cos x sinh y (Sec. 13.6).
Hence
2 u = sinx coshy, v = cos x sinh y.

Since sin z is periodic with period 27, the mapping is certainly not one-to-one if we
consider it in the full z-plane. We restrict z to the vertical strip S: —<rE=r= imin
Fig. 388. Since f'(z) = cosz = 0 atz = =2, the mapping is not conformal at these two
critical points. We claim that the rectangular net of straight lines x = const and y = const
in Fig. 388 is mapped onto a net in the w-plane consisting of hyperbolas (the images of
the vertical lines x = const) and ellipses (the images of the horizontal lines y = consi)
intersecting the hyperbolas at right angles (conformality!). Corresponding calculations are
simple. From (2) and the relations sin x + cos? x = 1 and cosh® y — sinh® y = 1 we obtain

u? >

sin? x cos? x

= cosh?y — sinh®y = 1 (Hyperbolas)

u? v?

+ =gin?x + cos?x =1 Ellipses).
coshzy sinhzy ST cosT (Ellipses)

Exceptions are the vertical lines x = t%m which are “folded” onto u = —1 and
uz=1 (v = 0), respectively.

Figure 389 illustrates this further. The upper and lower sides of the rectangle are mapped
onto semi-ellipses and the vertical sides onto —cosh 1 = u = —1 and 1 = u = cosh |
(v = 0), respectively. An application to a potential problem will be given in Prob. 5 of
Sec. 18.2.




SEC.17.4 Conformal Mapping by Other Functions 743

y v
C 1 B
D A
=T T %
2 2
E -1 F

Fig. 389. Mapping by w = sinz

Cosine Function. The mapping w = cos z could be discussed independently, but since
3) w = cosz = sin(z + %77),

we see at once that this is the same mapping as sin z preceded by a translation to the right
through 7 units.

Hyperbolic Sine. Since
4) w = sinh z = —i sin (i7),

the mapping is a counterclockwise rotation Z = iz through 3 (i.e., 90°), followed by the
sine mapping Z* = sin Z, followed by a clockwise 90°-rotation w = —iZ*.

Hyperbolic Cosine. This function
5) w = cosh z = cos (iz)

defines a mapping that is a rotation Z = iz followed by the mapping w = cos Z.

Figure 390 shows the mapping of a semi-infinite strip onto a half-plane by w = cosh z.
Since cosh 0 = 1, the point z = 0 is mapped onto w = 1. For real z = x = 0, cosh z is
real and increases with increasing x in a monotone fashion, starting from 1. Hence the
positive x-axis is mapped onto the portion u = 1 of the u-axis.

For pure imaginary z = iy we have cosh iy = cos y. Hence the left boundary of the strip
is mapped onto the segment 1 = u = —1 of the u-axis, the point z = ri corresponding to

w = coshim =coswm = —1.

On the upper boundary of the strip, y = , and since sin 77 = 0 and cos 7 = —1, it follows
that this part of the boundary is mapped onto the portion u = —1 of the u-axis. Hence
the boundary of the strip is mapped onto the u-axis. It is not difficult to see that the interior
of the strip is mapped onto the upper half of the w-plane, and the mapping is one-to-one.

This mapping in Fig. 390 has applications in potential theory, as we shall see in
Prob. 12 of Sec. 18.3.

Y
B
T v
* -1 0 1 u

Fig. 390. Mapping by w = cosh z
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Tangent Function. Figure 391 shows the mapping of a vertical infinite strip onto the
unit circle by w = tan z, accomplished in three steps as suggested by the representation
(Sec. 13.6)

. sin z (€% — e™®) i (e — Dl
w=tanz = = . Ealal i
coS Z e¥ + e 2% + 1
Hence if we set Z = €% and use 1/i = —i, we have
(6) w=tanz = —IiW WZZ_1 7 = &%
’ Z+1° '

We now see that w = tan z is a linear fractional transformation preceded by an exponential
mapping (see Sec. 17.1) and followed by a clockwise rotation through an angle 377 (90°).
The strip is S: —47 < x < 4, and we show that it is mapped onto the unit disk in the
w-plane. Since Z = €2 = 2?7 we see from (10) in Sec. 13.5 that [Z] = ¢,
Arg Z = 2x. Hence the vertical lines x = — /4, 0, /4 are mapped onto the rays
Arg Z = — /2, 0, 7/2, respectively. Hence S is mapped onto the right Z-half-plane. Also
Izl = e < 1if y > 0 and |Z| > 1 if y < 0. Hence the upper half of § is mapped inside
the unit circle |Z| = 1 and the lower half of S outside [Z] = 1, as shown in Fig. 391.
Now comes the linear fractional transformation in (6), which we denote by g(2):

Z-1
Z+ 1

(7 W=gZ) =

For real Z this is real. Hence the real Z-axis is mapped onto the real W-axis. Furthermore,
the imaginary Z-axis is mapped onto the unit circle |W| = 1 because for pure imaginary
Z = iY we get from (7)

iy — 1
iy +1

W] = 1Y) = ]

The right Z-half-plane is mapped inside this unit circle |W| = 1, not outside, because
7 = 1 has its image g(1) = 0 inside that circle. Finally, the unit circle |Z| = 1 is mapped

y

1 1 1
1 1 1
1 | 1 v
1 1 1
1 1 -t .
] I ] e N 2 ™,
1 1 1 / \‘ ’ \\
- ! ! ! \ ! \
1 1 X 1 \ 1 \ T
1 1 1 \ / \ ;
1 1 1 N ’ k. ’
1 1 ~~L-7 S’
1 1 1
I 1 1
1 | 1
1 1 1

(z-plane) (Z-plane) (W-plane) (w-plane)

p

Fig. 391. Mapping by w = tanz

133
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onto the imaginary W-axis, because this circle is Z = ¢'?, so that (7) gives a pure imaginary

expression, namely,

e — 1

e — e sin (¢/2)

g(e'?) =

e+ 1

T FP R T cos (¢12)

From the W-plane we get to the w-plane simply by a clockwise rotation through 7/2; see (6).
Together we have shown that w = tan z maps S: —7/4 < Re z < 7/4 onto the unit
disk |[w| = 1, with the four quarters of S mapped as indicated in Fig. 391. This mapping

is conformal and one-to-one.

CONFORMAL MAPPING w = ¢’

Find and sketch the image of the given region under w = €7,
1.0=x=2, 7w7=y=7w

—“1=x=0,0=y=7/2

—05<x<05,3m/4 <y <5mul4

3 <x<3, wAd<y<3u/4

L0<x<1,0<y<mw

x<0,—7m2<y<m/2

. x arbitrary, 0 = y = 27

® Namaw

. CAS EXPERIMENT. Conformal Mapping. If your
CAS can do conformal mapping, use it to solve
Prob. 5. Then increase y beyond r, say, to 507 or 1007r.
State what you expected. See what you get as the
image. Explain.

CONFORMAL MAPPING w = sin z

Find and sketch or graph the image of the given region
under w = sin z.

9. 0=x=m0=y=1

10. 0 < x < 7/6, y arbitrary

1. 0<x<2m1<y<5

12 —7w4A<x<7/4,0<y<3

13. Determine all points at which w = sinz is not
conformal.

14. Find and sketch or graph the images of the lines x = 0,
*m/6, £/3, £/2 under the mapping w = sin z.

15. Find an analytic function that maps the region R
bounded by the positive x- and y-axes and the hyperbola
xy = /2 in the first quadrant onto the upper half-plane.
Hint. First map the region onto a horizontal strip.

16. Describe the mapping w = cosh z in terms of the
mapping w = sin z and rotations and translations.

17. Find all points at which the mapping w = cosh 7z is
not conformal.

18-22| CONFORMAL MAPPING w = cos z

Find and sketch or graph the image of the given region
under w = cos z.

18. 0<x<72,0<y<2
19.0<x<m0<y<l
20 - 1l=x=1,0=y=1
21, m<x<2my<0

2. 0<x<2m1I2<y<]1

23. Find the images of the lines y = ¢ = const under the
mapping w = cos z.

-1
24. Show that w = Ln < 1 maps the upper half-plane
z

onto the horizontal strip 0 = Im w = 7 as shown in
the figure.

A B C I? E
| I
(o0) -1 0 1 (e0)
(z-plane)
(72
A
‘5*

o

0
(w-plane)

Problem 24

25. Find and sketch the image of R: 2 = |7 = 3,
/4 = 6 = /2 under the mapping w = Ln z.
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17.5 Riemann Surfaces. Optional

Riemann surfaces are surfaces on which multivalued relations, such as w = \/E orw=1Inz,
become single-valued, that is, functions in the usual sense. We explain the idea, which is
simple—but ingenious, one of the greatest in complex analysis.

The mapping given by

(1 w=u+iv=7 (Sec. 17.1)

is conformal, except at z = 0, where w' =2z = 0. At z = 0, angles are doubled under
the mapping. Thus the right z-half-plane (including the positive y-axis) is mapped onto
the full w-plane, cut along the negative half of the u-axis: this mapping is one-to-one.
Similarly for the left z-half-plane (including the negative y-axis). Hence the image of the
full z-plane under w = 22 “covers the w-plane twice” in the sense that every w # 0 is the
image of two z-points; if z; is one, the other is —z;. For example, Z = i and —i are both
mapped onto w = —1.

Now comes the crucial idea. We place those two copies of the cut w-plane upon each
other so that the upper sheet is the image of the right half z-plane R and the lower sheet
is the image of the left half z-plane L. We join the two sheets crosswise along the cuts
(along the negative u-axis) so that if z moves from R to L, its image can move from the
upper to the lower sheet. The two origins are fastened together because w = 0 is the image
of just one z-point, z = 0. The surface obtained is called a Riemann surface (Fig. 392a).
w = 0 is called a “winding point” or branch point. w = z2 maps the full z-plane onto
this surface in a one-to-one manner.

By interchanging the roles of the variables z and w it follows that the double-valued
relation

2) w=Vz (Sec. 13.2)

becomes single-valued on the Riemann surface in Fig. 392a, that is, a function in the usual
sense. We can let the upper sheet correspond to the principal value of Vz. Its image is
the right w-half-plane. The other sheet is then mapped onto the left w-half-plane.

