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Preface to the first edition

One of the most popular upper level mathematics courses taught
at Caltech for very many years was H. J. Ryser’s course Combina-
torial Analysis, Math 121. One of Ryser’s main goals was to show
elegance and simplicity. Furthermore, in this course that he taught
so well, he sought to demonstrate coherence of the subject of com-
binatorics. We dedicate this book to the memory of Herb Ryser,
our friend whom we admired and from whom we learned much.

Work on the present book was started during the academic year
1988-89 when the two authors taught the course Math 121 together.
Our aim was not only to continue in the style of Ryser by showing
many links between areas of combinatorics that seem unrelated,
but also to try to more-or-less survey the subject. We had in mind
that after a course like this, students who subsequently attend a
conference on “Combinatorics” would hear no talks where they are
completely lost because of unfamiliarity with the topic. Well, at
least they should have heard many of the words before. We strongly
believe that a student studying combinatorics should see as many
of its branches as possible.

Of course, none of the chapters could possibly give a complete
treatment of the subject indicated in their titles. Instead, we cover
some highlights—but we insist on doing something substantial or
nontrivial with each topic. It is our opinion that a good way to
learn combinatorics is to see subjects repeated at intervals. For
this reason, several areas are covered in more than one part of the
book. For example, partially ordered sets and codes appear several
times. Enumeration problems and graph theory occur throughout
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the book. A few topics are treated in more detail (because we like
them) and some material, like our proof of the Van der Waerden
permanent conjecture, appears here in a text book for the first
time.

A course in modern algebra is sufficient background for this book,
but is not absolutely necessary; a great deal can be understood
with only a certain level of maturity. Indeed, combinatorics is well
known for being “accessible”. But readers should find this book
challenging and will be expected to fill in details (that we hope
are instructive and not too difficult). We mention in passing that
we believe there is no substitute for a human teacher when trying
to learn a subject. An acquaintance with calculus, groups, finite
fields, elementary number theory, and especially linear algebra will
be necessary for some topics. Both undergraduates and graduate
students take the course at Caltech. The material in every chapter
has been presented in class, but we have never managed to do all
the chapters in one year.

The notes at the end of chapters often include biographical re-
marks on mathematicians. We have chosen to refrain from any
mention of living mathematicians unless they have retired (with
the exception of P. Erdés).

Exercises vary in difficulty. For some it may be necessary to
consult the hints in Appendix 1. We include a short discussion of
formal power series in Appendix 2.

This manuscript was typeset by the authors in ApS-TEX.

J.H.v.L., R.M.W.
Eindhoven and Pasadena, 1992



Preface to the 2nd edition

The favorable reception of our book and its use for a variety of
courses on combinatorial mathematics at numerous colleges and
universities has encouraged us to prepare this second edition. We
have added new material and have updated references for this ver-
sion. A number of typographical and other errors have been cor-
rected. We had to change “this century” to “the last century” in
several places.

The new material has, for the most part, been inserted into the
chapters with the same titles as in the first edition. An exception
is that the material of the later chapters on graph theory has been
reorganized into four chapters rather than two. The added material
includes, for example, discussion of the Lovasz sieve, associative
block designs, and list colorings of graphs.

Many new problems have been added, and we hope that this last
change, in particular, will increase the value of the book as a text.
We have decided not to attempt to indicate in the book the level
of difficulty of the various problems, but remark again that this
can vary greatly. The difficulty will often depend on the experience
and background of the reader, and an instructor will need to decide
which exercises are appropriate for his or her students. We like the
idea of stating problems at the point in the text where they are
most relevant, but have also added some problems at the end of
the chapters. It is not true that the problems appearing later are
necessarily more difficult than those at the beginning of a chapter.
A number of the hints and comments in Appendix 1 have been
improved.



Xiv A Course in Combinatorics

Preparation of the second edition was done during a six-month
visit to the California Institute of Technology by the first author
as Moore Distinguished Scholar. He gratefully acknowledges the
support of the Moore Foundation.



1
Graphs

A graph G consists of a set V' (or V(G)) of vertices, a set E (or
E(Q)) of edges, and a mapping associating to each edge e € F(G)
an unordered pair x,y of vertices called the endpoints (or simply
the ends) of e. We say an edge is incident with its ends, and that
it joins its ends. We allow x = y, in which case the edge is called
a loop. A vertex is isolated when it is incident with no edges.

It is common to represent a graph by a drawing where we repre-
sent each vertex by a point in the plane, and represent edges by line
segments or arcs joining some of the pairs of points. One can think
e.g. of a network of roads between cities. A graph is called planar
if it can be drawn in the plane such that no two edges (that is, the
line segments or arcs representing the edges) cross. The topic of
planarity will be dealt with in Chapter 33; we wish to deal with
graphs more purely combinatorially for the present.

edge ends
a X, 2
b Y, W
c X,z
d zZ,w
e Z,w
f T,y
g Z, W
Figure 1.1

Thus a graph is described by a table such as the one in Fig. 1.1
that lists the ends of each edge. Here the graph we are describing
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has vertex set V = {z,y, z,w} and edge set £ = {a,b,c,d,e, f,g};
a drawing of this graph may be found as Fig. 1.2(iv).

A graph is simple when it has no loops and no two distinct edges
have exactly the same pair of ends. Two nonloops are parallel
when they have the same ends; graphs that contain them are called
multigraphs by some authors, or are said to have ‘multiple edges’.

If an ordered pair of vertices is associated to each edge, we have
a directed graph or digraph. In a drawing of a digraph, we use an
arrowhead to point from the first vertex (the tail) towards the sec-
ond vertex (the head) incident with an edge. For a simple digraph,
we disallow loops and require that no two distinct edges have the
same ordered pair of ends.

When dealing with simple graphs, it is often convenient to iden-
tify the edges with the unordered pairs of vertices they join; thus
an edge joining x and y can be called {z,y}. Similarly, the edges
of a simple digraph can be identified with ordered pairs (z,y) of
distinct vertices.

Y

-

(i) graph (ii) graph with loop (iii) digraph (iv) multiple edges

Figure 1.2

There are several ways to draw the same graph. For example,
the two graphs of Fig. 1.3 are essentially the same.

We make this more precise, but to avoid unnecessarily technical
definitions at this point, let us assume that all graphs are undirected
and simple for the next two definitions.

We say two graphs are isomorphic if there is a one-to-one cor-
respondence between the vertex sets such that if two vertices are
joined by an edge in one graph, then the corresponding vertices are
joined by an edge in the other graph. To show that the two graphs
in Fig. 1.3 are the same, find a suitable numbering of the vertices
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in both graphs (using 1,2, 3,4,5,6) and observe that the edge sets
are the same sets of unordered pairs.

g

Figure 1.3

A permutation o of the vertex set of a graph G with the property
that {a,b} is an edge if and only if {o(a),c(b)} is an edge, is called
an automorphism of G.

Problem 1A. (i) Show that the drawings in Fig. 1.4 represent the
same graph (or isomorphic graphs).

(ii) Find the group of automorphisms of the graph in Fig. 1.4.
Remark: There is no quick or easy way to do this unless you are
lucky; you will have to experiment and try things.

s

Figure 1.4

The complete graph K, on n vertices is the simple graph that
has all (g) possible edges.

Two vertices a and b of a graph G are called adjacent if they are
distinct and joined by an edge. We will use I'(x) to denote the set
of all vertices adjacent to a given vertex x; these vertices are also
called the neighbors of x.
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The number of edges incident with a vertex x is called the degree
or the walency of x. Loops are considered to contribute 2 to the
valency, as the pictures we draw suggest. If all the vertices of a
graph have the same degree, then the graph is called regular.

One of the important tools in combinatorics is the method of
counting certain objects in two different ways. It is a well known
fact that if one makes no mistakes, then the two answers are the
same. We give a first elementary example. A graph is finite when
both E(G) and V(G) are finite sets. We will be primarily con-
cerned with finite graphs, so much so that it is possible we have
occasionally forgotten to specify this condition as a hypothesis in
some assertions.

Theorem 1.1. A finite graph G has an even number of vertices
with odd valency.

Proor: Consider a table listing the ends of the edges, as in Fig.
1.1. The number of entries in the right column of the table is twice
the number of edges. On the other hand, the degree of a vertex x
is, by definition, the number of times it occurs in the table. So the
number of entries in the right column is

(1.1) > deg(z) = 2|E(G)|.

zeV(G)

The assertion follows immediately. O

The equation (1.1) is simple but important. It might be called
the ‘first theorem of graph theory’, and our Theorem 1.1 is its first
corollary.

A subgraph of a graph G is a graph H such that V(H) C V(G),
E(H) C E(G), and the ends of an edge e € E(H) are the same
as its ends in G. H is a spanning subgraph when V(H) = V(G).
The subgraph of G induced by a subset S of vertices of G is the
subgraph whose vertex set is S and whose edges are all the edges
of G with both ends in S.

A walk in a graph G consists of an alternating sequence

Zy,€1,T1,€2,T2y ..., Tf—1,€k, Tk
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of vertices x;, not necessarily distinct, and edges e; so that the ends
of e¢; are exactly x; 1 and x;, 1 = 1,2,...,k. Such a walk has length
k. If the graph is simple, a walk is determined by its sequence of
vertices, any two successive elements of which are adjacent.

If the edge terms ey, ..., e; are distinct, then the walk is called a
path from g to xy. If g = xy, then a walk (or path) is called closed.
A simple path is one in which the vertex terms xg, x1,...,x; are

also distinct, although we say we have a simple closed path when
k > 1 and all vertex terms are distinct except g = xy.

If a path from x to y exists for every pair of vertices x,y of G,
then G is called connected. Otherwise G consists of a number of
connected components (maximal connected subgraphs). It will be
convenient to agree that the null graph with no vertices and no
edges is not connected.

Problem 1B. Suppose G is a simple graph on 10 vertices that is
not connected. Prove that G has at most 36 edges. Can equality
occur?

The length of the shortest walk from a to b, if such walks exist, is
called the distance d(a,b) between these vertices. Such a shortest
walk is necessarily a simple path.

Example 1.1. A well known graph has the mathematicians of the
world as vertices. Two vertices are adjacent if and only if they
have published a joint paper. The distance in this graph from
some mathematician to the vertex P. Erdos is known as his or her
Erdés-number.

00 AT

Figure 1.5

A polygon is the ‘graph of’ a simple closed path, but more pre-
cisely it can be defined as a finite connected graph that is regular
of degree 2. There is, up to isomorphism, exactly one polygon P,
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with n vertices (often called the n-gon) for each positive integer n.
The sequence of polygons is shown in Fig. 1.5.

A connected graph that contains no simple closed paths, i.e. that
has no polygons as subgraphs, is called a tree.

Problem 1C. Show that a connected graph on n vertices is a tree
if and only if it has n — 1 edges.

Problem 1D. The complete bipartite graph K, ,, has n 4+ m ver-
tices ay,...,a, and by,..., by, and as edges all mn pairs {a;,b;}.
Show that K33 is not planar.

No introduction to graph theory can omit the problem of the
bridges of Kénigsberg (formerly a city in Prussia). The river Pregel
flowed through this city and split into two parts. In the river was
the island Kneiphof. There were seven bridges connecting different
parts of the city as shown in the diagram of Fig. 1.6.

Konigsberg
Figure 1.6

In a paper written in 1736 by L. Euler (considered the first paper
on graph theory) the author claims that the following question was
considered difficult: Is it possible to make a walk through the city,
returning to the starting point and crossing each bridge exactly
once? This paper has led to the following definition. A closed path
through a graph using every edge once is called an Fulerian circuit
and a graph that has such a path is called an Fulerian graph.

Theorem 1.2. A finite graph G with no isolated vertices (but pos-
sibly with multiple edges) is Eulerian if and only if it is connected
and every vertex has even degree.
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ProoOF: That G must be connected is obvious. Since the path
enters a vertex through some edge and leaves by another edge, it
is clear that all degrees must be even. To show that the conditions
are sufficient, we start in a vertex x and begin making a path. We
keep going, never using the same edge twice, until we cannot go
further. Since every vertex has even degree, this can only happen
when we return to x and all edges from x have been used. If
there are unused edges, then we consider the subgraph formed by
these edges. We use the same procedure on a component of this
subgraph, producing a second closed path. If we start this second
path in a point occurring in the first path, then the two paths can
be combined to a longer closed path from z to x. Therefore the
longest of these paths uses all the edges. 0

The problem of the bridges of Konigsberg is described by the
graph in Fig. 1.6. No vertex has even degree, so there is no Eulerian
circuit.