: _ 3
(a) Riemann surface of \Vz (b) Riemann surface of Vz

Fig. 392. Riemann surfaces

Similarly, the triple-valued relation w = W7 becomes single-valued on the three-sheeted
Riemann surface in Fig. 392b, which also has a branch point at z = 0.

iFd
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The infinitely many-valued natural logarithm (Sec. 13.7)

w=1Inz=Lnz + 2nwi

(n=0,=*1,£2,---)

becomes single-valued on a Riemann surface consisting of infinitely many sheets. w = Ln z
corresponds to one of them. This sheet is cut along the negative x-axis and the upper edge
of the slit is joined to the lower edge of the next sheet, which corresponds to the argument

7 < 0 = 3, that is, to

w=Lnz + 2mi.

The principal value Ln z maps its sheet onto the horizontal strip — 7 < v = 7. The function
w = Ln z + 27 maps its sheet onto the neighboring strip 7 < v = 3, and so on. The
mapping of the points z # 0 of the Riemann surface onto the points of the w-plane is
one-to-one. See also Example 5 in Sec. 17.1.

o

. Consider w = V/z. Find the path of the image point w
of a point z that moves twice around the unit circle,
starting from the initial position z = 1.

n
. Show that the Riemann surface of w = /7 consists of

n sheets and has a branch point at z = 0.

. Make a sketch, similar to Fig. 392, of the Riemann

surface of V7.

. Show that the Riemann surface of w = V(z — 1)(z — 2)

has branch points at z = 1 and z = 2 and consists of

. How did we define the angle of intersection of two

oriented curves, and what does it mean to say that a
mapping is conformal?

. At what points is a mapping w = f(z) by an analytic

function not conformal? Give examples.

. What happens to angles at z, under a mapping w = f(z)

if f'(zo) = 0, f"(z0) = 0, f"(z9) # 0?

. What do “surjective,” “injective,” and “bijective”

mean?

. What mapping gave the Joukowski airfoil?
. What are linear fractional transformations (LFTs)? Why

are they important in connection with the extended
complex plane?

. Why did we require that ad — bc # 0 for a LFT?
. What are fixed points of a mapping? Give examples.
. Can you remember mapping properties of w = sin z?

cos z? e*?

UESTIONS AND PROBLEMS

two sheets that may be cut along the line segment from
1 to 2 and joined crosswise. Hint. Introduce polar
coordinates z — 1 = re'™, z — 2 = rpe'™

RIEMANN SURFACES

Find the branch points and the number of sheets of the
Riemann surface.

5.V3z+5 6. V(1 — 24 -3
7.5+ 2+ 8. In (3z — 4i)
9. V7 10. Ve

10. What is a Riemann surface? Why was it introduced?
Explain the simplest example.

11-16| MAPPING w = 22

Find and sketch the image of the given curve or region under
2
w = Z".

11. y= -1,y =1 12. xy = —4
13. |z) = 45, Jargz| < 74 14. 0 <y <2
15.3<x<1 16. Imz >0

17-22| MAPPING w = 1/z

Find and sketch the image of the given curve or region under
w=1/z.
17. x = -1

18. y =1
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19. |z -3 =1 20. |z] <3,y<0 35-40| Fixed Points. Find all fixed points of
21. |arg z| < /4 22. |7l <1,x<0,y>0 242 2iz — 1
35. w= T 36. w = Y
23-28| FAILURE OF CONFORMALITY . A
Where is the mapping by the given function not conformal? o 3zt2 iz +5
. 37. w=——— 38. w= =
(Give reason.) z— 1 5z +1i
23. 577 + 77° 24. cosh 2z Q+i)z+1
A — 4 _
25. sin 2z + cos 2z 26. cos mz* 3. w= z—i 4. w=2"+z— 8l
27. exp (z* + 22 28. 7+ l/iz (z # 0)
P 41-45| GIVEN REGIONS
29-34| LINEAR FRACTIONAL Find an analytic function w = f(z) that maps:
TRANSFORMATIONS (LFTs) 41. The infinite strip 0 < y < 7r/3 onto the upper half-plane
Find the LFT that maps v>0.
29. 0, 1,2 onto 0, i, 2i, respectively 42. The interior of the unit circle |z| = 1 onto the exterior

of the circle jw + 1| = 5.

30. —1, 1, 2 onto 0, 2, 3/2, respectively )
43. The region x > 0, y > 0, xy < k onto the strip

31. 1, —1, —ionto 1, —1, i, respectively

0<v <l
32. -1, —i,ionto 1 — 4,2, 0, respectively 44. The semi-disk || < 1, x > 0 onto the exterior of the
33. 0, %, —2 onto 0, 1, %, respectively unit circle |w| = 1.
34. 0, i, 2i onto 0, %, 2i 45. The sector 0 < arg z < 7r/3 onto the region u < 1.

Conformal Mapping

A complex function w = f(z) gives a mapping of its domain of definition in the
complex z-plane onto its range of values in the complex w-plane. If f(z) is analytic,
this mapping is conformal, that is, angle-preserving: the images of any two
intersecting curves make the same angle of intersection, in both magnitude and sense,
as the curves themselves (Sec. 17.1). Exceptions are the points at which f "@9=0
(“critical points,” e.g. z = 0 for w = z?).

For mapping properties of ¢°, cos z, sin z, etc. see Secs. 17.1 and 17.4.

Linear fractional transformations, also called Mobius transformations

az + b
(D w = T (Secs. 17.2, 17.3)
cz

(ad — be # 0) map the extended complex plane (Sec. 17.2) onto itself. They solve
the problems of mapping half-planes onto half-planes or disks, and disks onto disks
or half-planes. Prescribing the images of three points determines (1) uniquely.

Riemann surfaces (Sec. 17.5) consist of several sheets connected at certain points
called branch points. On them, multivalued relations become single-valued, that is,
functions in the usual sense. Examples. For w = Vz we need two sheets (with
branch point 0) since this relation is doubly-valued. For w = In z we need infinitely
many sheets since this relation is infinitely many-valued (see Sec. 13.7).




CHAPTER] 8

Complex Analysis and
Potential Theory

Laplaces’s equation V2@ = 0 is one of the most important PDEs in engineering
mathematics, because it occurs in gravitation (Secs. 9.7, 12.10), electrostatics (Sec. 9.7),
steady-state heat conduction (Sec. 12.5), incompressible fluid flow, etc. The theory of
solutions of this equation is called potential theory (although “potential” is also used in
a more general sense in connection with gradients; see Sec. 9.7).

In the “two-dimensional case” when ® depends only on two Cartesian coordinates x
and y, Laplace’s equation becomes

Vo =P, + D, = 0.

From Sec. 13.4 we know that then its solutions ® are closely related to complex analytic
functions @ + i W. This relation is the main reason for the importance of complex analysis
in physics and engineering. (We use the notation @ + i W since u# + iv will be needed
in conformal mapping.)

In this chapter we shall consider this connection and its consequences in detail and
illustrate it by modeling typical examples from electrostatics (Secs. 18.1, 18.2), heat
conduction (Sec. 18.3), and hydrodynamics (Sec. 18.4). This will lead to boundary value
problems, some of which involving functions whose mapping properties we have studied
in Chap. 17. Further relating to that chapter, in Sec. 18.2 we explain conformal mapping
as a method in potential theory.

In Sec. 18.5 we derive the important Poisson formula for potentials in a circular disk.

Finally, in Sec. 18.6 we show that results on analytic functions can be used to
characterize general properties of harmonic functions (solutions of Laplace’s equation
whose second partial derivatives are continuous).

Prerequisite: Chaps. 13, 14, 17.
References and Answers to Problems: App. 1 Part D, App. 2.
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18.1 Electrostatic Fields

EXAMPLE: 1

The electrical force of attraction or repulsion between charged particles is governed by
Coulomb’s law. This force is the gradient of a function ®, called the electrostatic
potential. At any points free of charges, ® is a solution of Laplace’s equation

V2P = 0.

The surfaces ® = const are called equipotential surfaces. At each point P at which the
gradient of @ is not the zero vector, it is perpendicular to the surface ® = const through
P: that is, the electrical force has the direction perpendicular to the equipotential surface.
(See also Secs. 9.7 and 12.10.)

The problems we shall discuss in this entire chapter are two-dimensional (for the reason
just given in the chapter opening), that is, they model physical systems that lie in
three-dimensional space (of course!), but are such that the potential ® is independent of
one of the space coordinates, so that @ depends only on two coordinates, which we call
x and y. Then Laplace’s equation becomes

1 V2D = 18 . e 0
(1 % ax2 6y2 =

Equipotential surfaces now appear as equipotential lines (curves) in the xy-plane.
Let us illustrate these ideas by a few simple basic examples.

Potential Between Parallel Plates

Find the potential ® of the field between two parallel conducting plates extending to infinity (Fig. 393), which
are kept at potentials ®; and @, respectively.

Solution. From the shape of the plates it follows that ® depends only on x, and Laplace’s equation becomes
®” = 0. By integrating twice we obtain ® = ax + b, where the constants a and b are determined by the given
boundary values of ® on the plates. For example, if the plates correspond to x = —1 and x = 1, the solution is

Dx) = §(Py — Ppx + 5(Dy + Dy).

The equipotential surfaces are parallel planes. |

JJ

-

| o

Fig. 393. Potential in Example 1 Fig. 394. Potential in Example 2

w
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EXAMPLE 2

EXAMPLE 3

y

.

Fig. 395. Potential
in Example 3

EXAMPLE 4

Potential Between Coaxial Cylinders

Find the potential & between two coaxial conducting cylinders extending to infinity on both ends (Fig. 394)
and kept at potentials ®; and P, respectively.

Solution. Here ® depends only on r = Va2 + )‘2, for reasons of symmetry, and Laplace’s equation
rzuw + ity + g = 0 [(5), Sec. 12.9] with iy, = 0 and u = ® becomes r®” + &' = 0. By separating variables
and integrating we obtain

o l_ = /7(1 ——
=—-—, In® = —Inr + a, P = — d=qglnr+ b
. ,

and a and b are determined by the given values of @ on the cylinders. Although no infinitely extended conductors
exist, the field in our idealized conductor will approximate the field in a long finite conductor in that part which
is far away from the two ends of the cylinders. E

Potential in an Angular Region

Find the potential ® between the conducting plates in Fig. 395, which are kept at potentials ®; (the lower plate)
and @5, and make an angle «, where 0 < a = 7. (In the figure we have o = 120° = 27/3.)

Solution. 6= Argz(z = x + iy # 0) is constant on rays 6 = const. It is harmonic since it is the imaginary
part of an analytic function, Ln z (Sec. 13.7). Hence the solution is

D, y) =a+ bArgz
with a and b determined from the two boundary conditions (given values on the plates)

a+b(-ta) = dy, a+ bGa) = d,.

Thus a = (P + P1)/2, b = (Py — Pq)/a. The answer is

1 1 v
Dy, y) = 3 (Dy + D) + - (Dy — D)0, 0 = arctan T |

Complex Potential

Let ®(x, y) be harmonic in some domain D and W(x, y) a harmonic conjugate of ® in D.
(See Sec. 13.4, where we wrote u and v, now needed in conformal mapping from the next
section on; hence the change to ® and W.) Then

(2) Fiz) = @Gy + 080, ¥)

is an analytic function of z = x + iy. This function F is called the complex potential
corresponding to the real potential @. Recall from Sec. 13.4 that for given ®, a conjugate
W is uniquely determined except for an additive real constant. Hence we may say the
complex potential, without causing misunderstandings.

The use of I has two advantages, a technical one and a physical one. Technically, F is
easier to handle than real or imaginary parts, in connection with methods of complex
analysis. Physically, ¥ has a meaning. By conformality, the curves W = const intersect
the equipotential lines ® = const in the xy-plane at right angles [except where F'(z) = 0].
Hence they have the direction of the electrical force and, therefore, are called lines of force.
They are the paths of moving charged particles (electrons in an electron microscope, etc.).

Complex Potential

In Example 1, a conjugate is ¥ = ay. It follows that the complex potential is

Fz)=az+b=ax+ b+ iay.
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EXAMPLE 5

EXAMPLE 6

EXAMPLE 7

CHAP.18 Complex Analysis and Potential Theory

and the lines of force are horizontal straight lines y = const parallel to the X-axis. |

Complex Potential

In Example 2 we have ® = alnr + b =aln || + b. A conjugate is ¥ = a Arg z. Hence the complex
potential is

F(z)=alnz+b
and the lines of force are straight lines through the origin. F(z) may also be interpreted as the complex potential
of a source line (a wire perpendicular to the xy-plane) whose trace in the xy-plane is the origin.
Complex Potential
In Example 3 we get F(z) by noting that i Lnz = i In || — Arg z, multiplying this by —b, and adding a:
Fz)=a—ibLnz=a+ b Argz — ibInlz.

We see from this that the lines of force are concentric circles |z| = const. Can you sketch them? |

Superposition
More complicated potentials can often be obtained by superposition.

Potential of a Pair of Source Lines (a Pair of Charged Wires)

Determine the potential of a pair of oppositely charged source lines of the same strength at the points z = ¢ and
z = —c on the real axis.

Solution. TFrom Examples 2 and 5 it follows that the potential of each of the source lines is
®; =Klnlz — ¢ and Oy =—Klnlz + ¢,

respectively. Here the real constant K measures the strength (amount of charge). These are the real parts of the
complex potentials

Fi(z) = KLn(z — ¢ and Fy(z) = =K Ln(z + ©).
Hence the complex potential of the combination of the two source lines is
©) F(z) = F1(2) + Fa(z) = K[Ln(z — ¢) = Ln(z + 0)].
The equipotential lines are the curves
z—

zZ— C

z F

<

® =ReF(z) = KIn

c
l = const, thus . = const.
G

These are circles, as you may show by direct calculation. The lines of force are
¥ = Im F(z) = K[Arg (z — ¢) — Arg(z + ¢)] = const.

We write this briefly (Fig. 396)
¥ = K(6; — 03) = const.

Now 6; — 65 is the angle between the line segments from z to ¢ and —c (Fig. 396). Hence the lines of force
are the curves along each of which the line segment S: —c¢ = x = ¢ appears under a constant angle. These curves
are the totality of circular arcs over S, as is (or should be) known from elementary geometry. Hence the lines
of force are circles. Figure 397 shows some of them together with some equipotential lines.

In addition to the interpretation as the potential of two source lines, this potential could also be thought of as
the potential between two circular cylinders whose axes are parallel but do not coincide, or as the potential
between two equal cylinders that lie outside each other, or as the potential between a cylinder and a plane wall.
Explain this, using Fig. 397.

The idea of the complex potential as just explained is the key to a close relation of potential
theory to complex analysis and will recur in heat flow and fluid flow.
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Fig. 397. Equipotential lines and lines
of force (dashed) in Example 7

POTENTIAL

Find and sketch the potential. Find the complex potential:

1. Between parallel plates at x = —3 and 3, potentials
140 V and 260 V, respectively
2. Between parallel plates at x = —4 and 10, potentials

4.4kV and 10 kV, respectively

3. Between the axes (potential 110 V) and the hyperbola
xy = 1 (potential 60 V)

4. Between parallel plates at y = x and x + k, potentials
0 and 100 V, respectively

COAXIAL CYLINDERS

Find the potential between two infinite coaxial cylinders of
radii r; and r, having potentials U; and U,, respectively.
Find the complex potential.

5.1 =057r=20U =—-110V,U, =110V

6. 1y =1,r,=10,U, =100V, U, = 1 kV

7.r=1r=4U0,=200V,U, =0

8 r=01r,=10,U, =150V, U, =50V

9. Show that ® = /7 = (1/) arctan (y/x) is harmonic in
the upper half-plane and satisfies the boundary condition
®(x,0) = 1ifx <0and0if x > 0, and the corresponding

complex potential is F(z) = —(i/7) Ln z.

10. Map the upper half z-plane onto the unit disk |w| = 1 so
that 0, %2, —1 are mapped onto 1, i, —i, respectively. What
are the boundary conditions on |w| = 1 resulting from
the potential in Prob. 9? What is the potential at w = 0?

11. Verity by calculation that the equipotential lines in
Example 7 are circles.

12. CAS EXPERIMENT. Complex Potentials. Graph
the equipotential lines and lines of force in (a)—(d) (four
graphs, Re F(z) and Im F(z) on the same axes). Then
explore further complex potentials of your choice with
the purpose of discovering configurations that might
be of practical interest.
(@) F(z) =2*

(¢) F(z) = 1/z

(b) F(z) = iz?
d) F(z) = ilz

POTENTIALS FOR OTHER
CONFIGURATIONS

13. Show that F(z) = arccos z (defined in Problem Set
13.7) gives the potential in Figs. 398 and 399.

Fig. 398. Slit

Fig. 399. Other apertures

14. Find the real and complex potentials in the sector
—m/6 = 0 = 7/6 between the boundary 6 = *7/6
(kept at 0) and the curve x* — 3xy2 = 1, kept at 110 V.

15. Find the potential in the first quadrant of the xy-plane
between the axes (having potential 220 V) and the
hyperbola xy = 1 (having potential 110 V).
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18.2 Use of Conformal Mapping. Modeling

Complex potentials relate potential theory closely to complex analysis, as we have just
seen. Another close relation results from the use of conformal mapping in modeling and
solving boundary value problems for the Laplace equation, that is, in finding a solution
of the equation in some domain assuming given values on the boundary (“Dirichlet i
problem”; see also Sec. 12.5). Then conformal mapping is used to map a given domain

onto one for which the solution is known or can be found more easily. This solution is

then mapped back to the given domain. This is the idea. That it works is due to the fact

that harmonic functions remain harmonic under conformal mapping:

THEOREM 1 Harmonic Functions Under Conformal Mapping T

Let ©* be harmonic in a domain D in the w-plane. Suppose thatw = u + iv = f(z)
is analytic in a domain D in the z-plane and maps D conformally onto D*. Then i
the function

M D(x, y) = D(ulx, y), v(x, ¥)

is harmonic in D. J

PROOF The composite of analytic functions is analytic, as follows from the chain rule. Hence,
taking a harmonic conjugate U*(u, v) of ®*, as defined in Sec. 13.4, and forming the
analytic function F*(w) = ®*(u, v) + i¥"(u, v), we conclude that F(z) = F*(f(2)) is
analytic in D. Hence its real part ®(x, y) = Re F(z) is harmonic in D. This completes the
proof.

We mention without proof that if D* is simply connected (Sec. 14.2), then a harmonic
conjugate of " exists. Another proof of Theorem 1 without the use of a harmonic
conjugate is given in App. 4. 5|

EXAMPLE 1 Potential Between Noncoaxial Cylinders

Model the electrostatic potential between the cylinders Cy: 2| = 1 and Cy: [z — 2/5| = 2/5 in Fig. 400. Then
give the solution for the case that Cy is grounded, Uy = 0V, and Cy has the potential Uy = 110 V.

Solution. We map the unit disk |z| = 1 onto the unit disk [w| = 1 in such a way that Cy is mapped onto
some cylinder Co*: |w| = ro. By (3), Sec. 17.3, a linear fractional transformation mapping the unit disk onto
the unit disk is

(@) w=

(a) z-plane (b) w-plane

Fig. 400. Example 1
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EXAMPLE 2

where we have chosen b = zq real without restriction. zq is of no immediate help here because centers of circles
do not map onto centers of the images, in general. However, we now have two free constants b and rg and shall
succeed by imposing two reasonable conditions, namely, that 0 and 4/5 (Fig. 400) should be mapped onto ry
and —ry, respectively. This gives by (2)
0-b 4/5 = b 45 — ry
ro=——— =0>, and with this, —rg = ] =S
0 T

a quadratic equation in ry with solutions ry = 2 (no good because ry < 1) and ry = 1/2. Hence our mapping
function (2) with b = 1/2 becomes that in Example 5 of Sec. 17.3,

2z — 1

3) w=f@) = "—

From Example 5 in Sec. 18.1, writing w for z we have as the complex potential in the w-plane the function
F*w) = a Lnw + k and from this the real potential
®*(u, v) = Re F*(w) = a In|w| + k.