One can consider a similar problem for digraphs. The necessary
and sufficient condition for a directed Eulerian circuit is that the
graph is connected and that each vertex has the same ‘in-degree’
as ‘out-degree’.

Example 1.2. A puzzle with the name Instant Insanity concerns
four cubes with faces colored red, blue, green, and yellow, in such a
way that each cube has at least one face of each color. The problem
is to make a stack of these cubes so that all four colors appear on
each of the four sides of the stack. In Fig. 1.7 we describe four
possible cubes in flattened form.

R R € B
R|Y|c|B] [R|Y[B|]g|] [B[B|R]Y| [G|Y|R]|G]
R Y] 1G] Y]
cube 1 cube 2 cube 3 cube 4
Figure 1.7

It is not a very good idea to try all possibilities. A systematic
approach is as follows. The essential information about the cubes
is given by the four graphs in Fig. 1.8.
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R R B R B
G G G Y G Y
cube 1 cube 2 cube 3 cube 4

Figure 1.8

An edge indicates that the two adjacent colors occur on opposite
faces of the cube. We obtain a graph G by superposition of the
four graphs and number the edges according to their origin. It is
not difficult to see that we need to find in G two subgraphs that
are regular of degree 2, with edges numbered 1, 2, 3,4 and such that
they have no edge in common. One of the subgraphs tells us which
pairs of colors to align on the left side and right side of the stack.
The other graph describes the colors on front and back. Of course
it is easy to rotate the cubes in such a way that the colors are where
we wish them to be. The point of the example is that it takes only
a minute to find two subgraphs as described above. In this example
the solution is unique.

We mention a concept that seems similar to Eulerian circuits but
that is in reality quite different. A Hamiltonian circuit in a graph
GG is a simple closed path that passes through each verter exactly
once (rather than each edge). So a graph admits a Hamiltonian
circuit if and only if it has a polygon as a spanning subgraph. In
the mid-19th century, Sir William Rowan Hamilton tried to popu-
larize the exercise of finding such a closed path in the graph of the
dodecahedron (Fig. 1.9).

Y

e

Figure 1.9
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The graph in Fig. 1.4 is called the Petersen graph (cf. Chapter 21)
and one of the reasons it is famous is that it is not ‘Hamiltonian’;
it contains n-gons only for n = 5,6,8,9, and not when n = 7 or
n = 10.

By Theorem 1.2, it is easy to decide whether a graph admits an
Eulerian circuit. A computer can easily be programmed to check
whether the degrees of a graph are even and whether the graph is
connected, and even to produce an Eulerian circuit when one exists.
In contrast to this, the problem of deciding whether an arbitrary
graph admits a Hamiltonian circuit is likely ‘intractable’. To be
more precise, it has been proved to be NP-complete—see Garey
and Johnson (1979).

Problem 1E. Let A;,..., A, be n distinct subsets of the n-set
N :={1,...,n}. Show that there is an element x € N such that
the sets A;\{x}, 1 <i < n, are all distinct. To do this, form a graph
G on the vertices A; with an edge with ‘color’ z between A; and A;
if and only if the symmetric difference of the sets A; and A; is {z}.
Consider the colors occurring on the edges of a polygon. Show that
one can delete edges from G in such a way that no polygons are

left and the number of different colors remains the same. Then use
1C. (This idea is due to J. A. Bondy (1972).)

Problem 1F. The girth of a graph is the length of the smallest
polygon in the graph. Let G be a graph with girth 5 for which all
vertices have degree > d. Show that G has at least d? + 1 vertices.
Can equality hold?

Problem 1G. Show that a finite simple graph with more than one
vertex has at least two vertices with the same degree.

Problem 1H. A graph on the vertex set {1,2,...,n} is often de-
scribed by a matrix A of size n, where a;; and aj; are equal to
the number of edges with ends ¢ and j. What is the combinatorial
interpretation of the entries of the matrix A%?

Problem 1I. Let Q := {1,2,...,q}. Let G be a graph with the
elements of Q" as vertices and an edge between (ay, as, ..., a,) and
(b1,ba,...,b,) if and only if a; # b; for exactly one value of i. Show
that G is Hamiltonian.
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Problem 1J. Let G be a simple graph on n vertices (n > 3) with
no vertex of degree n — 1. Suppose that for any two vertices of G,
there is a unique vertex joined to both of them.

(i) If = and y are not adjacent, prove that they have the same
degree.

(ii) Now show that G is a regular graph.

Notes.

Paul Erdés (1913-1996) (cf. Example 1.1) was probably the most
prolific mathematician of the 20th century with well over 1400 pa-
pers having been published. His contributions to combinatorics,
number theory, set theory, etc., include many important results.
He collaborated with many mathematicians all over the world, all
of them proud to have Erdés-number 1, among them the authors
of this book; see J. W. Grossman (1997).

Leonhard Euler (1707-1783) was a Swiss mathematician who
spent most of his life in St. Petersburg. He was probably the most
productive mathematician of all times. Even after becoming blind
in 1766, his work continued at the same pace. The celebration in
1986 of the 250th birthday of graph theory was based on Euler’s
paper on the Konigsberg bridge problem. Konigsberg is now the
city of Kaliningrad in Russia.

For an elementary introduction to graph theory, we recommend
R. J. Wilson (1979), and J. J. Watkins and R. J. Wilson (1990).

Sir William Rowan Hamilton (1805-1865) was an Irish mathe-
matician. He was considered a genius. He knew 13 languages at
the age of 12 and was appointed professor of astronomy at Trinity
College Dublin at the age of 22 (before completing his degree). His
most important work was in mathematical physics.

References.

M. Garey and D. S. Johnson (1979), Computers and Intractability;
A Guide to the Theory of NP-completeness, W. H. Freeman and
Co.
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pp. 467-475 in The Mathematics of Paul Erdéds, R. L. Graham
and J. Nesetfil (eds.), Springer-Verlag.
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2
Trees

We come to the first not so easy theorem. It is due to A. Cayley
(1889). We shall give three different proofs here. Two more proofs
will occur in later chapters; see Example 14.14 and Example 38.2.
The first two proofs illustrate a method that is used very often in
combinatorics. In order to count certain objects that seem hard to
count, one finds a one-to-one mapping onto a set of other objects
whose number is easier to determine.

Theorem 2.1. There are n 2 different labeled trees on n vertices.

The term labeled emphasizes that we are not identifying isomor-
phic graphs. We have fixed the set of vertices, and two trees are
counted as the same if and only if exactly the same pairs of vertices
are adjacent. A spanning tree of a connected graph G is a spanning
subgraph of G that is a tree. The theorem could have been stated:
the complete graph K, has n" 2 spanning trees.

Example 2.1. Here are the 16 labeled trees on four vertices:

p

L]

AN
NX Z

XL
NN
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Example 2.2. There are three nonisomorphic trees on five ver-
tices:

The number of spanning trees in K5 isomorphic to a specific tree
T on five vertices is 5! divided by the order of the automorphism
group of T' (why?). Thus there are 5!/4! = 5 trees in K5 isomorphic
to the first tree above, and 5!/2 = 60 trees isomorphic to either of
the other two trees, for a total of 125 spanning trees.

Problem 2A. Find the six nonisomorphic trees on 6 vertices, and
for each compute the number of distinct spanning trees in Kg iso-
morphic to it.

Before starting the proofs, we make the following observations.
(Probably the reader has already noticed these things in solving
Problem 1C.) Firstly, every tree with n > 2 vertices has at least
two monovalent vertices (vertices of degree 1). This is immediate,
for example, from Problem 1C and equation (1.1): the sum of the
degrees dy, ds, . .., d,, all of which are at least 1, is 2n—2. Secondly,
if a monovalent vertex and its incident edge are deleted from a tree,
the resulting graph is still a tree. Finally, given a tree T, if we
introduce a new vertex x and a new edge joining x to any vertex
of T, the new graph is again a tree.

Figure 2.1

PROOF 1: The first proof we present, due to H. Priifer (1918), uses
an algorithm that associates to any tree T' a ‘name’ P(T') (called
the Priifer code) that characterizes the tree.
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For the vertices of K,, we take the ordered set V' = {1,2,3,...,n}.
Given a spanning tree T in K, we let 77 = T and generate a se-
quence of trees T1,T5,...,T,_1 and two sequences of vertices as
follows: Given the tree T; with n —7+ 1 vertices, 1 = 1,2,...,n—1,
let x; be the least monovalent vertex of T; and delete x; and its
incident edge {x;, y;} from T; to obtain a tree T;,1 on n —1 vertices.
The name of T is to be

P(T) = (yla Y2, ... ayan)-

We claim that the mapping P, from the set of all spanning trees
in K, to the set V"2 of all possible names, is one-to-one and onto
(bijective). This will prove that the number of spanning trees in
K, is n" 2.

For the tree in Fig. 2.1, where n = 10, we have (z1,y1) = (3,2),
(x2,y2) = (4,2), (x3,93) = (2,1),..., (w9, y9) = (9,10); these edges
are the columns of the matrix below.

34 2 5 6 7 1 8 9
22 11 7 1 10 10 10

So P(T) =(2,2,1,1,7,1,10,10). Don’t include y9 = 10.

To understand why P is bijective, we first note some simple facts
about the x;’s and y;’s. First, y, 1 = n, always. This is because
every tree (with at least two vertices) has at least two monovalent
vertices, so the vertex n will never be the least monovalent vertex.
Second, xj,ZTpi1,...,2n_1 and n are the vertices of the tree Tj.
Third, {x;,y:}, k <i <n —1, are exactly the edges of T}, in some
order.

The number of times a vertex v occurs among i, Y2, - - -, Yn_2 1S
degr(v)—1. This is because v occurs degy(v) times among the edges
{z;,y;}, 1 < i < n—1, and exactly once in x1,Z2,...,Tp_1,Yn_1-
Similarly, the number of times a vertex v of T} occurs among
Yks Ykt1, - - -, Yn—o 1S its degree in the tree T} less 1. In particular,
the monovalent vertices of Ty, are those elements of V not in

{.1?1,.%2, s ,.flfk_l} U {ykvyk'—l-l; < 7y7l—1}7

and this means that zj, the least monovalent vertex of T}, is the
least element of {1,2,...,n} not in the above set. In particular,
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x1 is the least element of V' not in the name P(T'), and we can
uniquely determine zj, from P(7T) and x1, ...,z 1. O

Problem 2B. How many trees T are there on the set of vertices
{1,2,3,4,5,6,7} in which the vertices 2 and 3 have degree 3, vertex
5 has degree 2, and hence all others have degree 17 Do not just
draw pictures but consider the possible Priifer codes of these trees.

PRrROOF 2: We give another proof, again by a reversible algorithm.
Consider any mapping f from {2,3,...,n — 1} to {1,2,...,n}.
There are n" 2 such mappings f. Construct a digraph D on the
vertices 1 to n by defining (i, f(i)), i = 2,...,n—1, to be the edges.
Fig. 2.2 shows an example with n = 21.

D consists of two trees ‘rooted’ at 1 and n and a number (say k) of
circuits (directed polygons) to which trees are attached. (Directed
trees with all the edges pointing in the direction of one vertex, called
the root, are called arborescences.) These circuits are placed as in
Fig. 2.2 where the rightmost vertex in the i-th component, denoted
by r;, is its minimal element (and [; is the vertex on the left). The
circuits are ordered by the condition r1 < ry < --- < 7. To D we
adjoin the tree obtained by adding the edges {1,0;}, {r1,l2}, ...,
{re—1, U}, {rg,n} and deleting the edges {r;,1;} as in Fig. 2.3.

| 21
12
4 3 7 o5 A
16 19 .
9 10 1 2 F P
17 : 14

Figure 2.2

If the tree of Fig. 2.3 is given, consider the path from 1 to n
(=21). Let ry := 1. Define r to be the minimal number on this
path (excluding o = 1) and in general r; as the minimal number
on the path from r;_; to n. It is easily seen that we recover the
function f in this way. OJ
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ARSI A

Figure 2.3

Generalizations of this proof may be found in Egecioglu and Rem-
mel (1986).