This is our model. We now determine « and k from the boundary conditions. If |w| = 1, then ®* = aIn1 + k = 0,
hence k = 0. If |w| = ry = 1/2, then ®* = a In (1/2) = 110, hence a = 110/In (1/2) = —158.7. Substitution
of (3) now gives the desired solution in the given domain in the z-plane

: 27— 1
F(z) = F*(f(z)) = aLn —— .
The real potential is
2% — 1
D(x,y) =Re F(z) = aln > |- a = —158.7.

Can we “see” this result? Well, ®(x, y) = const if and only if |2z — 1)/(z — 2)| = const, that is, |w| = const
by (2) with b = 1/2. These circles are images of circles in the z-plane because the inverse of a linear fractional
transformation is linear fractional (see (4), Sec. 17.2), and any such mapping maps circles onto circles (or
straight lines), by Theorem 1 in Sec. 17.2. Similarly for the rays arg w = const. Hence the equipotential lines
®(x, y) = const are circles, and the lines of force are circular arcs (dashed in Fig. 400). These two families of
curves intersect orthogonally, that is, at right angles, as shown in Fig. 400. B

Potential Between Two Semicircular Plates

Model the potential between two semicircular plates Py and Py in Fig. 401a having potentials —3000 V and
3000 V, respectively. Use Example 3 in Sec. 18.1 and conformal mapping.

Solution. Step 1. We map the unit disk in Fig. 401a onto the right half of the w-plane (Fig. 401b) by using
the linear fractional transformation in Example 3, Sec. 17.3:

1+ ¢
w=f@) = T
- <

v

3 kv

—

-3 kv

-2 kV
(a) zplane (b) w-plane

Fig. 401. Example 2
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The boundary |z| = 1 is mapped onto the boundary u = 0 (the v-axis), with z = —1, i, 1 going onto w = 0, i, %,
respectively, and z = —i onto w = —i. Hence the upper semicircle of |z| = 1 is mapped onto the upper half,
and the lower semicircle onto the lower half of the v-axis, so that the boundary conditions in the w-plane are
as indicated in Fig. 401b.

Step 2. We determine the potential @*(u, v) in the right half-plane of the w-plane. Example 3 in Sec. 18.1 with
a = m Uy = —3000, and Uy = 3000 [with ®*(u, v) instead of ®(x, y)] yields

. 6000 v
OHu,v) = —— ¢ ¢ = arctan - .

On the positive half of the imaginary axis (¢ = 7/2), this equals 3000 and on the negative half —3000, as it
should be. ®* is the real part of the complex potential

L
w) = —

Lonw.

Step 3. We substitute the mapping function into F* to get the complex potential F(z) in Fig. 401a in the
form

6000 i 1+z
If———.
T 1 —z

F(z) = F*(f@) = —

The real part of this is the potential we wanted to determine:

6000 1+z 6000 1 +z
d(x,y) = Re F(2) = —/— Im Ln = Arg .
T 11—z T 1—32

As in Example 1 we conclude that the equipotential lines P(x, y) = const are circular arcs because they correspond
to Arg [(1 + 2)/(1 — 2)] = const, hence to Arg w = const. Also, Arg w = const are rays from 0 to %, the images
of z = —1 and z = 1, respectively. Hence the equipotential lines all have —1 and 1 (the points where the
boundary potential jumps) as their endpoints (Fig. 401a). The lines of force are circular arcs, too, and since they
must be orthogonal to the equipotential lines, their centers can be obtained as intersections of tangents to the
unit circle with the x-axis, (Explain!)

Further examples can easily be constructed. Just take any mapping w = f(2) in Chap. 17,
a domain D in the z-plane, its image D* in the w-plane, and a potential ®* in D*. Then
(1) gives a potential in D. Make up some examples of your own, involving, for instance,
linear fractional transformations.

Basic Comment on Modeling

We formulated the examples in this section as models on the electrostatic potential. It
is quite important to realize that this is accidental. We could equally well have phrased
everything in terms of (time-independent) heat flow; then instead of voltages we would
have had temperatures, the equipotential lines would have become isotherms (= lines
of constant temperature), and the lines of the electrical force would have become lines
along which heat flows from higher to lower temperatures (more on this in the next
section). Or we could have talked about fluid flow; then the electrostatic lines of force
would have become streamlines (more on this in Sec. 18.4). What we again see here is
the unifying power of mathematics: different phenomena and systems from different
areas in physics having the same types of model can be treated by the same mathematical
methods. What differs from area to area is just the kinds of problems that are of practical
interest.
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. Verify Theorem 1 for ®*(u, v) = u® — v2,

w = f(z) = ¢® and any domain D.

. Verify Theorem 1 for ®*(u, v) = uv, w = f(z) = €,

and D: x = 0,0 = y = 7. Sketch D and D*.

. Carry out all steps of the second proof of Theorem 1

(given in App. 4) in detail.

. Derive (3) from (2).
. Let D* be the image of the rectangle D:

Oéxé%ﬂ',OEyé 1 under w = sin z, and
®*(u, v) = u®> — v2 Find the corresponding
potential ® in D and its boundary values.

. What happens in Prob. 5 if you replace the potential

by the conjugate ®* = 2uv? Sketch or graph some of
the equipotential lines ® = const.

. CAS PROJECT. Graphing Potential Fields.

(a) Graph equipotential lines in Probs. 1 and 2.

(b) Graph equipotential lines if the complex potential
is F(z) = iz% F(z) = ¢%, F(z) = ie®, F(z) = €'~

(¢) Graph equipotential surfaces corresponding to
F(z) = In z as cylinders in space.

. TEAM PROJECT. Noncoaxial Cylinders. Find the

potential between the cylinders C;: |z| = 1 (potential
Uy =0)and Cy: |z — ¢| = ¢ (Usy = 110 V), where
0 < ¢ < 1. Sketch or graph the equipotential curves
and their orthogonal trajectories for ¢ = 0.1, 0.2, 0.3,
0.4. Try to think of the further extension C;: |z] = 1,
Colz—c=p+#ec

. Find the potential & in the region R in the first quadrant

of the z-plane bounded by the axes (having potential
U,) and the hyperbola y = 1/x (having potential 0) in
two ways, (i) directly, (ii) by mapping R onto a suitable
infinite strip.

18.3 Heat Problems

Laplace’s equation also governs heat flow problems that are steady, that is, time-independent.
Indeed, heat conduction in a body of homogeneous material is modeled by the heat

equation

Laplace equation

ey

10.

11.
12.

13.

14.

15.
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(Extension of Example 2) Find the linear fractional
transformation z = g(Z) that maps |Z| = 1 onto |z = 1
with Z = i/2 being mapped onto z = 0. Show that
Z; = 0.6 + 0.8/ is mapped onto z = —1 and
Zy = —0.6 + 0.8i onto z = 1, so that the equipotential
lines of Example 2 look in |Z| = 1 as shown in Fig. 402.

Y
-3 kV
Z2 Z1
0
1
X

2

3 kv

Fig. 402. Problem 10

The equipotential lines in Prob. 10 are circles. Why?

Show that in Example 2 the y-axis is mapped onto the
unit circle in the w-plane.

Find the complex and real potentials in the upper
half-plane with boundary values 0 if x < 4 and 10 kV
if x > 4 on the x-axis.

(Angular region) Applying a suitable conformal
mapping, obtain from Fig. 401b the potential @ in the
angular region —37 << Arg z < 27 such that & = —3 kV
if Argz = —jmand ® = 3kV if Argz = 17,
Atz = *1in Fig. 401a the tangents to the equipotential
lines shown make equal angles (7/6). Why?

T, = e2Y2T

where the function 7 is temperature, T, = 97/d1, ¢ is time, and ¢ is a positive constant
(depending on the material of the body; see Sec. 12.5). Hence if a problem is steady, so
that T; = 0, and two-dimensional, then the heat equation reduces to the two-dimensional

2 =
VT =T, + T,, =0,

so that the problem can be treated by our present methods.
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T(x, y) is called the heat potential. It is the real part of the complex heat potential
F(z) = T(x, y) + iP(x, y).

The curves T(x, y) = const are called isotherms (= lines of constant temperature) and
the curves W(x, y) = const heat flow lines, because along them, heat flows from higher
to lower temperatures.

It follows that all the examples considered so far (Secs. 18.1, 18.2) can now be
reinterpreted as problems on heat flow. The electrostatic equipotential lines ®(x, y) = const
now become isotherms 7T(x, y) = const, and the lines of electrical force become lines of
heat flow, as in the following two problems.

Temperature Between Parallel Plates

Find the temperature between two parallel plates x = 0 and x = d in Fig. 403 having temperatures 0 and 100°C,
respectively.

Solution. As in Example 1 of Sec. 18.1 we conclude that T(x, y) = ax + b. From the boundary conditions,
= 0 and a = 100/d. The answer is

100
T(x,y) = -—d— x [°C].

The corresponding complex potential is F(z) = (100/d) z. Heat flows horizontally in the negative x-direction
along the lines y = const. (]
Temperature Distribution Between a Wire and a Cylinder

Find the temperature field around a long thin wire of radius r; = | mm that is electrically heated to 77 = S00°F
and is surrounded by a circular cylinder of radius rp = 100 mm, which is kept at temperature T = 60°F by
cooling it with air. See Fig. 404. (The wire is at the origin of the coordinate system.)

Solution. T depends only on r, for reasons of symmetry. Hence, as in Sec. 18.1 (Example 2),

T(x,y) =alnr+ b.
The boundary conditions are
T, =500=alnl + b, Ty = 60 = aln 100 + b.
Hence b = 500 (since In 1 = 0) and a = (60 — b)/In 100 = —05.54. The answer is
T(x,y) = 500 — 95.54 In r [°F].

The isotherms are concentric circles. Heat flows from the wire radially outward to the cylinder. Sketch T as a
function of . Does it look physically reasonable? i

y

Insulated
prer e Ky
o
o
B Ben il O i
I
S
— &l
X
S
Ob__'v«_”‘—_ —
QF"——M— T =50°C x

0

Fig. 403. Example 1 Fig. 404. Example 2 Fig. 405. Example3

"
i
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EXAMPLE 3

EXAMPLE 4

Mathematically the calculations remain the same in the transition to another field of
application. Physically, new problems may arise, with boundary conditions that would
make no sense physically or would be of no practical interest. This is illustrated by the
next two examples.

A Mixed Boundary Value Problem

Find the temperature distribution in the region in Fig. 405 (cross section of a solid quarter-cylinder), whose
vertical portion of the boundary is at 20°C, the horizontal portion at 50°C, and the circular portion is insulated.

Solution. The insulated portion of the boundary must be a heat flow line, since by the insulation, heat is
prevented from crossing such a curve, hence heat must flow along the curve. Thus the isotherms must meet
such a curve at right angles. Since 7 is constant along an isotherm, this means that

oT

2) > =0 along an insulated portion of the boundary.
on

Here 97/dn is the normal derivative of T, that is, the directional derivative (Sec. 9.7) in the direction normal
(perpendicular) to the insulated boundary. Such a problem in which 7'is prescribed on one portion of the boundary
and d7/dn on the other portion is called a mixed boundary value problem.

In our case, the normal direction to the insulated circular boundary curve is the radial direction toward the
origin. Hence (2) becomes d7/dr = 0, meaning that along this curve the solution must not depend on r. Now
Arg z = 0 satisfies (1), as well as this condition, and is constant (0 and 7/2) on the straight portions of the
boundary. Hence the solution is of the form

T(x,y) = ab + b.
The boundary conditions yield @ - w/2 + b = 20 and a -0 + b = 50. This gives

60 y
T(x,y) =50— — 6, 6 = arctan — .
T X

The isotherms are portions of rays 6 = const. Heat flows from the x-axis along circles r = const (dashed in
Fig. 405) to the y-axis. [E]

y

=0°C

5

Insulated 1 7'=20°C Insulated

O
i
2

(a) z-plane (b) w-plane

Fig. 406. Example 4

Another Mixed Boundary Value Problem in Heat Conduction

Find the temperature field in the upper half-plane when the x-axis is kept at 7 = 0°C for x < —1, is insulated
for =1 <x < 1, and is kept at T = 20°C for x > 1 (Fig. 406a).

Solution. We map the half-plane in Fig. 406a onto the vertical strip in Fig. 406b, find the temperature 7%, v)
there, and map it back to get the temperature 7(x, y) in the half-plane.

The idea of using that strip is suggested by Fig. 388 in Sec. 17.4 with the roles of z = x + iyand w = u + v
interchanged. The figure shows that z = sin w maps our present strip onto our half-plane in Fig. 406a. Hence
the inverse function

w = f(z) = arcsin z
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maps that half-plane onto the strip in the w-plane. This is the mapping function that we need according to
Theorem 1 in Sec. 18.2.

The insulated segment —1 < x < | on the x-axis maps onto the segment —7/2 < u < 7/2 on the u-axis.
The rest of the x-axis maps onto the two vertical boundary portions u = —/2 and /2, v > 0, of the strip.
This gives the transformed boundary conditions in Fig. 406b for T*(u, v), where on the insulated horizontal
boundary, aT*/dn = aT*/dv = 0 because v is a coordinate normal to that segment.

Similarly to Example 1 we obtain

20
T*w,v) =10 + — u
T

which satisfies all the boundary conditions. This is the real part of the complex potential F*(w) = 10 + (20/mw.
Hence the complex potential in the z-plane is

20
F(z) = F*(f(z)) = 10 + . arcsin z

and T(x, y) = Re F(2) is the solution. The isotherms are u = const in the strip and the hyperbolas in the z-plane,
perpendicular to which heat flows along the dashed ellipses from the 20°-portion to the cooler 0°-portion of the
boundary, a physically very reasonable result. ||

This section and the last one show the usefulness of conformal mappings and complex
potentials. The latter will also play a role in the next section on fluid flow.

1. CAS PROJECT. Isotherms. Graph isotherms and
lines of heat flow in Examples 2—4. Can you see from
the graphs where the heat flow is very rapid?

a

Find the temperature and the complex potential in an
infinite plate with edges y = x — 2 and y = x + 2 kept
at —10°C and 20°C, respectively.

. Find the temperature between two parallel plates y = 0

and y = d kept at temperatures 0°C and 100°C,
respectively. (i) Proceed directly. (ii) Use Example 1
and a suitable mapping.

. Find the temperature T in the sector 0 = Arg z = /3,

lz] = 1if T = 20°C on the x-axis, T = 50°C on
y= V3 x, and the curved portion is insulated.

Find the temperature in Fig. 405 if T = —20°C on the
y-axis, T = 100°C on the x-axis, and the circular
portion of the boundary is insulated as before.
Interpret Prob. 10 in Sec. 18.2 as a heat flow problem
(with boundary temperatures, say, 20°C and 300°C).
Along what curves does the heat flow?

Find the temperature and the complex potential in the
first quadrant of the z-plane if the y-axis is kept at
100°C, the segment 0 < x < 1 of the x-axis is insulated
and the portion x > 1 of the x-axis is kept at 200°C.
Hint. Use Example 4.

TEAM PROJECT. Piecewise Constant Boundary
Temperatures. (a) A basic building block is shown
in Fig. 407. Find the corresponding temperature and
complex potential in the upper half-plane.

(b) Conformal mapping. What temperature in the
first quadrant of the z-plane is obtained from (a) by the

mapping w = a + z® and what are the transformed
boundary conditions?

(¢) Superposition. Find the temperature 7% and the
complex potential F* in the upper half-plane satisfying
the boundary condition in Fig. 408.

(d) Semi-infinite strip. Applying w = cosh z to (c),
obtain the solution of the boundary value problem in
Fig. 409.

T*=T, @

Fig. 407. Team Project 8(a)

- u
T#=T,

T#=0 T#=0 Y

T*=T,

Fig. 408. Team Project 8(c)

T=0 ’ X
Team Project 8(d)
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TEMPERATURE DISTRIBUTIONS IN 1. 12. 4
PLATES o |T=100C
Find the temperature 7(x, y) in the given thin metal plate f g
whose faces are insulated and whose edges are kept at the &~
indicated temperatures or are insulated as shown. T=T, x 0 T=100C *
9. 10. y 14. »
o Insulated
o X s
=1 S
: ! 5
=1
T=100°C! T=0°C

18.4 Flui

d Flow

Laplace’s equation also plays a basic role in hydrodynamics, in steady nonviscous fluid

flow under physical conditions discussed later in this section. In order that methods of

complex analysis can be applied, our problems will be two-dimensional, so that the

velocity vector V by which the motion of the fluid can be given depends only on two

space variables x and y and the motion is the same in all planes parallel to the xy-plane.
Then we can use for the velocity vector V a complex function

(1) V=V, +iV,

giving the magnitude |V| and direction Arg V of the velocity at each point z = x + iy.
Here V; and Vs are the components of the velocity in the x and y directions. V is tangential
to the path of the moving particles, called a streamline of the motion (Fig. 410).

We show that under suitable assumptions (explained in detail following the examples),
for a given flow there exists an analytic function

(2) Fz) = @(x, y) + i¥(x, y),

called the complex potential of the flow, such that the streamlines are given by
W(x, y) = const, and the velocity vector or, briefly, the velocity is given by

3) V=V, +iV,=F ()

Streamline

Fig. 410. Velocity
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where the bar denotes the complex conjugate. W is called the stream function. The
function @ is called the velocity potential. The curves ®(x, y) = const are called
equipotential lines. The velocity vector V'is the gradient of ®; by definition, this means
that

" 00

4 v, = -
) 1= o P

) 2 =
Indeed, for F = ® + ¥, Eq. (4) in Sec. 13.4is F' = @, + iV, with ¥, = —®, by the
second Cauchy-Riemann equation. Together we obtain (3):

Fo=®, — iV, =0, +id, =V, +iVy=V.
Furthermore, since F(z) is analytic, ® and W satisfy Laplace’s equation

BRI ER N R 9>
5 + = =10, vV = F =g =0
0x ay ax dy

5) V2P =

Whereas in electrostatics the boundaries (conducting plates) are equipotential lines, in
fluid flow the boundaries across which fluid cannot flow must be streamlines. Hence in
fluid flow the stream function is of particular importance.

Before discussing the conditions for the validity of the statements involving (2)=(5), let
us consider two flows of practical interest, so that we first see what is going on from a
practical point of view. Further flows are included in the problem set.

Flow Around a Corner

The complex potential F(z) = 2=x- y2 + 2ixy models a flow with
Equipotential lines & = ¥ = yz = const (Hyperbolas)
Streamlines WV = 2xy = const (Hyperbolas).

From (3) we obtain the velocity vector
V=27 =2x—iy), that is, Vi = 2x, Vo = —2y.

The speed (magnitude of the velocity) is

V= Vv + V2 = V2 + 42,
The flow may be interpreted as the flow in a channel bounded by the positive coordinates axes and a hyperbola,

say, xy = 1 (Fig. 411). We note that the speed along a streamline S has a minimum at the point P where the
cross section of the channel is large. ]

S

<
//P
-
7
0

Fig. 411. Flow around a corner (Example 1)

X
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Flow Around a Cylinder

Consider the complex potential
1
F(z) = O(x, y) + iV(x,y) =z + P

6

Using the polar form z = re'®, we obtain

i 1 2 1 1
Fz)=re? + — 7 = (r+ —) cos 6 + i (rf 7) sin 6.
r r r

Hence the streamlines are

1
V(x,y) = (r = *) sin 6 = const.
r

In particular, W(x, y) = 0 gives r — 1/r = 0 or sin @ = 0. Hence this streamline consists of the unit circle (r = 1/r
gives r = 1) and the x-axis (6 = 0 and § = ). For large |z| the term 1/z in F(z) is small in absolute value, so
that for these z the flow is nearly uniform and parallel to the x-axis. Hence we can interpret this as a flow around
a long circular cylinder of unit radius that is perpendicular to the z-plane and intersects it in the unit circle |z| = 1
and whose axis corresponds to z = 0.