Problem 2C. Let G be a directed graph with vertices z1,...,z,
for which a (directed) Eulerian circuit exists. A spanning arbores-
cence with root z; is a spanning tree T' of GG, with root x;, such
that for all j # 4 there is a directed path from z; to z; in T". Show
that the number of spanning arborescences of G with root x; does
not depend on i. (This is difficult; see the hints.)

Proor 3: We now give a proof by counting since it is useful to
have seen this method. We remind the reader of the definition of
a multinomial coefficient. Let r1,79,..., 7 be nonnegative integers
with sum n. Then (Tl,.’f“) is defined by

(21) (I1—|—x2++xk)n:z <r1 n

where the sum is over all k-tuples (71, ..., r) with sum n.
Since (z1+- - +xp)" = (14 -+ x)" " (z1 +- - +x1), we have

k
n n—1
2.2 :E .
(2:2) <r17...,rk> P (Tl,...,ri—l,...,rk)

1

We denote the number of labeled trees with n vertices for which the
degrees are dy, ds, . .., d,, by t(n;dy,ds, ..., d,). Clearly this number
is 0 if one of the d; is 0. The value of t(n;d;,ds,...,d,) depends
only on the multiset of numbers d; and not on their order. We
may assume without loss of generality that dy > dy > --- > d,,
so d, = 1. Take the vertex v, corresponding to d,. It is joined to
some vertex v; of degree d; > 2, and any of the remaining vertices
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is a candidate. Therefore

n—1
(23) t(n;dl,...,dn) = t(n—1;d1,...,d7;—1,...,dn,1).

i=1

It is trivial to check by hand that

n—2
(2.4) t(nsd,... dy) = <d1 —1,...,dn—1)

for n = 3. Since the numbers on the left-hand side, respectively
right-hand side, of (2.4) satisfy the same recurrence relation ( (2.3),
respectively (2.2) ) it follows by induction that (2.4) is true for all n.
In (2.1), we replace n by n — 2, k by n, r; by d; — 1 and z; by 1.
We find

'ﬂn_Q = Zt(n, dl, dQ, ce ,dn)

OJ

Compare (2.4) with Problem 2B.

A spanning tree is easily constructed by starting at any vertex,
taking the edges to vertices at distance 1, then one edge to each
vertex at distance 2, etc. Several other constructions are possible
(e.g. by starting with G and deleting suitable edges).

A graph with no polygons as subgraphs is called a forest. Each
component C1,Cs, ..., Cy of a forest G is a tree, so if a forest with
n vertices has k components, it has

(V) =D+ (V(C)[ =) + -+ (IV(CR)| = 1) =n —k

edges.

A weighted graph is a graph G together with a function associat-
ing a real number c(e) (usually nonnegative) to each edge e, called
its length or cost according to context. Let us use the term ‘cost’
here. Given a weighted connected graph G, define the cost of a
spanning tree T of G as
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The graph may represent a network of cities where ¢({z,y}) is the
cost of erecting a telephone line joining cities z and y, and so it
is clear that finding a cheapest spanning tree in G is a problem of
practical importance.

The following method is often called the greedy algorithm. In fact,
it is only one of a number of algorithms which can be called greedy
algorithms, where one does not plan ahead but takes what seems
to be the best alternative at each moment and does not look back.
It is surprising that such a simple procedure actually produces a
cheapest spanning tree, but this is proved in Theorem 2.2 below.
Let us say that a set S of edges of a graph G is independent when
the spanning subgraph with edge set S (denoted G:S) is a forest.

Greedy algorithm. Let G be a connected weighted graph with
n vertices. At each point, we will have a set {e1,es,...,e;} of i
independent edges (7 = 0 to start), so that G:{ey, es, ..., e;} hasn—i
components. If ¢ <n —1, let e;;1 be an edge with ends in different
components of G:{ej,es,...,¢e;} and whose cost is minimum with
respect to this property. Stop when we have chosen n — 1 edges.

Theorem 2.2. With e;,...,e, 1 chosen as above, the spanning
tree Ty := G:{ey,...,e,—1} has the property that c¢(Ty) < ¢(T) for
any spanning tree T'.

PROOF: Let {ay,as,...,a, 1} be the edge set of a tree T', numbered
so that ¢(a1) < ¢(ag) < -+ < ¢(ay—1). We claim something much
stronger than ¢(Ty) < ¢(T'); namely, we claim that c(e;) < ¢(a;) for
each : =1,2...,n — 1. If this is false, then

clep) > clag) > clag—1) > -+ > c(aq)

for some k. Since none of aj,as,...,a; was chosen at the point
when e, was chosen, each of these k£ edges has both ends in the
same component of G:{ej,es,...,ex_1}. Then the number of com-
ponents of G:{ay,as,...,a;} is at least the number n — k + 1 of
components of G:{eq, eg, ..., e;_1} and this contradicts the fact that
{ai,as,...,a;} is independent. O

Problem 2D. Here is a variation on the above greedy algorithm.
Let x; be any vertex of a weighted connected graph G with n
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vertices and let 77 be the subgraph with the one vertex x; and
no edges. After a tree (subgraph) Ty, k < n, has been defined,
let e be a cheapest edge among all edges with one end in V(T})
and the other end not in V(T}), and let Tj,1 be the tree obtained
by adding that edge and its other end to 7). Prove that T), is a
cheapest spanning tree in G.

In many practical situations, it is necessary to search through a
tree starting from a particular vertex. (A tree with a distinguished
vertex—the root—is called a rooted tree.) There are two well known
methods known as depth-first search and breadth-first search. We
explain the terminology by the example of Fig. 2.4.

Figure 2.4

In a depth-first search starting at a, one essentially considers the
tree as a fence and walks around it, keeping the fence on the left,
i.e. along the walk abdidjdbebfk ...lhca. If one decides to number
the vertices in accordance with the search, one finds the numbering
a=1,b=2,d=3,i=4,... ,1=12. In this description, we rely
on a planar drawing of the tree; but see below.

In a breadth-first search, one proceeds as in the construction of
a spanning tree mentioned above. The vertices are then numbered
in the order of Fig. 2.4, i.e. alphabetically.

These ideas apply, more generally, to searching through the ver-
tices of a connected graph.

Given a finite connected graph G, we can obtain a numbering
of the vertices of G and a spanning tree T' of G, called a ‘depth-
first search tree’ for GG, in the following manner. Pick a vertex v
and start with the tree Ty with vertex vy and no edges. Proceed
inductively: once vertices vy, vy, vs, ..., v and a tree T}, with exactly
those vertices and some of the edges of G have been chosen, let ¢
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be the largest index < k so that v, is adjacent to some vertex not
in Tj. Such a vertex will exist if T} is not yet a spanning tree;
otherwise stop and let T = T}.. Call that new vertex v and add
it and the edge {vs, vi+1} to Tj to obtain a tree Tj1. We consider
T as a rooted tree with root vy.

We give two properties of depth-first search trees and use them
to give a simple constructive proof of a theorem on orientations of
graphs.

Given a vertex x of a rooted tree with root vy, the ancestors of x
are the vertices traversed by the (unique) path from x to the root
vg. The first vertex other than x on that path is the parent of x. If
x is an ancestor of y, we also say that y is a descendant of x. We
will count z as a descendent and ancestor of itself.

Proposition 2.3. If vertices x and y are adjacent in GG, then one
of them is a descendant of the other in any depth-first search tree
T of G.

PROOF: Suppose z is numbered with a smaller index than y in the
depth-first search, say xz = vy.

At the stage when vy, v1, v9, ..., v have been chosen, the largest
index ¢ so that v, is adjacent to an as-yet-unnumbered vertex is
clearly ¢ = k. So vy is joined to vy (and not to some v; with i < k)
in T. If vi41 =y, we are done; y is a descendant of v;. Otherwise,
since vy is still adjacent to an as-yet-unnumbered vertex, namely
y, the choice of ¢ will be £ = k or £ = k+ 1, and vy is adjacent to
either vy or vp.q in T. If vy 9 = y, we are done; y is a descendant
of Vi

Inductively, as long as y remains unnumbered, Vi, Vpy1, .- ., Vitj
will be descendants of v;, and the next choice of ¢ will be as one of
k,k+1,...,k+ j. Then the vertex vi4;+1 numbered next will be

adjacent to one of vy, Uj41,. .., Vi4+; and hence will be a descendant
of vi. Since the graph is finite, eventually this newly numbered
vertex must be y. [l

An isthmus of a connected graph G is an edge whose deletion
results in a disconnected graph. (Some authors call this a bridge.)

Proposition 2.4. Let {z,y} be an edge of T which is not an
isthmus in G; say x is the parent of y. Then there is an edge in G
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but not in T joining some descendant a of y and some ancestor b
of x.

PROOF: Let D be the set of descendants of y. Soy € D and = ¢ D.
Since G with {z,y} deleted is still connected, there is some edge
{a,b} # {z,y} with one end a € D and the other end b ¢ D. This
edge {a,b} is certainly not in T" and by Proposition 2.3, b is an
ancestor of a (since it cannot be a descendant of a because then it
would be a descendant of y too and hence would be in D). The
(unique) path in T" from a to vy passes through y (an ancestor of
a) and then z (the parent of y); but b must be on this path (since
it is an ancestor of a), so b must be an ancestor of x too. O

Any directed graph obtained from an undirected graph G by
assigning a direction to each edge of G is called an orientation of
G. A walk in a digraph D may be called strong when each edge is
traversed by the walk according to its direction, i.e. from its tail to
its head, and the digraph D is strongly connected when for any two
vertices x,y, there is a strong walk from z to y.

Theorem 2.5. Let GG be a finite connected graph without isth-
muses. Then G admits a strong orientation, i.e. an orientation
that is a strongly connected digraph.

ProoF: We will construct a digraph D from G by choosing a direc-
tion for each edge. Find a depth-first search tree T" and numbering
V9, V1, ... of the vertices of G. Let {v;,v;} be an edge of G with
i < j. If {v;,v;} is in T, direct it from v; to vj, i.e. (v;,v;) is an
edge of D. If {v;,v;} is in not T, direct it from v; to v;, i.e. (v;, v;)
is an edge of D.

It remains to show that D is strongly connected. There is a
strong walk from vy to any vertex x of G (using only edges of the
tree T'), so it will suffice to show that we can find a strong walk
from any vertex x to vy.

Given a vertex xp, kK > 0, Proposition 2.4 says that some edge
{a,b} in G but not in T joins some descendant a of y to some
ancestor b = v; of vy. We get a strong walk in D from v to v; by
appending the directed edge (a,v;) to a strong walk in T from vy
to its descendant a. Of course, ¢ < k since v; is an ancestor of vy.
If © = 0 we are done. Otherwise, we repeat the argument to find
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a strong walk from v; to some v; with j < ¢ and concatenate the
walks to get a strong walk from v;, to v;. Continue in this manner
until you reach vy. O

Problem 2E. A graceful labeling of a tree T on n vertices is a
mapping [ : V(T) — {1,2,...,n} so that the numbers |f(x)— f(y)|
computed across edges {z,y} are all different. Show that the path-
graphs (trees with exactly two monovalent vertices) admit graceful
labelings. (It is conjectured that all trees admit graceful labelings.)

Problem 2F. Suppose a tree G has exactly one vertex of degree
t for 2 < ¢ < m and all other vertices have degree 1. How many
vertices does GG have?

Problem 2G. Let G be a graph with exactly one vertex of degree
i for 2 <7 < m and k other vertices, all of degree 1. Prove that
k > |™]. Give a construction for such a graph.

Problem 2H. Consider labeled trivalent rooted trees T' with 2n
vertices, counting the root labeled 2n; see Figure 14.3. The labels
are chosen in such a way that the procedure leading to P(T') has
1,2,3,...,2n — 1 as first row. How many possible codes P(T') are
there?

Notes.

A. Cayley (1821-1895), professor at Cambridge from 1863 until
his death, was one of the great mathematicians of the 19th century.
His work includes important contributions to the theory of elliptic
functions, analytic geometry and algebra, e.g. the theory of invari-
ants. His paper on trees appeared in 1889 but it did not contain
what we would consider a proof. Of the many proofs (five of which
are treated in this book) the one by Priifer is the best known.

H. Priifer (1896-1934) was one of I. Schur’s many pupils. He was
professor at Miinster.
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Colorings of graphs and
Ramsey’s theorem

We shall first look at a few so-called coloring problems for graphs.

A proper coloring of a graph G is a function from the vertices to
a set C of ‘colors’ (e.g. C'={1,2,3,4}) such that the ends of every
edge have distinct colors. (So a graph with a loop will admit no
proper colorings.) If |C| = k, we say that G is k-colored.

The chromatic number x(G) of a graph G is the minimal number
of colors for which a proper coloring exists.

If x(G) =2 (or x(G) = 1, which is the case when and only when
G has no edges), then G is called bipartite. A graph with no odd
polygons (equivalently, no closed paths of odd length) is bipartite
as the reader should verify.

The famous ‘Four Color Theorem’ (K. Appel and W. Haken,
1977) states that if G is planar, then x(G) < 4.

Clearly x(K,) = n. If k is odd then x(P;) = 3. In the following
theorem, we show that, with the exception of these examples, the
chromatic number is at most equal to the maximum degree (R. L.
Brooks, 1941).

Theorem 3.1. Let d > 3 and let G be a graph in which all vertices
have degree < d and such that K, is not a subgraph of G. Then
X(G) < d.

PROOF 1: As is the case in many theorems in combinatorial analy-
sis, one can prove the theorem by assuming that it is not true, then
considering a minimal counterexample (in this case a graph with
the minimal number of vertices) and arriving at a contradiction.
We shall use the technique of recoloring: it is possible to change
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the colors of certain vertices to go from one proper coloring to an-
other. For example, let S be a subset of the set C' of colors. On any
connected component of the subgraph induced by the vertices with
colors from S, we arbitrarily permute the colors (without changing
those of the vertices with colors in C\S). Clearly we again have a
proper coloring.

So let GG be a counterexample with the minimum number of ver-
tices. Let z € G and let I'(z) = {x1,...,2;}, | < d. Since G is
a minimal counterexample, the graph H, obtained by deleting x
and the edges incident with x, has a d-coloring, say with colors
1,2,...,d. If one of these colors is not used in the coloring of I'(x),
then we can assign this color to x and obtain a d-coloring of G. It
follows that [ = d and every d-coloring of H must use all the colors
on the set I'(z). Let us assume that z; has color ¢ fori = 1,2,...,d.

Now consider x; and z; and the induced subgraph H;; of H with
colors i and j. If z; and x; were in different connected components
of H;;, then we could interchange the colors in one of these com-
ponents, after which x; and z; would have the same color, which
is impossible. So z; and x; are in the same component (say Cj;)
of H;;. We shall now show that this component is (the graph of)
a simple path (with alternating colors i and j) from z; to z;. If
two neighbors of z; in H had color j, then the neighbors of x; in H
would have at most d — 2 different colors. Then we could recolor
x; and that is impossible. Suppose y is the first vertex on a path
from z; to x; in Cj; that has degree > 3. The neighbors of y in H
have at most d — 2 colors, so we can recolor y to some color ¢ {i, j}
and then x; and z; are no longer connected in H;;, which we know
to be impossible. So such a y does not exist, proving that Cj; is a
path.

Suppose that z is a vertex # z; on Cj; and on Cj;,. Then z has two
neighbors with color j and two with color k. Again the neighbors
of z in H have at most d — 2 colors and z can be recolored to some
color ¢ {1, j, k}, again a contradiction. Hence Cj; N Cy, = {x;}.

Our assumption that Ky € G shows that there are two vertices
in I'(z), say x; and x9, that are not connected by an edge. We have
the situation of Fig. 3.1. The vertex a is the neighbor of x; with
color 2 on C}s.
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We recolor H by interchanging the colors 1 and 3 on the subgraph
(3. For the new coloring, we have new paths that we call C{j.
Clearly a € C45 (since 1 now has color 3). However, on C3 no point
except x; has changed color, so a € C,. Hence Cjy N Cyy # {x2},
contradicting what we proved above. The contradiction shows that
our assumption that a minimal counterexample exists is false. [

Figure 3.1

In preparation for a second proof of Brook’s Theorem, the reader
should do the following problem without applying the theorem.

Problem 3A. Fix an integer d > 3. Let H be a simple graph with
all degrees < d which cannot be d-colored and which is minimal
(with the fewest vertices) subject to these properties. (We claim H
is complete on d+1 vertices, but we don’t know that yet.) (i) Show
that H is nonseparable (this means that every graph obtained from
H by deleting a vertex is connected). (ii) Then show that if the
vertex set V(H) is partitioned into sets X and Y with |Y| > 3,
then there are at least three vertices a,b,c € Y each of which is
adjacent to at least one vertex in X.

PROOF 2: Let d and H be as in Problem 3A. If H is not complete,
there are vertices z1, x,_1, x, so that z; is adjacent to x,,_; and x,
but so that these last two vertices are not adjacent. We want to
number the other n — 3 vertices so that the sequence

L1, L2y.--,Tn—-1,Tn
has the property that each xj, k£ > 2, is adjacent to at least one of

the vertices z; preceding it, i.e. with ¢ < k. This is simple: when
1, %9,...,x, have been chosen, k < n — 2, choose ;.1 to be any
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vertex other than x, 1 or x,, adjacent to one of x1,xs,...,xy; since
there are at least three such vertices, this is always possible.

Once this is done, we d-color the vertices starting at the end of
the sequence. Assign z, 1 and x, the same color. When the last
k vertices xyy1,...,%y 1,2, have been colored, k > 2, there is a
color available for x; since x; is adjacent to at most d — 1 of the
already-colored vertices. Finally, there is a color available for x;
since two of the vertices adjacent to x; have been given the same
color. O

We now consider a coloring problem of a completely different
nature. It serves as an introduction to a very important theorem of
combinatorics, namely Ramsey’s theorem. Before reading on, the
reader should try the following problem.

Problem 3B. Let the edges of K7 be colored with the colors red
and blue. Show that there are at least four subgraphs K3 with all
three edges the same color (monochromatic triangles). Also show
that equality can occur.

The example that is always used to introduce this subject is K
with its edges colored red or blue. We shall show that there is at
least one monochromatic triangle. A proof is as follows. Let a be
any vertex. Because a has degree 5, it is incident with at least three
edges of the same color, say red edges to the vertices b, ¢, d. If one
of the edges between these three vertices is red, then we have a red
triangle; if not, then they form a blue triangle.

The idea of the proof is the same as for the more difficult situation
of Ramsey’s theorem. However, it does not show as much as the
following counting argument.

Theorem 3.2. If the edges of K,, are colored red or blue, and r;,
1=1,2,...,n, denotes the number of red edges with vertex i as an
endpoint, and if A denotes the number of monochromatic triangles,
then

n

(3.1) A= (Z) —%Zn(n—l—m).

i=1

Proor: Every triangle in K, that is not monochromatic has ex-
actly two vertices where a red and a blue edge meet. On the i-th



28 A Course in Combinatorics

vertex, two such edges can be chosen in r;(n —1 —r;) ways. So the
sum in (3.1) counts the bichromatic triangles twice. O

Corollary.

(32 Az (3) - 5L,

PrOOF: From (3.1) we see that A is minimized if r;, = (n — 1 —1;)
for all ¢+ when n is odd, or if 7, = § or r; = § — 1 for all 7 in the
case that n is even. Since A is an integer, the first situation cannot

always arise. It is easy to show that (3.2) cannot be improved. O

Note that this argument shows that a red-blue coloring of Kj
must always have at least two monochromatic triangles.
We now treat Ramsey’s theorem (Ramsey, 1930).

Theorem 3.3. Let »r > 1 and ¢; > r, 1 = 1,2,...,s be given.
There exists a minimal positive integer N(qi,qo, ... ,qs;r) with the
following property. Let S be a set with n elements. Suppose that
all (:) r-subsets of S are divided into s mutually exclusive families
Ti,...,Ts (‘colors’). Then if n > N(qi1,q2,...,qs;T) there is an 1,
1 < i < s, and some q;-subset of S for which every r-subset is in
T;.

(The reader should compare this with our introductory example
and show that N(3,3;2) =6.)

PrRoOOF: We give the proof only for s = 2. The general case only
involves a little more bookkeeping.

(a) Trivially, the theorem is true for r = 1 and N(p,q;1) =
p+q—1L

(b) For any r and p > r it is also obvious that N(p,r;r) = p and
similarly N (r,q;r) = q for ¢ > r.

(c) We proceed by induction on r. So assume the theorem is true
for r — 1. We now use induction on p + ¢, using (b). So we can
define p; = N(p—1,¢;7), ¢ = N(p,q — 1;r). Let S be a set with
n elements, where n > 1+ N(p1,q1;7 — 1). Let the r-subsets of S
be colored with two colors, say red and blue. As in the proof for
Kg, we pick an arbitrary element a of S. We now define a coloring
of the (r — 1)-subsets of S’ := S\{a} by giving X C S’ the same
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color as X U {a}. By induction S’ either contains a subset A of
size p; such that all its (r — 1)-subsets are red or a subset B of size
¢1 such that all its (r — 1)-subsets are colored blue. Without loss
of generality the first situation occurs. Since A has N(p — 1,¢;7)
elements, there are two possibilities. The first is that A has a subset
of g elements with all its r-subsets blue, in which case we are done.
The other possibility is that A has a subset A’ of p — 1 elements
with all its r-subsets red. The set A’ U {a} also has this property
because A’ C A. This proves the theorem and furthermore we have
shown

33) N(p,q¢r)<NN@p-1,¢;r),N(p,q—1;7r);r —1) + 1.
O

A special case of (3.3) occurs when we go back to the coloring of
edges (r = 2) of a graph with two colors. Using (a) from the proof,
we find

(3.4) N(p,¢;2) < N(p—1,¢;2) + N(p,q — 1;2).

Problem 3C. Show that equality cannot hold in (3.4) if both
terms on the right-hand side are even.

Theorem 3.4.

p+q—2
N :12) < .
< (")
PROOF: Since N(p,2;2) = p, the result follows from (3.4) because
binomial coefficients satisfy the same relation with equality. 0

Let us look at what we now know about N (p, ¢;2). By Problem
3C, we have N(3,4;2) < 9. To show that equality holds, we have
to color Ky such that there is no red triangle and no blue K;. We
do this as follows: number the vertices with the elements of Zg. Let
the edge {7,j} bered if and only if i —j = +3 or i —j =4 (mod 8).
One easily checks that this coloring does the job.

Problem 3D. Use the same method to show that N(4,4;2) = 18
and that N (3,5;2) = 14.

With a lot more work it has been shown that

N(3,6;2) =18, N(3,7;2) =23, N(3,8;2) =28, N(3,9;2) = 36,
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N(4,5;2) = 25.

No other values of N(p, q;2) are known.

One of the interesting problems in this area that has seen virtu-
ally no progress for 30 years is the asymptotic behavior of N (p, p;2).
We know by Theorem 3.4 that

(3.5) N(p,p;2) < (2;_‘12) <o,

We now show that N(p,p;2) grows exponentially, using a method
that is used quite often in combinatorics. It is often referred to
as ‘probabilistic’ since it estimates the probability that a random

coloring has a monochromatic K,. Consider a K,. There are 2(5)
different ways of coloring the edges red or blue. Now fix a subgraph

K,. There are 2(5)-(5)+1 colorings for which that K, is monochro-
matic. The number of colorings for which some K, is monochro-
matic is at most (Z) times as large (because we may count some
colorings more than once). If this number is less than the total
number of colorings, then there exist colorings with no monochro-
matic K,. Using the fact that (Z) < n?/p!, we find that such a

coloring certainly exists if n < 2P/ (unless p = 2). This proves the
following theorem.

Theorem 3.5. N(p,p;2) > 2/2,
From (3.5) and Theorem 3.5, we know that

V2< {/Np.p;2) <4 (p>2).

It would be very nice if one could show that this p-th root has a
limit for p — oo.

To give a considerable improvement of Theorem 3.5, we discuss a
probabilistic method that is useful in many parts of combinatorics.
We consider events Aq, Ao, ..., A, in a probability space. Denote
by Pr[A;] the probability of the event A; and, as usual, let A;
denote the complement of A;, i.e. non-occurrence of A;. We are
interested in applications where the A; denote situations we do not
wish to occur and where we would like to assert that there is a
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positive probability that none of the events A; occurs. In some
easy counting situations one can use

ZPT ] <1=nNA; £0.