The flow has two stagnation points (that is, points at which the velocity V is zero), at z = ®1. This follows
from (3) and

1
F')=1——5, hence z2—1=0. (See Fig. 412) W
Z

y

Fig. 412. Flow around a cylinder (Example 2)

Assumptions and Theory Underlying (2)—(5)

Complex Potential of a Flow

If the domain of flow is simply connected and the flow is irrotational and
incompressible, then the statements involving (2)—(5) hold. In particular, then the
flow has a complex potential F(z), which is an analytic function. (Explanation of
terms below.)

We prove this theorem, along with a discussion of basic concepts related to fluid flow.

(a) First Assumption: Irrotational. Let C be any smooth curve in the z-plane given
by z(s) = x(s) + iy(s), where s is the arc length of C. Let the real variable V, be the
component of the velocity V tangent to C (Fig. 413). Then the value of the real line integral

6) fcvt ds
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Fig. 413. Tangential component of the
velocity with respect to a curve C

taken along C in the sense of increasing s is called the circulation of the fluid along C,
1 a name that will be motivated as we proceed in this proof. Dividing the circulation by the
length of C, we obtain the mean velocity! of the flow along the curve C. Now

V, = |V] cos a (Fig. 413).

J Hence V, is the dot product (Sec. 9.2) of V and the tangent vector dz/ds of C (Sec. 17.1);
thus in (6),

dx dy
Vt dS = Vl == =p Vz — dS = Vl dx +- V2 dy
ds ds
The circulation (6) along C now becomes

) fCVt s = L(v1 dx + Vs dy).

As the next idea, let C be a closed curve satistying the assumption as in Green’s theorem
(Sec. 10.4), and let C be the boundary of a simply connected domain D. Suppose further
that V has continuous partial derivatives in a domain containing D and C. Then we can
use Green’s theorem to represent the circulation around C by a double integral,

WV, oV
®) $ Vyde+ Vady = [[ (a—;—a—;> dx dy.
c D

The integrand of this double integral is called the vorticity of the flow. The vorticity
divided by 2 is called the rotation

) cljels o
) oyl e i

1

—a

b
1Deﬁ'nitions: b f f(x) dx = mean value of f on the interval a = x = b,
a

1
I f f(s) ds = mean value of f on C (L = length of C),
(@]

1
i fff(x, y) dx dy = mean value of f on D (A = area of D).
D
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We assume the flow to be irrotational, that is, w(x, y) = 0 throughout the flow; thus,

(10) e o — 1)
dx dy

To understand the physical meaning of vorticity and rotation, take for C in (8) a circle.
Let r be the radius of C. Then the circulation divided by the length 277 of C is the mean
velocity of the fluid along C. Hence by dividing this by r we obtain the mean angular
velocity w, of the fluid about the center of the circle:

71Hav2 avldd—lff()dd
w0_277r2D ox dy x}*ﬂ'rzD ke 2 S

If we now let r — 0, the limit of w, is the value of w at the center of C. Hence w(x, y)
is the limiting angular velocity of a circular element of the fluid as the circle shrinks to
the point (x, y). Roughly speaking, if a spherical element of the fluid were suddenly
solidified and the surrounding fluid simultaneously annihilated, the element would rotate
with the angular velocity .

(b) Second Assumption: Incompressible. Our second assumption is that the fluid is
incompressible. (Fluids include liquids, which are incompressible, and gases, such as air,
which are compressible.) Then

vy Vs
an — =)
dx dy

in every region that is free of sources or sinks, that is, points at which fluid is produced
or disappears, respectively. The expression in (11) is called the divergence of V and is
denoted by div V. (See also (7) in Sec. 9.8.)

(¢) Complex Velocity Potential. If the domain D of the flow is simply connected
(Sec. 14.2) and the flow is irrotational, then (10) implies that the line integral (7) is
independent of path in D (by Theorem 3 in Sec. 10.2, where F; = Vy, Fy = V,, F3 = 0,
and z is the third coordinate in space and has nothing to do with our present z). Hence if
we integrate from a fixed point (@, b) in D to a variable point (x, y) in D, the integral
becomes a function of the point (x, y), say, ®(x, y):

@,

12) D(x, y) = f (Vi dx + V, dy).

(a, b)

We claim that the flow has a velocity potential @, which is given by (12). To prove this,
all we have to do is to show that (4) holds. Now since the integral (7) is independent of
path, Vi dx + Vs dy is exact (Sec. 10.2), namely, the differential of ®, that is,
ad aP
Vidx + Vody = — dx + — dy.
ox dy

From this we see that V; = 9®/dx and V, = d®/dy, which gives (4).
That @ is harmonic follows at once by substituting (4) into (11), which gives the first
Laplace equation in (5).
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complex function

FLOW PATTERNS: STREAMLINES,
COMPLEX POTENTIAL

These problems should encourage you to experiment with
various functions F(z), many of which model interesting
flow patterns.

1. (Parallel flow) Show that F(z) = —iKz (K positive
real) describes a uniform flow upward, which can be
interpreted as a uniform flow between two parallel lines
(parallel planes in three-dimensional space). See
Fig. 414. Find the velocity vector, the streamlines, and
the equipotential lines.

i

Fig. 414. Parallel flow in Problem 1

2. (Conformal mapping) Obtain the flow in Example 1
from that in Prob. 1 by a suitable conformal mapping.

3. Find the complex potential of a uniform flow parallel
to the x-axis in the positive x-direction.

4. What happens to the flow in Prob. 1 if you replace z
by ze~™ with constant e, €.g., @ = /4?7

5. What is the complex potential of an upward parallel
flow in the direction of y = 2x7?

6. (Extension of Example 1) Sketch or graph the flow in
Example 1 on the whole upper half-plane. Show that
you can interpret it as as flow against a horizontal wall
(the x-axis).

is analytic in D. Since the curves W(x,
curves ®(x, y) = const (except where
the streamlines. Hence W is the stream

10.
11.

12.

13.

14.

15.

. What F(z) would be suitable in Example 1 if the angle
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We finally take a harmonic conjugate P of ®. Then the other equation in (5) holds.
Also, since the second partial derivatives of ® and W are continuous, we see that the

F(z) = Ox, y) + ¥, y)

y) = const are perpendicular to the equipotential
F'(z) = 0), we conclude that W(x, y) = const are
function and F(z) is the complex potential of the

flow. This completes the proof of Theorem 1 as well as our discussion of the important
role of complex analysis in compressible fluid flow. ||

of the corner were /37

. Sketch or graph the streamlines and equipotential lines

of F(z) = iz® Find V. Find all points at which V is
parallel to the X-axis.

. Find and graph the streamlines of F(z) = 2% + 2z

Interpret the flow.

Show that F(z) = iz2 models a flow around a corner.
Sketch the streamlines and equipotential lines. Find V.

(Potential F(z) = 1/z) Show that the streamlines of
F(z) = l/z are circles through the origin.

(Cylinder) What happens in Example 2 if you replace
z by z2? Sketch and interpret the resulting flow in the
first quadrant.

Change F(z) in Example 2 slightly to obtain a flow
around a cylinder of radius g that gives the flow in
Example 2 if ro — L.

(Aperture) Show that F(z) = arccosh 2 gives confocal
hyperbolas as streamlines, with fociatz = =1, and the
flow may be interpreted as a flow through an aperture
(Fig. 415).

(Elliptical cylinder) Show that F(z) = arccos z gives
confocal ellipses as streamlines, with foci at z = *1,
and that the flow circulates around an elliptic cylinder
or a plate (the segment from —1 to 1 in Fig. 416).

e N

Fig. 415. Flow through an aperture in Problem 14
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Fig. 416. Flow around a plate in Problem 15

Fig. 417. Point source

Fig. 418. Vortex flow

16. TEAM PROJECT. Role of the Natural Logarithm

in Modeling Flows. (a) Basic flows: Source and sink.
Show that F(z) = (¢/2ar) In z with constant positive
real ¢ gives a flow directed radially outward (Fig. 417),
so that F models a point source at z = 0 (that is, a
source line x = 0, y = 0 in space) at which fluid is
produced. ¢ is called the strength or discharge of the
source. If ¢ is negative real, show that the flow is
directed radially inward, so that £ models a sink at
z = 0. a point at which fluid disappears. Note that
z = 0 is the singular point of F(z).

(b) Basic flows: Vortex. Show that F(z) = —(Ki/2m)
Inz with positive real K gives a flow circulating
counterclockwise around z = 0 (Fig. 418). z = 0 is
called a vortex. Note that each time we travel around
the vortex, the potential increases by K.

(¢) Addition of flows. Show that addition of the
velocity vectors of two flows gives a flow whose
complex potential is obtained by adding the complex
potentials of those flows.

767

(d) Source and sink combined. Find the complex
potentials of a flow with a source of strength 1 at
2 = —a and of a flow with a sink of strength 1 at
- = a. Add both and sketch or graph the streamlines.
Show that for small |a| these lines look similar to those
in Prob. 11.

(e) Flow with circulation around a cylinder. Add the
potential in (b) to that in Example 2. Show that this gives
a flow for which the cylinder wall |z| = 1 is a streamline.
Find the speed and show that the stagnation points are

iK —K? .
4 1672 ’

if K = 0 they are at =1; as K increases they move up
on the unit circle until they unite at z = ; (K = 417, see
Fig. 419), and if K > 477 they lie on the imaginary axis
(one lies in the field of flow and the other one lies inside
the cylinder and has no physical meaning).

Fig. 419. Flow around a cylinder without
circulation (K = 0) and with circulation
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18.5 Poisson’s Integral Formula for Potentials

So far in this chapter we have seen that complex analysis offers powerful methods for
modeling and solving two-dimensional potential problems based on conformal mappings
and complex potentials. A further method results from complex integration. As a most
important result it yields Poisson’s integral formula (5) for potentials in a standard domain
(a circular disk) and from (5) a useful series (7) for these potentials. Hence we can solve
problems for disks and then map solutions conformally onto other domains.

Poisson’s formula will follow from Cauchy’s integral formula (Sec. 14.3)

B S S €40 B
(1) F(z) = 2w b =2 dz*.