Cf. Problem 5E. However, in general, dependence among the unde-
sirable events leads to multiple counting which results in a sum that
is much larger than 1. Of course, if the events A; are independent,
then it suffices that each has probability less than one to guarantee
that non-occurrence of all of them has positive probability. The
Lovdsz Sieve handles situations where there is indeed some depen-
dence but simultaneously there are many obviously independent
combinations of events.

We define what we shall call a dependency graph for the events
Ay, ..., A,. This is a graph G on the set of indices {1,2,...,n}
with the property that for every i the event A; is independent of
every subset of {A; : {i,5} ¢ E(G)}. Note that we require a lot
more than that A; is independent of each of the A; in this subset.

Theorem 3.6. Let G be some dependency graph for the events
Ay, ..., A,. Suppose that Pr[A;] <p,i=1,. ..,n and that every
vertex in G has degree < d. If 4dp < 1, then NA; # (.

ProOF: We first show that for every subset {i1,1s,...,%,} of the
index set,
(3.6) Pr[A; |A;, ... A, | < L
2d’
The case m = 1 is trivial and for m = 2 we have
Pr{Ay 4] < -2 CHE

< -
T—py “dd—1 - 2d

where for convenience of notation we have taken ¢; = j and p; :=
Pr[A;]. We proceed by induction.

Suppose that in G, 1 is adjacent to 2,3,...,¢ and not adjacent
tog+1,...,m. We have

PriAy A A = DriAA - AgAgr - An]
m PT[AQH'AqlAqul"'Am]
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The numerator is (by definition of G) at most

1

PT[A1|A(Z+1 .. A_m] = PT[Al] S E

Using the induction hypothesis, we find that the denominator is at
least
q - g—1
1-— ;PT[AlyAq+1...Ayn] 2 1— W =

N | =

This proves (3.6). We now have

1

PriAy.. . A) =] PriAilA .. A > (1 - ¥

1=1

)" >0,

where we have used (3.6) for each term in the product. O

We apply this method to obtain a lower bound for N(p, p;2).
Theorem 3.7. N(p,p;2)>c-p- 29/2 where ¢ is a constant.

Proor: Consider K, and color the edges randomly with two col-
ors. For each set S of k vertices let As be the event that the
subgraph on S is colored monochromatically. We wish to assert
that among the random colorings, there is at least one in which no
monochromatic subgraph on k vertices occurs. We define a depen-
dency graph by making S and T' adjacent if and only if |[SNT| > 2,
i.e. the subgraphs on S and T" have an edge in common. The degree

d of GG is clearly at most (g) (kﬁQ) . The events Ag all have prob-

ability 91-(5). From Theorem 3.6, Stirling’s formula and a little
manipulation, we find the result (and if we wish an estimate for c).

O

We have given some examples of an area of combinatorics known
as Ramsey theory. We just mention one more example, namely
a theorem due to B. L. van der Waerden (1927). It states that
there exists a number N(r) such that if N > N(r) and the integers
from 1 to IV are colored red or blue, then there is a monochromatic
arithmetic progression of length r in the set. For a short (but not
easy) proof see Graham and Rothschild (1974). A general reference
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for this area is the book Ramsey Theory by R. L. Graham, B. L.
Rothschild and J. L. Spencer (1980).

An interesting application of Ramsey’s theorem is the following
theorem due to Erdds and Szekeres (1935).

Theorem 3.8. For a given n, there is an integer N(n) such that
any collection of N > N(n) points in the plane, no three on a line,
has a subset of n points forming a convex n-gon.

PRrROOF: (i) First we observe that if we have n points, no three on a
line, then they form a convex n-gon if and only if every quadrilateral
formed by taking four of the points is convex.

(ii) We now claim that N(n) = N(n,n;3) will do the job. Let
S be a set of N(n) points. Number the points and then color tri-
angles red, respectively blue, if the path from the smallest number
via the middle one to the largest number is clockwise, respectively
counterclockwise. There is an n-subset with all its triangles the
same color, say red. We shall show that this set cannot contain the
configuration of Fig. 3.2.

Za

Figure 3.2

Without loss of generality a < b < c. From triangle adc, we see
that a < d < ¢. Then from triangle abd it follows that a < b < d.
But then triangle bed is blue, a contradiction. So all quadrilaterals
formed from the n-subset are convex and by (i), we are done. [J

Problem 3E. A tournament on n vertices is an orientation of X,,.
A transitive tournament is a tournament for which the vertices can
be numbered in such a way that (7, j) is an edge if and only if 7 < j.
(a) Show that if & < logyn, every tournament on n vertices has
a transitive subtournament on k vertices.
(b) Show that if £ > 14 2log, n, there exists a tournament on n
vertices with no transitive subtournament on k vertices.
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Problem 3F. Prove that for all » € N there is a minimal number
N(r) with the following property. If n > N(r) and the integers in
{1,2,...,n} are colored with r colors, then there are three elements
x,y, z (not necessarily distinct) with the same color and x +y = z.
(A result due to I. Schur.) Determine N (2). Show by an elementary
argument that N(3) > 13.

Problem 3G. Let m be given. Show that if n is large enough,
every n X n (0,1)-matrix has a principal submatrix of size m, in
which all the elements below the diagonal are the same, and all the
elements above the diagonal are the same.

Problem 3H. Show that if the edges of K7 are colored with three
colors, there must be a monochromatic triangle.

Problem 3I. Let {1,a,0?,...,a!*} be the multiplicative group
of Fi5. Number the vertices of K14 with the elements of Fi5. We
will color the edges of Kj¢ with three colors. Edge {i,j} is to be
colored with a color that depends only on v, where : — j = o”. Do
this in such a way that there is no monochromatic triangle. (In the
notation of Theorem 3.3, this problem and the previous one show
that N (3,3,3;2) = 17.)

Problem 3J. The edges of K,, are colored red and blue in such a
way that a red edge is in at most one red triangle. Show that there
is a subgraph K} with k& > [v/2n] that contains no red triangle.

Problem 3K. Let G satisfy the conditions of Theorem 3.1. Show
that by removing at most n/d edges we can find a subgraph G’
with chromatic number < d — 1.

Notes.

The four color conjecture was considered one of the most famous
open problems in combinatorics until 1976. Its solution by Appel
and Haken has caused much debate because the proof depends on
an extensive computer analysis of many cases. The validity of the
argument depends on one’s trust in computers and programs. (See
Chapter 34 for two proofs of the Five Color Theorem.)

The theorem by Brooks, Theorem 3.1, which he discovered while
an undergraduate at Cambridge, is a typical example of the inge-
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nious arguments that are quite often necessary in that part of graph
theory where algebraic methods do not apply.

F. P. Ramsey (1902-1928) died too young to produce the results
that he probably would have. He was interested in decision pro-
cedures for logical systems and, strangely enough, this led to the
theorem that in turn led to so-called Ramsey theory.

Theorem 3.5 is due to P. Erdés (1947). For more on probabilistic
methods, see Erdds and Spencer (1974).

Values of and estimates for the numbers N(p, ¢;2) can be found
in Radziszowski (1999). The value of N(3,9;2) is from Grinstead
and Roberts (1982).

The proof of Theorem 3.6 is not the original proof by Erdés and
Szekeres that one usually finds in books. This proof was produced
by a student in Haifa (M. Tarsy) during an examination! He had
missed the class in which the proof had been presented. See Lewin
(1976). A proof in a similar vein was given by Johnson (1986).
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Turan’s theorem and
extremal graphs

As an introduction, we first ask the question how many edges a
simple graph must have to guarantee that the graph contains a
triangle. Since K, ,, and K, 11 do not contain triangles, we see
that if the graph has n vertices, then |n?/4] edges are not enough.
We claim that if there are more edges, then the graph contains a
triangle (W. Mantel, 1907). The following proof is surprising. Let
G have n vertices, numbered from 1 to n, and no triangles. We
give vertex ¢ a weight z; > 0 such that ) z; = 1 and we wish
to maximize S := ) z;zj, where the sum is taken over all edges
{i,j}. Suppose that vertex k and vertex [ are not joined. Let the
neighbors of k have total weight x, and those of | total weight y,
where z > y. Since (z; + €)x + (21 — €)y > zrx + 21y, we do not
decrease the value of S if we shift some of the weight of vertex [
to the vertex k. It follows that S is maximal if all of the weight
is concentrated on some complete subgraph of GG, i.e. on one edge!
Therefore S < i. On the other hand, taking all z; equal to n~!
would yield a value of n~?|E| for S. Therefore |E| < {n?.

Note that Ramsey’s theorem states that if a graph on n vertices
has n > N(p, q;2), then the graph either has a complete subgraph
on p vertices or a set of ¢ vertices with no edges between them
(called an independent set). We now ask the question whether some
condition on the number of edges guarantees a K, as a subgraph.
We saw above what the answer is for p = 3. We also already have
an idea of how to avoid a K. Divide the vertices into p — 1 subsets
Si,...,Sp—1 of almost equal size, i.e. r subsets of size ¢ + 1 and
p— 1 —r subsets of size t, where n =t(p—1)+r, 1 <r <p-—1.
Within each S; there are no edges but every vertex in S; is joined to
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every vertex in S; if ¢ # j. (This is a complete multipartite graph.)
The number of edges is

2p— 1)  2(p—1)

Theorem 4.1. (Turdn, 1941) If a simple graph on n vertices has
more than M (n,p) edges, then it contains a K, as a subgraph.

M(n,p) = pP—2 7’(17—1—7’)'

Proor: The proof is by induction on ¢t. If ¢ = 0, the theorem
is obvious. Consider a graph G with n vertices, no K,, and the
maximum number of edges subject to those properties. Clearly G
contains a K, ; (otherwise adding an edge would not produce a
K,), say H. Each of the remaining vertices is joined to at most
p— 2 vertices of H. The remaining n —p+ 1 vertices do not contain
a K, as subgraph. Since n—p+1= (t—1)(p—1)+r, we can apply
the induction hypothesis to this set of points. So the number of
edges of G is at most

M(n—p+1,p)—l—(n—p+1)(P—2)—|—<p;1)

and this number is equal to M (n,p). O

Remark. The argument that was used for Mantel’s theorem would

show that if there is no K, then |E| < 7£2n>.
p 2(p—1)

Problem 4A. Let G be a simple graph with 10 vertices and 26
edges. Show that G has at least 5 triangles. Can equality occur?

Turan’s paper on graph theory that contains Theorem 4.1 is con-
sidered the starting point of what is now known as extremal graph
theory—see Bollobas (1978). A simple instance of an extremal
problem will ask for the maximum number of edges a graph with a
certain property may have. The graphs whose number of edges is
maximum are called the extremal graphs with respect to the prop-
erty.

The extremal graphs for Turan’s problem are only the complete
multipartite graphs described above. This follows from an analysis
of the proof of Theorem 4.1; we ask the reader to do this at least
in the case p = 3 in the problem below.
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Problem 4B. Show that a simple graph on n vertices with |n?/4]
edges and no triangles is a complete bipartite graph K, if n = 2k,
or Ky py1 if n =2k + 1.

Problem 4C. If a simple graph on n vertices has e edges, then it
has at least +(4e —n?) triangles.

The girth of a graph G is the size of a smallest polygon P, in G.
(A forest has infinite girth.) By definition, a graph is simple if and
only if it has girth > 3. By Mantel’s theorem, a graph with more
than n?/4 edges has girth < 3.

Theorem 4.2. Ifa graph G onn vertices has more than %n\/n -1
edges, then G has girth < 4. That is, GG is not simple or contains a
P5 or a Py (a triangle or a quadrilateral).

PRrROOF: Suppose G has girth > 5. Let y;,ys,...,ys be the vertices

adjacent to a vertex z, where d := deg(z). No two of these are
adjacent since G has no triangles. Moreover, no vertex (other than
x) can be adjacent to more than one of i, ..., y, since there are no

quadrilaterals in G. Thus (deg(y;) —1)+---+(deg(yq) —1)+(d+1)
cannot exceed the total number n of vertices. That is,

Z deg(y) <mn—1.

y adjacent to x

Then

nn—1>Y" > deg(y) = deg(y)’

z 1y adjacent to x
1 ’ 1
> (Z deg<y>> = —QIE@))
)

OJ

The number %n\/n — 1 in Theorem 4.2 is only a bound—it is not
the exact answer for all n. Determination of the extremal graphs
for this problem (maximum number of edges subject to girth > 5)
for all values of n is impossibly difficult; a determination of the

graphs for which equality holds has, however, been almost possible.
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Perhaps surprisingly, there are at most four graphs with n > 2
vertices, girth > 5, and %n\/n — 1 edges: The pentagon (n = 5),
the Petersen graph (n = 10), one with n = 50, and possibly one
with n = 3250. See the notes and Chapter 21.

Problem 4D. Suppose G is regular of degree r and has girth g
or greater. Find a lower bound for |V (G)|. (Consider the cases g
even and odd separately.)

It is not so interesting to ask how many edges are required to
force a Hamiltonian circuit. But we can ask what bound on the
minimum degree will do the job.

Theorem 4.3. If a simple graph G on n vertices has all vertices
of degree at least n/2, then it contains a P, as a subgraph, i.e. it
has a Hamiltonian circuit.

PROOF: Suppose the theorem is not true and let G be a graph
satisfying the hypothesis for some n but having no Hamiltonian
circuits. We may take G to be such a counterexample with the
maximum number of edges; then the addition of any edge to G (i.e.
joining two nonadjacent vertices by an edge) creates a Hamiltonian
circuit.

Let y and z be nonadjacent vertices. Since adding {y, z} creates
a Hamiltonian circuit, there exists a simple path from y to z with
vertex terms, y = x1,x2,...,%, = 2, say. The sets

{i : y is adjacent to x; 1}
and
{i: z is adjacent to z;}
each have cardinality > n/2 and are contained in {1,2,3,...,n—1},

so they must meet; let iy belong to both. Then

Y=2x1,T2,.+..,Tjp, 2 = Ty Lp—1y++-5Ljg+1, L1 =Y

is the vertex sequence of a simple closed path of length n in G,
contradicting our choice of G as a counterexample. OJ

Theorem 4.3 is due to G. A. Dirac and is best possible at least
in the sense that it does not remain true if we replace n/2 by
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(n —1)/2. For example, the complete bipartite graphs Kj, ;1 have
no Hamiltonian circuits. But it does admit improvements and
generalizations—see e.g. Lovasz (1979), Problem 10.21.

Problem 4E. A 3x3x 3 cube of cheese is divided into 27 1 x 1 x 1
small cubes. A mouse eats one small cube each day and an adjacent
small cube (sharing a face) the next day. Can the mouse eat the
center small cube on the last day?

Problem 4F. Let G be a simple graph with n vertices. Prove: If
each vertex of G has degree > (n+1)/2, then for any edge e, there
exists a Hamiltonian circuit of G that passes through e.

Problem 4G. Prove the remark following Theorem 4.1.

Problem 4H. Show that a graph on n vertices that does not
contain a circuit on four vertices has at most % (1++/4n — 3) edges.

Notes.

P. Turdn (1910-1976), one of the famous Hungarian mathemati-
cians of the 20th century, is best known for his work in analytic
number theory and real and complex analysis.

For every r > 2 and g > 2, there exists a graph that is regular of
degree r and has girth > g. See Lovész (1979), Problem 10.12.

Analysis of the proof of Theorem 4.2 shows that a graph with
n > 2 vertices, girth > 5, and %n\/ n — 1 edges is regular of degree
k := v/n — 1 and also that any two vertices are joined by a (unique)
path of length 2 if they are not adjacent. With the notation of
Chapter 21, such a graph is an srg(n,k,0,1) and the methods of
that chapter show that £k = 2,3,7, or 57. This was first shown
in Hoffman and Singleton (1960) where in addition an example
with £ = 7 and n = 50 was described (that is now known as the
Hoffman-Singleton graph). It is not known at this time whether
there exists an srg(3250,57,0,1).
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Systems of distinct
representatives

We first give two different formulations of a theorem known as
P. Hall’s marriage theorem. We give a constructive proof and an
enumerative one. If A is a subset of the vertices of a graph, then
denote by I'(A) the set |J,.4I'(a). Consider a bipartite graph G
with vertex set X UY (every edge has one endpoint in X and one
in Y). A matching in G is a subset E; of the edge set such that
no vertex is incident with more than one edge in E;. A complete
matching from X to Y is a matching such that every vertex in X is
incident with an edge in F;. If the vertices of X and Y are thought
of as boys and girls, respectively, or vice versa, and an edge is
present when the persons corresponding to its ends have amicable
feelings towards one another, then a complete matching represents
a possible assignment of marriage partners to the persons in X.

Theorem 5.1. A necessary and sufficient condition for there to
be a complete matching from X toY in G is that |[I'(A)| > |A| for
every A C X.

PRrooF: (i) It is obvious that the condition is necessary.

(ii) Assume that [I'(A)| > |A]| for every A C X. Let |X| = n,
m < n, and suppose we have a matching M with m edges. We shall
show that a larger matching exists. (We mean larger in cardinality;
we may not be able to find a complete matching containing these
particular m edges.)

Call the edges of M red and all other edges blue. Let zy € X
be a vertex not incident with an edge of the matching. We claim
that there exists a simple path (of odd length) starting with =, and
a blue edge, using red and blue edges alternately, and terminating
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with a blue edge and a vertex y not incident with an edge of the
matching. If we find such a path p, we are done because we obtain
a matching with m + 1 edges by deleting the red edges of p from
M and replacing them with the blue edges of p. In other words,
we switch the colors on the edges of p.

Since [T'({zo})| > 1, there is a vertex y; adjacent to zy (obviously
by a blue edge since z; is not incident with any red edges). If y;
is also not incident with any red edges, we have the required path
(of length one); if y; is incident with a red edge, let z; be the other
end of that red edge. Recursively, define zy, z1,... and y1,9,... as
follows. If g, z1,..., 2, and yq, ..., yr have been defined, then since
IT({zo, x1,...,2,})| > k+1, there exists a vertex yj1, distinct from
Y1, - .-, Yk, that is adjacent to at least one vertex in {xg, z1,...,zx}.
If y;+1 is not incident with a red edge, stop; otherwise, let x;,q be
the other end of that red edge.

When the procedure terminates, we construct the path p by start-
ing with y,1; and the blue edge joining it to, say, z;,, 1 < k + 1.
Then add the red edge {x;,, i, }. By construction, y;, is joined by
an edge (necessarily blue) to some x;,, i2 < ;. Then add the red
edge {x;,,¥i,}. Continue in this way until z is reached. O

Problem 5A. A perfect matching in a graph G (not necessarily
bipartite) is a matching so that each vertex of G is incident with
one edge of the matching. (i) Show that a finite regular bipartite
graph (regular of degree d > 0) has a perfect matching. (ii) Find a
trivalent (regular of degree 3) simple graph which does not have a
perfect matching. (iii) Suppose G is bipartite with vertices X UY
(every edge having one end in X and one in Y'). Further assume
that every vertex in X has the same degree s > 0 and every vertex
in Y has the same degree ¢t. (This condition is called semiregular-
ity.) Prove: If | X| < |Y| (equivalently, if s > t), then there is a
complete matching M of X into Y.

Example 5.1. A parlor trick involving a standard deck of 52 cards
is as follows. You are dealt five cards at random. You keep one and
put the other four (in a specific order) into an envelope which is
taken to your partner in another room. Your partner looks at these
and announces the name of the fifth card, that you had retained.
Using the values of suits and ranks, it is possible to think of clever
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or relatively simple ways to determine which card to keep and which
to pass, and for the partner to determine the retained card; see
the notes. Ignoring complexity of solution, however, the relevant
general mathematical problem, stated for a deck of N cards, is
does there exist an injective mapping f from the set X of the (]g[ )
5-element subsets of the N cards into the set Y of N(N — 1)(N —
2)(N —3) ordered 4-tuples of distinct cards, subject to the condition
that if f(S) = (c1, ¢, ¢3,¢4), then {c1,co,c3,¢4} C S.

In terms of matchings, we consider the bipartite graph G whose
vertices are X UY as defined above, and where there is an edge
joining S € X to {c1,¢2,¢3,¢4} € Y exactly when {cy,co,c3,c4} C
S. We require a complete matching M of X into Y. The reader
may check that G is semiregular and that | X| < |Y] if and only if
N < 124. So by Problem 5A(iii), for N < 124, there exists such a
matching.

We now reformulate Theorem 5.1 in terms of sets and not only
prove the theorem but also give a lower bound for the number of
matchings. We consider subsets Ay, Aq,..., A, 1 of a finite set S.
We shall say that this collection has property H (Hall’s condition)
if (for all k) the union of any k-tuple of subsets A; has at least k
elements. If the union of some k-tuple of subsets contains exactly
k elements (0 < k < n), then we call this k-tuple a critical block.

We define a system of distinct representatives (SDR) of the sets
Ay, ..., A, 1 to be a sequence of n distinct elements ay,...,a, 1
WlthaleAZ,OSZgn—l

Let mg <my <--- < m,_;. We define

n—1
Fn(m07 mi, ... 7mn71) = H(m7 - l)*?
i=0
where (a). := max{1,a}.
From now on, we assume that the sequence m; := |A;| is nonde-

creasing.
For the proof of the main theorem, we need a lemma.

Lemma 5.2. Forn > 1, let f, : Z" — N be defined by

fn(QOaala s 7an—1) = Fn(mOamb .. -amn—l)



46 A Course in Combinatorics

if (mg, ..., my—1) Is a nondecreasing rearrangement of the n-tuple
(ag,--.,an—1). Then f, is nondecreasing with respect to each of the
variables a;.

PROOF: Let

my < - <Mmp_1 < =mp < Mpgq < -

Sml SmlJrl S Smnfl
be a nondecreasing rearrangement of (ay,...,a,-1). If a} > a; and

mo < - <y <Ky <<y < ap <mypy < <y

is a nondecreasing rearrangement of (ag,. .., a;—1,a%, Qit1,. .., Q1)
then
!/
fn(a,(], ey i1, ai, Qjt1y--- ,Gjnfl) .
fn(a07 CO 7an—1)

-1

_ (M1 — k). ) (a; — 1) (mj41 = J)s
(e =k (). 11 (mj — j)-

j=k+1

and this is > 1 since a; < myy1, a; > my, and mjr1 > my for
j=k+1,...,01—1. O

We now come to the second form of Hall’s theorem. We denote
by N(Ay,...,A,—1) the number of SDRs of (Ag,...,A,-1).

Theorem 5.3. Let (Ao, ..., A,_1) be a sequence of subsets of a set
S. Let m; :=|A;| (i=0,...,n—1) and let mg < mq < -+ < my,_1.
If the sequence has property H, then

N (A, A1) > Folmo, ..., ma 1),

ProOF: The proof is by induction. Clearly the theorem is true for
n = 1. We distinguish two cases.

Case 1. There is no critical block. In this case, we choose any
element a of A as its representative and then remove a from all the
other sets. This yields sets, that we call Ay(a),...,A,-1(a), and
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for these sets property H still holds. By the induction hypothesis
and by the lemma, we find

N(Ag,..., A1) > Z faa(lAr(a)], - - - [An—1(a)])

a€Aop
> Z fooa(my =1, ,mp 1 — 1)
a€Agp
=mofp1(mi—1,...,my 1 —1)
= Fn(m07m17 s 7mn—1)-
Case 2. There is a critical block (A,,,...,A,,_,) with 1y < --- <
vp—1 and 0 < k < n. In this case, we delete all elements of A, U
-++UA,, _, from all the other sets A; which produces A;, ,..., 4] |,
where {vo, ..., Vg1, 10y, -1y =40,1,...,n =1}, k+Il=n.
Now both (A,,,..., A, _,) and (4, ,..., A}, ) satisfy property

H and SDRs of the two sequences are always disjoint. Hence by
the induction hypothesis and the lemma, we have

(5.1)

N(Ag,.. ., An1) = N(Ayy, - Ay )N(AL . AL )
> fr(Mugs o smu ) fillAL L 1AL, D)
> folmyg,...omy, ) filmy, —k,...,my, , — k)
> fr(mo,...,mp—1) filmu, —k,...,my,,_, — k).

Now we remark that

My, <A, U---UA,_,| =k,
and therefore we have

(m, —7), =1 ifk<r<uwy_q,

and
(mm —k— Z)* =1 if %% S Vp_1.
This implies that

fk(m()?...,mk,l) = H (mi—i)*,

filtmyy —k, ... omy, , — k)= H (mj — 7)s,

VEp—1<j<n
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i.e. the product (5.1) is equal to F,(my,...,m,_1), which proves
the theorem. O

Problem 5B. Show that Theorem 5.3 gives the best lower bound
for the number of SDRs of the sets A; that only involves the num-
bers | 4,|.