Here C is the circle z¥ = Re*® (counterclockwise, 0 = o = 2), and we assume that F(z*)
is analytic in a domain containing C and its full interior. Since dz* = iRe'* da = iz* da,
we obtain from (1)

*

1 2 . .
(2) Fiz) = —— f F(z*) da (z* = Re', z = re'?).
2T 0

¥ —z

Now comes a little trick. If instead of z inside C we take a Z outside C, the integrals (1)
and (2) are zero by Cauchy’s integral theorem (Sec. 14.2). We choose Z = z#7%/Z = R/,
which is outside C because |Z| = R*/|z| = R?/r > R. From (2) we thus have

2 *

O—L F(ﬂ.c) 2
27 g = 7 —

1 2 Z*
doa = — f F(z*) ——— = da
2m Jo 7*Z7*
¥ — —
4

Z

and by straightforward simplification of the last expression on the right,

Z

0= — fsz %) d
B 2 0 (Z «

7z -7

We subtract this from (2) and use the following formula that you can verify by direct
calculation (Zz* cancels):

z* z Z*7* = 7%
3 -

* =z 7z — ¥ (* —2)@F* -2

We then have

@ Fo - — [ Ry e E o
R T R T

From the polar representations of z and z* we see that the quotient in the integrand is real
and equal to

szrz RZ_rZ

(Re™ — re'®)(Re™* — re™%) ~ R2 —2Rrcos(6— a) + 1%
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We now write F(z) = ®(r, 6) + i¥(r, ) and take the real part on both sides of (4).
Then we obtain Poisson’s integral formula®

R2_r2

— 2Rrcos (0 — a) + r?

1 27
®) W D= fo PR, @) 73 da.

This formula represents the harmonic function ® in the disk |z| = R in terms of its values
®(R, a) on the boundary (the circle) |z| = R.

Formula (5) is still valid if the boundary function ®(R, «) is merely piecewise continuous
(as is practically often the case; see Fig. 401 in Sec. 18.2 for an example). Then (5) gives
a function harmonic in the open disk, and on the circle |z| = R equal to the given boundary
function, except at points where the latter is discontinuous. A proof can be found in
Ref. [D1] in App. 1.

Series for Potentials in Disks

From (5) we may obtain an important series development of ® in terms of simple harmonic
functions. We remember that the quotient in the integrand of (5) was derived from (3).
We claim that the right side of (3) is the real part of

Ttz (@@ -2 T -z — R+ et

¥ —z (¥ — 2@ —2) lz* — 7|

Indeed, the last denominator is real and so is z*Z* — zZ in the numerator, whereas
—z*7 + zZ* = 2i Im (zZ*) in the numerator is pure imaginary. This verifies our claim.
Now by the use of the geometric series we obtain (develop the denominator)

% ® oo n 00 n
©) Z+Z:1+(Z/Z)_(1+%)E(%>:1+2E(%)-
& n=0 z" n=1 &

*F -z 1 — (z/z%) Bl

Since z = re*’ and z* = Re™, we have

2\ _ A _(rY
Re ZTk = Re I "% =\z cos (nf — na).
On the right, cos (n — na) = cos n6 cos na + sin n6 sin na. Hence from (6) we obtain
1 *

r n
2 (E) (cos nf cos na + sin n6 sin na).
1

Ttz
Re — =1+2
¥ —z
(6%) "

M8
7

I
+
8

n

2SIMEON DENIS POISSON (1781-1840), French mathematician and physicist, professor in Paris from 1809.
His work includes potential theory, partial differential equations (Poisson equation, Sec. 12.1), and probability
(Sec. 24.7).
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This expression is equal to the quotient in (5), as we have mentioned before, and by
inserting it into (5) and integrating term by term with respect to from 0 to 277 we obtain

o0 r N
(7) d(r, 6) = ag + > (E) (a,, cos n® + b, sin n6)

n=1

where the coefficients are [the 2 in (6%) cancels the 2 in 1/(27) in (5)]

: | R, ) d ! | " oR, @) d
— e o 2 «, = — , O oS na y
ag Y N « a, - ) cos na da
®) . he 12
b, = — f O(R, ) sin na da,
™ “o

the Fourier coefficients of ®(R, @); see Sec. 11.1. Now for r = R the series (7) becomes
the Fourier series of ®(R, a). Hence the representation (7) will be valid whenever the
given ®(R, ) on the boundary can be represented by a Fourier series.

Dirichlet Problem for the Unit Disk

Find the electrostatic potential ®(r, ) in the unit disk r < 1 having the boundary values

—alm if —m<a<0
d(1, a) = (Fig. 420).
alm if 0<a<mw

Solution. Since (1, @) is even, b, = 0, and from (8) we obtain ag = % and

0

1 a " o 2

Ay = — | — — cos na da + — cosnada | = —5—5 (cosnm — 1).
T . T o™ ncm

Hence, a,, = —4/(n®a?) if n is odd, a,, = 0 if n = 2,4, - - -, and the potential is

3 5
1 4 r r
O(r, 0) = 37 2 [r0030+ 32 cos 360 + 2 c0559+-'1.

Figure 421 shows the unit disk and some of the equipotential lines (curves ® = cons?). [}

(1, o)

I I
- 0 T o

Fig. 420. Boundary values in Example 1 Fig. 421. Potential in Example 1
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. Verity (3).
. Show that every term in (7) is a harmonic function in
the disk r < R.

. Give the details of the derivation of the series (7) from

the Poisson formula (5).

HARMONIC FUNCTIONS IN A DISK

Using (7), find the potential ®(r, #) in the unit disk r < 1
having the given boundary values ®(1, #). Using the sum
of the first few terms of the series, compute some values
of ® and sketch a figure of the equipotential lines.

4.
. d(1, ) = 2sin%6
. O(1, ) = cos250
L. P, 0 =0if —m<O< 7
. D1, 0 =0if0< <27
. ®(1, 6) = sin®26
. O(1, ) = cos*
11.
12.

N=JE- BN B Y |

O(1, 6) = sin 26

D, 0 =0%if—m<0<m
O, 0) = 1if 37<0<inm
O, 0)=0ifgm < 0 < 3w

13.

14.

15.
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(1, 0) = 0if ~1o<g<im
O, 0 =m— Oifimr<0<ir

TEAM PROJECT. Potential in a Disk. (a) Mean
value property. Show that the value of a harmonic
function @ at the center of a circle C equals the mean
of the value of ® on C (see Sec. 18.4, footnote 1, for
definitions of mean values).

(b) Separation of variables. Show that the terms of
(7) appear as solutions in separating the Laplace
equation in polar coordinates.

(¢) Harmonic conjugate. Find a series for a harmonic
conjugate W of @ from (7).

(d) Power series. Find a series for F(z) = ® + V.

CAS EXPERIMENT. Series (7). Write a program for
series developments (7). Experiment on accuracy by
computing values from partial sums and comparing
them with values that you obtain from your CAS graph.
Do this (a) for Example 1 and Fig. 421, (b) for ® in
Prob. 8 (which is discontinuous on the boundary!),
(¢) for a ® of your choice with continuous boundary
values, (d) for ® with discontinuous boundary values.

18.6 General Properties of Harmonic Functions

General properties of harmonic functions can often be obtained from properties of analytic
functions in a simple fashion. Specifically, important mean value properties of harmonic
functions follow readily from those of analytic functions. The details are as follows.

THEOREM 1 Mean Value Property of Analytic Functions
Let f(2) be analytic in a simply connected domain D. Then the value of F(z) at a
point zo in D is equal to the mean value of F(z) on any circle in D with center at z,.
PROOF In Cauchy’s integral formula (Sec. 14.3)

1
() P = 5 9.

F(2)
Z — 2o

dz

we choose for C the circle z = 7o + re* in D. Then z — z4 = ré*®, dz = ire'® da, and
0 o

(1) becomes

12 _
(2) F(zg) = 7 fo F(zy + re') da.
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THEOREM 2

PROOF

THEOREM 3

PROOF

CHAP. 18 Complex Analysis and Potential Theory

The right side is the mean value of F on the circle (= value of the integral divided by the
length 277 of the interval of integration). This proves the theorem. ]

For harmonic functions, Theorem 1 implies

Two Mean Value Properties of Harmonic Functions

Let ®(x, y) be harmonic in a simply connected domain D. Then the value of
D(x, y) at a point (xg, ¥o) in D is equal to the mean value of ®(x, y) on any circle
in D with center at (xq, yo). This value is also equal to the mean value of ®(x, y)
on any circular disk in D with center (xo, yo). [See footnote 1 in Sec. 18.4.]

The first part of the theorem follows from (2) by taking the real parts on both sides,
1 2
D(xg, yo) = Re F(xy + iyg) = py. J D(xy + rcos a, yo + rsin a) do.
™ Yo

The second part of the theorem follows by integrating this formula over r from 0 to 7,
(the radius of the disk) and dividing by r%/2,

1 To 27
3) D(xg, Yo) = —5 f f D(xy + rcos @, yy + rsin a)rda dr.
Ty~ 0”0

The right side is the indicated mean value (integral divided by the area of the region of
integration). B

Returning to analytic functions, we state and prove another famous consequence of
Cauchy’s integral formula. The proof is indirect and shows quite a nice idea of applying
the ML-inequality. (A bounded region is a region that lies entirely in some circle about
the origin.)

Maximum Modulus Theorem for Analytic Functions

Let F(z) be analytic and nonconstant in a domain containing a bounded region R
and its boundary. Then the absolute value |F(z)| cannot have a maximum at an
interior point of R. Consequently, the maximum of |F(z)| is taken on the boundary
of R. If F(z) # 0 in R, the same is true with respect to the minimum of |F(z)).

We assume that |F(z)| has a maximum at an interior point z, of R and show that this leads
to a contradiction. Let |F(z,)| = M be this maximum. Since F(z) is not constant, F(z)| is
not constant, as follows from Example 3 in Sec. 13.4. Consequently, we can find a circle
C of radius r with center at z, such that the interior of C is in R and |F(z)| is smaller than
M at some point P of C. Since |F(z)| is continuous, it will be smaller than M on an arc
C; of C that contains P (see Fig. 422), say,

FQl=M -k (k>0) for all z on C;.
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THEOREM 4

PROOF

2

Fig. 422. Proof of Theorem 3

Let C, have the length L. Then the complementary arc C,, of C has the length 2777 — L.
We now apply the ML-inequality (Sec. 14.1) to (1) and note that |z — zo| = r. We then
obtain (using straightforward calculation in the second line of the formula)

=
Z — 2o

Cy

1 M —k 1 M kL4
= — L+ —{\—|QCmr—L)=M—- — <M
2ar r 2ar r 2ar

that is, M << M, which is impossible. Hence our assumption is false and the first statement
is proved.