We now come to a theorem known as Konig’s theorem. It is
equivalent (whatever that means) to Hall’s theorem. In the theo-
rem, A is a (0,1)-matrix with entries a;;. By a line, we mean a row
or a column of A.

Theorem 5.4. The minimum number of lines of A that contain
all the 1’s of A is equal to the maximum number of 1’s in A, no
two on a line.

PRrROOF: Let m be the minimum number of lines of A containing all
the 1’s of A and let M be the maximum number of 1’s, no two on
a line. Clearly m > M. Let the minimum covering by lines consist
of r rows and s columns (r + s = m). Without loss of generality,
these are the first » rows and the first s columns. We now define
sets A;, 1 <i<r, by A :={j > s:a; =1}. If some k-tuple of
the A;’s contained less than k elements, then we could replace the
corresponding k£ rows by k£ — 1 columns, still covering all the 1’s.
Since this is impossible, we see that the A;’s satisfy property H. So
the A;’s have an SDR. This means that there are r 1’s, no two on a
line, in the first » rows and not in the first s columns. By the same
argument there are s 1’s, no two on a line, in the first s columns
and not in the first » rows. This shows that M > r + s = m and
we are done. 0

The following theorem of G. Birkhoff is an application of Hall’s
theorem.

Theorem 5.5. Let A = (a;;) be ann x n matrix with nonnegative
integers as entries, such that every row and column of A has sum
l. Then A is the sum of | permutation matrices.

PROOF: Define A;, 1 < i < n, by 4; := {j : a;; > 0}. For any
k-tuple of the A;’s, the sum of the corresponding rows of A is kl.
Since every column of A has sum [, the nonzero entries in the
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chosen k rows must be in at least k columns. Hence the A;’s satisfy
property H. An SDR of the A;’s corresponds to a permutation
matrix P = (p;;) such that a;; > 0 if p;; = 1. The theorem now
follows by induction on . OJ

Problem 5C. In the hypothesis of Theorem 5.5, we replace ‘inte-
gers’ by ‘reals’. Show that in this case, A is a nonnegative linear
combination of permutation matrices. (Equivalently, every dou-
bly stochastic matrix—see Chapter 11—is a convex combination of
permutation matrices.)

Problem 5D. Let S be theset {1,2,...,mn}. We partition S into
m sets A, ..., A, of size n. Let a second partitioning into m sets
of size n be By, ..., B,,. Show that the sets A; can be renumbered
in such a way that A; N B; # ().

Problem 5E. Let A; = {i—1,4,i+1}n{1,2,...,n},i=1,2,...,n.

Let S,, denote the number of SDR’s of the collection {A, ..., A,}.
1/n

Determine S,, and lim,,_,o, Sn

Let G be a bipartite graph, finite or infinite; say the vertex set
is partitioned into sets X,Y of vertices so that every edge of G has
one end in X and one end in Y. We say that a matching M in G
covers a subset S of the vertices when every vertex in S is incident
with one of the edges in M.

Theorem 5.6. If there exists a matching M, that covers a subset
Xy of X and there exists a matching M, that covers a subset Y| of
Y, then there exists a matching M3 that covers Xy U Yj.

Proor: Think of the edges of M; as ‘red edges’ and the edges of
M, as ‘blue edges’. If an edge belongs to both M; and My, it is
‘purple’.

A connected graph all of whose vertices have degree at most
two is easily seen to be one of: a finite path-graph (allowing the
trivial case of length 0, when the component has one vertex and
no edges), a finite polygon, an infinte ‘one-sided’ path-graph (with
one monovalent vertex), or an infinite ‘two-sided’ path-graph. The
graph H whose vertices are those of G and whose edges M; U My
has the property that every vertex has degree at most two, so its
connected components are of the types enumerated above. The
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edges of any of these components, other than the graphs consisting
of a purple edge and its two ends, are alternately colored red and
blue; in particular, all polygons have even length. Every vertex of
Xy UYyj is in one of these nontrivial components.

For the matching M3, we will take all purple edges, and either
all red edges or all blue edges from every other component of H.
From the cycles and infinite two-sided paths, it doesn’t matter;
take all red or all blue edges, and they will cover all vertices of the
component. From the paths of odd length and infinite one-sided
paths, take all red or blue edges depending on whether the first
edge is red or blue (for a path of odd length, the first and last edge
have the same color, so it doesn’t matter what side you start on).
Again, the selected edges will cover all vertices of the component.

We have to think just a tiny bit harder for a component that is a
finite path P of even length, with vertices vy, vy, ..., v, say. There
is an odd number of vertices and they alternate between X and Y,
so vy and vy are both in X or both in Y. If they are both in X,
take all red edges of P (those of M;) and put them in Mj; if they
are both in Y, take all blue edges of P and put them in Mj. Only
one end of the path is not covered by the chosen edges.

Consider the case that both vy, v € X (the case when they are
in Y is completely analogous). If the first edge of P is red, then the
last is blue and it follows that v, ¢ X since no edge of M; covers
v. Thus the red edges of P still cover all vertices of X and Y, that
were in P. Similarly, if the first edge of P is blue, then vy ¢ X and
the red edges of P still cover all vertices of X, and Y| that were in
P. O

For the case Xy = X, Yy =Y, and when the graph G is complete
bipartite, matchings that cover X, or Y, correspond to, or can be
interpreted as, injective mappings X — Y or Y — X, respectively.
Theorem 5.6 says:

Corollary. If X and Y are sets and there exist injective map-
pings f : X — Y and g : Y — X, then there exists a bijective
mapping from X to Y, or from Y to X, i.e. there is a one-to-one
correspondence between the two sets.

In terms of ‘cardinality’ of sets, this says that if | X| < |Y| and
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Y| < |X], then | X| = |Y|. This is the Schréder-Bernstein Theo-
rem; see Section 22 of P. R. Halmos (1974). It is trivial for finite
sets, of course.

Problem 5F. Let A;, Ao, ..., A, be finite sets. Show that if

ANA;
Z | ]| < 1,
(e, Al 1A

then the sets A;, Ao, ... A, have a system of distinct representatives.

Problem 5G. (i) From Problem 5A we know that a bipartite
graph on 2n vertices that is regular of degree 3 has a perfect match-
ing. How many different perfect matchings are there if n = 47 (ii)
The same question for a bipartite graph on 10 vertices that is reg-
ular of degree 4.

Notes.

Philip Hall published his result in 1935 (with a rather difficult
proof). The proof that we gave is a generalization of ideas of Hal-
mos and Vaughan, Rado, and M. Hall. The proof is due to Ostrand
(1970) and Hautus and Van Lint (1972). See Van Lint (1974). The
problem of complete matchings is often referred to as the marriage
problem.

D. Konig (1884-1944) was professor at Budapest. He wrote the
first comprehensive treatise on graph theory (Theorie der endlichen
und unendlichen Graphen, 1936). Konig (1916) contains the first
proof of (one of the theorems called) Ko6nig’s theorem.

Just before Theorem 5.4, we referred to the ‘equivalence’of these
theorems. This expression is often used when each of two theorems
is more or less an immediate consequence of the other.

The theorem by Birkhoff (1946), i.e. Theorem 5.5, is extremely
useful and will be applied a number of times in later chapters.

For the card problem mentioned in Example 5.1, here is one so-
lution. In a set of five cards, some suit must be represented at
least twice. The first card you pass to your partner should be
the ‘larger’ of two cards of the same suit, and you will retain the
‘smaller’, where we think of the ranks 2,3,...,10,J,Q, K, A as ar-
ranged clockwise on a circle (modulo 13), and by ‘smaller’ we mean
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the card from which we must travel the least distance clockwise
to get to the other. For example, if S = {3#,Q<, 6,30, 7TM},
you pass either the 7# or 3¢ to your partner. This already tells
your partner the suit of the retained card and limits that card to
six possibilities in that suit. To determine how far to count back
(counterclockwise) from the rank of the first card, you and your
partner use the order of the remaining three cards (the 52 cards
are ordered lexicographically), and agree on some correspondence
between the six permutations of three objects and the integers from
1 to 6.
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6

Dilworth’s theorem and
extremal set theory

A partially ordered set (also poset) is a set S with a binary relation
< (sometimes C is used) such that:

(i) a < afor all a € S (reflexivity),

(i) if @ < b and b < ¢ then a < ¢ (transitivity),

(iii) if a < b and b < a then a = b (antisymmetry).

If for any a and b in S, either a < b or b < a, then the partial
order is called a total order, or a linear order. If a < b and a # b,
then we also write a < b. Examples of posets include the integers
with the usual order or the subsets of a set, ordered by inclusion.
If a subset of S is totally ordered, it is called a chain. An antichain
is a set of elements that are pairwise incomparable.

The following theorem is due to R. Dilworth (1950). This proof
is due to H. Tverberg (1967).

Theorem 6.1. Let P be a partially ordered finite set. The min-
imum number m of disjoint chains which together contain all ele-
ments of P is equal to the maximum number M of elements in an
antichain of P.

Proor: (i) It is trivial that m > M.

(ii) We use induction on |P|. If |P| = 0, there is nothing to
prove. Let C' be a maximal chain in P. If every antichain in P\C
contains at most M — 1 elements, we are done. So assume that
{ay,...,ap} is an antichain in P\C. Now define S~ := {z € P :
J;[z < a;]}, and define ST analogously. Since C is a maximal chain,
the largest element in C is not in S~ and hence by the induction
hypothesis, the theorem holds for S~. Hence S~ is the union of M
disjoint chains S| ,...,95;;, where a; € S;. Suppose x € S; and
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x > a;. Since there is a j with x < a;, we would have a; < a,
a contradiction. This shows that a; is the maximal element of the
chain S;, i =1,...,m. We do the same for ST. By combining the
chains the theorem follows. O]

A ‘dual’ to Dilworth’s theorem was given by Mirsky (1971).

Theorem 6.2. Let P be a partially ordered set. If P possesses no
chain of m + 1 elements, then P is the union of m antichains.

PRrROOF: For m = 1 the theorem is trivial. Let m > 2 and assume
that the theorem is true for m — 1. Let P be a partially ordered set
that has no chain of m 4 1 elements. Let M be the set of maximal
elements of P. M is an antichain. Suppose 11 < z9 < -+ < T,
were a chain in P\ M. Then this would also be a maximal chain in
P and hence we would have z,, € M, a contradiction. Hence P\ M
has no chain of m elements. By the induction hypothesis, P\M is
the union of m — 1 antichains. This proves the theorem. [

The following famous theorem due to Sperner (1928) is of a sim-
ilar nature. This proof is due to Lubell (1966).

Theorem 6.3. If Ay, As, ..., A, are subsets of N :={1,2,...,n}
such that A; is not a subset of A; if i # j, then m < (Ln72J)'

PRroOOF: Consider the poset of subsets of N. A := {Ay,..., A} is
an antichain in this poset.

A maximal chain C in this poset will consist of one subset of each
cardinality 0,1,...,n, and is obtained by starting with the empty
set, then any singleton set (n choices), then any 2-subset containing
the singleton (n — 1 choices), then any 3-subset containing the 2-
subset (n — 2 choices), etc. Thus there are n! maximal chains.
Similarly, there are exactly k!(n—k)! maximal chains which contain
a given k-subset A of N.

Now count the number of ordered pairs (A,C) such that A € A,
C is a maximal chain, and A € C. Since each maximal chain C
contains at most one member of an antichain, this number is at
most n!. If we let a; denote the number of sets A € A with |A| = k,
then this number is Y ,_, axk!(n — k)!. Thus

n n
Zakk:!(n —k)! <nl, or equivalently, Z % <1.
k=0 k=0 (k)
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Since (}) is maximal for k = |n/2] and Y o = m, the result
follows. O

Equality holds in Theorem 6.3 if we take all |n/2]-subsets of N
as the antichain.

We now consider the poset B,, (with 2" elements) of the subsets
of the n-set N, ordered by inclusion. The set of i-subsets of N is
denoted by A;. We define a symmetric chain in B,, to be a sequence
Py, Py, ..., P, of vertices such that P, € A; and P, C P, for
1 =k,k+1,...,n—k —1. We describe an algorithm due to De
Bruijn, Van Ebbenhorst Tengbergen and Kruyswijk (1949), that
splits B,, into (disjoint) symmetric chains.