Next we prove the second statement. If F(z) # 0 in R, then 1/F(z) is analytic in R.
From the statement already proved it follows that the maximum of 1/|F(z)| lies on the
boundary of R. But this maximum corresponds to the minimum of |F(z)|. This completes
the proof. l

Fi 1
) ‘ b
21

= |Fo)l = 5 ‘ |

c; £ 7 Xo

This theorem has several fundamental consequences for harmonic functions, as follows.

Harmonic Functions
Let P(x, y) be harmonic in a domain containing a simply connected bounded region
R and its boundary curve C. Then:

(I) (Maximum principle) If O(x, y) is not constant, it has neither a maximum
nor a minimum in R. Consequently, the maximum and the minimum are taken on
the boundary of R.

() If ®(x, y) is constant on C, then ®(x, y) is a constant.

(IIX) If h(x, y) is harmonic in R and on C and if h(x, y) = ®(x, y) on C, then
L h(x, y) = ®(x, y) everywhere in R.

(I) Let W(x, y) be a conjugate harmonic function of ®(x, y) in R. Then the complex
function F(z) = ®(x, y) + i'W(x, y) is analytic in R, and so is G(z) = ¢"®. Its absolute
value is

|G(Z)’ — eRe F@ _— e<b(x, y)'

From Theorem 3 it follows that |G(z)| cannot have a maximum at an interior point of R.
Since e® is a monotone increasing function of the real variable ®, the statement about the




774 CHAP.18 Complex Analysis and Potential Theory

maximum of ® follows. From this, the statement about the minimum follows by replacing
® by —P.

(II) By (I) the function ®(x, y) takes its maximum and its minimum on C. Thus, if
®(x, y) is constant on C, its minimum must equal its maximum, so that ®(x, y) must be
a constant.

(IID) If 4 and ® are harmonic in R and on C, then h — ® is also harmonic in R and
on C, and by assumption, i — ® = 0 everywhere on C. By (II) we thus have h — ® =0
everywhere in R, and (III) is proved. i

The last statement of Theorem 4 is very important. It means that a harmonic function is
uniquely determined in R by its values on the boundary of R. Usually, ®(x, y) is required
to be harmonic in R and continuous on the boundary of R, that is,

lim ®(x, y) = D (xo, yo)» where (xg, Yo) is on the boundary and (x, y) is in R.
X—X
Y—Yo

Under these assumptions the maximum principle (I) is still applicable. The problem of
determining ®(x, y) when the boundary values are given is called the Dirichlet problem
for the Laplace equation in two variables, as we know. From (III) we thus have, as a
highlight of our discussion,

THEOREM 5 Uniqueness Theorem for the Dirichlet Problem

If for a given region and given boundary values the Dirichlet problem for the Laplace
equation in two variables has a solution, the solution is unique.

1. Integrate |z|2 around the unit circle. Does your result functions of your choice as surfaces over a rectangle
contradict Theorem 1? or a disk in the xy-plane. Find the locations of maxima

_ and minima by inspecting these graphs.
VERIFY THEOREM 1 for the given F(2), Zp. and 19, TEAM PROJECT. Maximum Modulus of Analytic

circle of radius 1. Functions. (a) Verify Theorem 3 for (i) F(z) = z* and ;
2. z+ D3 z0=2 the square 4 = x = 6,2 = y = 4, (i) F(z) = ¢** and \
3. z—2%z=1 any bounded domain, (iii) F(z) = sinz and the unit :
4.10z% 2 =0 dik.
(b) F(x) = cosx (x real) has a maximum 1 at 0.
VERIFY THEOREM 2 for the given ®(x, y), How does it follow that this cannot be a maximum of
(X0, Yo) and circle of radius 1. |F(z)| = |cos z| in a domain containing z = 0?
5. x — 2)(y —2), (4, —4) (¢) F(z) =1+ |z|?is not zero in the disk |z| = 4 and
6. x2 — y2 (3, 8) has a minimum at an interior point. Does this contradict
7.3 = 302 (1, 1) Theorem 37
(d) If F(z) is analytic and not constant in the closed
8. Derive Theorem 2 from Poisson’s integral formula. unit disk D: |z = 1 and |F(z)| = ¢ = const on the unit
9. CAS EXPERIMENT. Graphing Potentials. Graph circle, show that F(z) must have a zero in D. Can you

the potentials in Probs. 5 and 7 and for three other extend this to an arbitrary simple closed curve?
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Chapter 18 Review Questions and Problems

MAXIMUM MODULUS

Find the location and size of the maximum of |F(z)| in the
unit disk |z] = 1.

11.
12.
13.

14.

1.

10.

11.

12.

13.
14.

15.

16.

. State Poisson’s formula and

Fi)=22—1

F(z) = az + b (a, b complex)

F(z) = cos 2z

Verify the maximum principle for ®(x, y) = ¢* cosy

and the rectanglea = x = b, 0 =y = 2m

15.

16.
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(Conjugate) Do @ and a harmonic conjugate W of ® in
a region R have their maximum at the same point of R?
(Conformal mapping) Find the location (u4, v4) of the
maximum of ®* = ¢ cosv in R*: [w| = 1,v = 0,
where w = u + iv. Find the region R that is mapped
onto R* by w = f(z) = z2 Find the potential in R
resulting from ®* and the location (x;, y;) of the
maximum. Is (u;, v¢) the image of (x;., v1)? If so. is
this just by chance?

REVIEW QUESTIONS AND PROBLEMS

Why can potential problems be modeled and solved by
complex analysis? For what dimensions?

. What is a harmonic function? A harmonic conjugate?

. Give a few examples of potential problems considered

in this chapter.

. What is a complex potential? What does it give

physically?

. How can conformal mapping be used in connection with

the Dirichlet problem?

. What heat problems reduce to potential problems? Give

a few examples.

. Write a short essay on potential theory in fluid flow

from memory.

. What is a mixed boundary value problem? Where did

it occur?
its derivation from
Cauchy’s formula.

State the maximum modulus theorem and mean value
theorems for harmonic functions.

Find the potential and complex potential between the
plates y = xand y = x + 10 kept at 10 V and 110V,
respectively.

Find the potential between the cylinders |z| = 1cm
having potential 0 and |z| = 10 cm having potential 20
kV.

Find the complex potential in Prob. 12.

Find the equipotential line U = 0V between the
cylinders |z| = 0.25 cm and |z| = 4 cm kept at =220 V
and 220 V, respectively. (Guess first.)

Find the potential between the cylinders |z] = 10 cm
and |z] = 100 cm kept at the potentials 10 kV and 0,
respectively.

Find the potential in the angular region between the
plates Arg z = 7/6, kept at 8§ kV, and Arg z = /3, kept
at 6 kV.

17.
18.

19.

20.

21.

22,

23.

24.

25.
26.

27.

28.

29.

30.

Find the equipotential lines of F(z) = i Ln z.

Find and sketch the equipotential lines of
F(z)y = (1 + i)/z

What is the complex potential in the upper half-plane
it the negative half of the x-axis has potential 1 kV and
the positive half is grounded?

Find the potential on the ray y = x, x > 0, and on
the positive half of the x-axis if the positive half of
the y-axis is at 1200 V and the negative half is
grounded.

Interpret Prob. 20 as a problem in heat conduction.

Find the temperature in the upper half-plane if the
portion x > 2 of the x-axis is kept at 50°C and the other
portion at 0°C.

Show that the isotherms of F(z) = —iz? + z are
hyperbolas.
If the region between two concentric cylinders of radii

2 cm and 10 cm contains water and the outer cylinder
is kept at 20°C, to what temperature must we heat the
inner cylinder in order to have 30°C at distance 5 cm
from the axis?

What are the streamlines of F(z) = i/z?
What is the complex potential of a flow around a
cylinder of radius 4 without circulation?

Find the complex potential of a source at z = 5. What
are the streamlines?

Find the temperature in the unit disk |z| = 1 in the form
of an infinite series if the left semicircle of |z| = 1 has
the temperature of 50°C and the right semicircle has the
temperature 0°C.

Same task as in Prob. 28 if the upper semicircle is at
40°C and the lower at 0°C.

Find a series for the potential in the unit disk with
boundary values ®(1, 6) = 0% (—7 < 0 < ).
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SUMMARY-OF CHA

TER-
ysis and Potential Theory

Complex Anal

Potential theory is the theory of solutions of Laplace’s equation
() V2d = 0.

Solutions whose second partial derivatives are continuous are called harmonic
functions. Equation (1) is the most important PDE in physics, where it is of interest
in two and three dimensions. It appears in electrostatics (Sec. 18.1), steady-state heat
problems (Sec. 18.3), fluid flow (Sec. 18.4), gravity, etc. Whereas the three-dimensional
case requires other methods (see Chap. 12), two-dimensional potential theory can
be handled by complex analysis, since the real and imaginary parts of an analytic
function are harmonic (Sec. 13.4). They remain harmonic under conformal mapping
(Sec. 18.2), so that conformal mapping becomes a powerful tool in solving
boundary value problems for (1), as is illustrated in this chapter. With a real potential
® in (1) we can associate a complex potential

(2) Fiz) =@ + ¥ (Sec. 18.1).

Then both families of curves ® = const and ¥ = const have a physical meaning.
In electrostatics, they are equipotential lines and lines of electrical force (Sec. 18.1).
In heat problems, they are isotherms (curves of constant temperature) and lines of
heat flow (Sec. 18.3). In fluid flow, they are equipotential lines of the velocity
potential and streamlines (Sec. 18.4).

For the disk, the solution of the Dirichlet problem is given by the Poisson formula
(Sec. 18.5) or by a series that on the boundary circle becomes the Fourier series of
the given boundary values (Sec. 18.5).

Harmonic functions, like analytic functions, have a number of general properties;
particularly important are the mean value property and the maximum modulus
property (Sec. 18.6), which implies the uniqueness of the solution of the Dirichlet
problem (Theorem 5 in Sec. 18.6).