Algorithm: Start with B;. Proceed by induction. If B, has
been split into symmetric chains, then for each such symmetric
chain Py,..., P, j define two symmetric chains in B, 1, namely
Piy1,..., P,y and Py, PkU{n—i—l}, Pk+1U{n—|—1}, ceey Pn,kU{n—l—l}.

It is easy to see that this algorithm does what we claim. Fur-
thermore it provides a natural matching between k-subsets and
(n — k)-subsets in B,, (cf. Theorem 5.1). Also, see Problem 6D
below.

Problem 6A. Let aj,as,...,a,2,; be a permutation of the inte-
gers 1,2,...,n?>+1. Show that Dilworth’s theorem implies that the
sequence has a subsequence of length n + 1 that is monotone.

A nice direct proof of the assertion of Problem 6A is as follows.
Suppose there is no increasing subsequence of n 4+ 1 terms. De-
fine b; to be the length of the longest increasing subsequence that
starts with the term a;. Then by the pigeonhole principle, there are
at least n + 1 terms in the b;-sequence that have the same value.
Since ¢ < j and b; = b; imply that a; > a;, we have a decreasing
subsequence of n + 1 terms.

To show a connection between Chapters 5 and 6, we now prove
that Theorem 5.1 immediately follows from Theorem 6.1. We
consider the bipartite graph G of Theorem 5.1. Let |X| = n,
Y| = n' > n. We introduce a partial order by defining z; < y;
if and only if there is an edge from vertex z; to vertex y;. Suppose
that the largest antichain contains s elements. Let this antichain be
{z1,...,Zn,y1,.--, Yy}, where h + k = s. Since I'({x1,...,z,}) C
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Y\{v1,...,yr}, we have h < n’ — k. Hence s < n/. The partially
ordered set is the union of s disjoint chains. This will consist of
a matching of size a, the remaining n — a elements of X, and the
remaining n’ — a elements of Y. Therefore n +n' —a =s <1/, i.e.
a > n, which means that we have a complete matching.

Theorem 6.3 is a (fairly easy) example of an area known as ex-
tremal set theory in which the problems are often quite difficult.
We first give one more example as an easy exercise.

Problem 6B. Let the sets A;, 1 < i < k, be distinct subsets of
{1,2,...,n}. Suppose A, N A; # 0 for all i and j. Show that
k < 2" ! and give an example where equality holds.

We now give one more example of the method that we used to
prove Sperner’s theorem. We prove the so-called Erdés—Ko-Rado
theorem (1961).

Theorem 6.4. Let A ={A,,..., A} be a collection of m distinct
k-subsets of {1,2,...,n}, where k < n/2, with the property that
any two of the subsets have a nonempty intersection. Then m <
(i)

ProOOF: Place the integers 1 to n on a circle and consider the family
F :={F,...,F,} of all consecutive k-tuples on the circle, i.e. F;
denotes {i,i 4+ 1,...,i+ k — 1} where the integers should be taken
mod n. We observe that | AN F| < k because if some F; equals A;,
then at most one of the sets {l,{+1,...,I+k—1}, {l—k,..., -1}
(i <l<i+k)isin A. The same assertion holds for the collection
FT obtained from F by applying a permutation = to {1,...,n}.
Therefore

=Y [ANFT<k-nl

TES,

We now count this sum by fixing A; € A, F; € F and observing
that there are k!(n — k)! permutations 7 such that F" = A;. Hence
Y =m-n-kl(n—k)!. This proves the theorem. O

By a slight modification of the proof, one can show that the
theorem also holds if the sets in A are assumed to have size at
most k and they form an antichain. However we shall give a proof
using Theorem 5.1.
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Theorem 6.5. Let A= {Ay,...,A,} be a collection of m subsets
of N :={1,2,...,n} such that A; ¢ Aj and A;NA; #0ifi#j
and |A;| <k <n/2 for alli. Thenm < (}_}).

ProOF: (i) If all the subsets have size k, then we are done by
Theorem 6.4.

(ii) Let Ay,..., As be the subsets with the smallest cardinality,
say | < % —1. Consider all the ([ + 1)-subsets B; of N that contain
one or more of the sets 4;, 1 <i < s. Clearly none of these is in A.
Each of the sets A;, 1 < ¢ < s, is in exactly n — [ of the B;’s and
each B; contains at most [ +1 < n —1{ of the A;’s. So by Theorem
5.1, we can pick s distinct sets, say By, ..., By, such that A; C B;.
If we replace Aq,...,As by By,..., B, then the new collection A’
satisfies the conditions of the theorem and the subsets of smallest
cardinality now all have size > [. By induction, we can reduce to
case (i). O

By replacing the counting argument of the proof of Theorem 6.4
by an argument in which the subsets are counted with weights, we
can prove the following generalization due to B. Bollobas (1973).

Theorem 6.6. Let A= {A;,..., A} bea collection of m distinct
subsets of {1,2,...,n}, where |A;| <n/2 fori=1,...,m, with the
property that any two of the subsets have a nonempty intersection.

Then
m 1
Z n—1 ) S L.
i=1 (|Ai|—1
PROOF: Let m be a permutation of 1,2,...,n placed on a circle

and let us say that A; € 7 if the elements of A; occur consecutively
somewhere on that circle. By the same argument as in the proof
of Theorem 6.4 we see that if A; € 7, then A; € 7 for at most |A4,]
values of j.

Now define

1 .
, ifAen
f(m, i) = { 4] L
0, otherwise.
By the argument above ) ¢ >", f(m,i) < n!. Changing the
order of summation we have to count, for a fixed A;, the number of
permutations 7 placed on a circle such that A; € w. This number
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(by the same argument as in Theorem 6.4) is n- |4;|!(n —|4;|)!. So
we have

WA |
Z 4] -n - Al (n = [AD! < nl,
i=1 v

which yields the result. O

Problem 6C. Let A= {A;,...,A,} be a collection of m distinct
subsets of N := {1,2,...,n} such that if i # j then A, ¢ Aj,
A;NA; #0, A;UA; # N. Prove that

< ( n—1 )
m < .

[5] =
Problem 6D. Consider the decomposition of B,, into symmetric
chains as described above. Show that Theorem 6.3 is an immediate
consequence of this decomposition. Show that Theorem 6.5 reduces

to Theorem 6.4 via this decomposition. How many of the chains
have their smallest element in A;?

Problem 6E. Here is an algorithm to construct a symmetric chain
in the poset B, which contains a given element S (a subset of
{1,2,...,n}). Consider the characteristic vector = of S; for ex-
ample, if n = 7 and S = {3,4,7}, then x = 0011001. Mark
all consecutive pairs 10, temporarily delete these pairs and again
mark all consecutive pairs 10, and repeat until only a string of the
form 00---01---11 remains. In our example, we obtain 0011001,
where the i-th coordinates are marked for i = 3,4, 5, 6; when these
are deleted, the string 001 remains. The characteristic vectors of
the subsets in the chain are obtained by fixing all marked coordi-
nates and letting the remaining coordinates range over the strings
0---000, 0---001, O---011, ..., 1---111. In our example, these

characteristic vectors are
0011000,
0011001,
0111001,
1111001,
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which correspond to the subsets
{3,4}, {3,4,7}, {2,3,4,7}, {1,2,3,4,7}.

Show that this algorithm produces exactly the same symmetric
chain containing S as is produced by the inductive algorithm of De
Bruijn et al. described above.

Notes.

We shall return to partially ordered sets in Chapters 23 and 25.

E. Sperner (1905-1980) is best known for a lemma in combina-
torial topology known as ‘Sperner’s lemma’, which occurred in his
thesis (1928). It was used to give a proof of Brouwer’s fixed point
theorem. (Another connection to combinatorics: his first professor-
ship was in Konigsberg!) He was one of the pioneers of the famous
Oberwolfach research institute.

For a survey of extremal set theory, we refer to Frankl (1988).

The short proof of the Erdés—Ko—Rado theorem is due to Katona
(1974). Theorem 6.5 is due to Kleitman and Spencer (1973) and
Schénheim (1971). The proof of Theorem 6.6 is due to Greene,
Katona and Kleitman (1976).
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Flows in networks

By a transportation network, we will mean a finite directed graph
D together with two distinguished vertices s and ¢ called the source
and the sink, respectively, and which is provided with a function
¢ associating to each edge e a nonnegative real number c(e) called
its capacity. We may further assume that there are no loops, no
multiple edges, and that no edges enter the source s or leave the sink
t (although there would be no harm in admitting any of these types
of edges other than our having to be more careful in a definition or
two).

Figure 7.1

In Fig. 7.1 we give an example. We could think of a network
of pipes through which some liquid could flow in the direction of
the arrows. The capacity would indicate the maximal possible flow
(per time unit) in that section of pipe.

A flow in a transportation network is a function f assigning a
real number f(e) to each edge e such that:

(a) 0 < f(e) < c(e) for all edges e (the flow is feasible);

(b) for each vertex x (not the source or the sink) the sum of the
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values of f on incoming edges equals the sum of the values of f on
outgoing edges (conservation of flow).

The sum of the values of a flow f on the edges leaving the source
is called the strength of the flow (denoted by |f|). It seems obvious
that the strength of the flow is also equal to the sum of the values
of f on edges entering the sink; the reader might try to verify this
formally before reading further.

One of our objectives will be to find a method for constructing
a mazrimum flow, that is, a flow with maximum strength. Before
we begin, it will be good to have a goal or an upper bound for the
strength of a flow; for example, the sum of the capacities of all edges
leaving the source is clearly such an upper bound. More generally,
by a cut separating s and t (or simply a cut), we mean here a pair
(X,Y) of subsets of the vertex set V := V(D) which partition V'
and such that s € X and t € Y. We define the capacity ¢(X,Y) of
the cut to be the sum of the capacities of the edges directed from
X to Y (that is, edges e = (z,y) with z € X and y € Y). We claim
that the capacity of any cut is an upper bound for the strength of
any flow. More strongly, we claim that the conservation law implies
(see below) that the strength of a flow f can be computed as

(7.1) [fl = F(X,Y) = f(V, X),

where f(A, B) denotes the sum of the values of f on all edges
directed from A to B; then the feasibility of f immediately implies
that |f| < ¢(X,Y). Thus the minimum capacity of all cuts in a
network (e.g. in Fig. 7.1 the minimum cut capacity is 20) is an
upper bound for the strength of a flow in that network.

To establish (7.1), we introduce the function ¢ by defining for
each pair (x,e), where x is a vertex incident with the edge e,
¢(x,e) := —1 if the edge is incoming, and ¢(x,e) := +1 if the
edge is outgoing; ¢(x,e) is to be 0 if x is not incident with e. (We
remark that ¢ is essentially the incidence matriz of the directed
graph—see Chapter 36.) The conservation law is equivalent to

Yoecr Oz, e)f(e) =0 for x # s,t. Notice that > ¢(x,e) is +1
if e is directed from X to Y, —1 if e is directed from Y to X, and
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0 if e has both endpoints in X or both in Y. Then

F1=) d(s.e)f(e) =D olx,e)f(e)
=Y fle)> dlwe) = f(X,Y) = f(V,X).

eel rzeX

(In the first double sum above, the inner sum is 0 for all terms x
other than s.)

A special instance of (7.1) is |f| = f(V\{t},{t}), the assertion
which we invited the reader to reflect on earlier.

We now construct flows. Fix a flow f, possibly the 0-flow. We
shall say that the sequence xg, x1, ...,z 1, x) of distinct vertices is
a special path from x( to zy if for each i, 1 < i <k, either

(i) e = (x;_1, ;) is an edge with c(e) — f(e) > 0, or
(ii)) e = (w;, x;—1) is an edge with f(e) > 0.

Edges e with f(e) = c(e) are said to be saturated and conditions (i)
and (ii) can be stated in words as requiring that ‘forward’ edges of
the path are unsaturated while ‘backward’ edges are positive—all
with respect to a given flow f. Suppose there exists such a special
path from s to ¢. Define «; as c¢(e) — f(e) in the first case and as
f(e) in the second case (picking one of the edges to use if both cases
hold) and let a be the minimum of these positive numbers a;. On
each edge of type (i) increase the flow value by «, and on each edge
of type (ii) decrease the flow by a. It is easy to check that the two
conditions for a flow (feasibility and conservation of flow) are still
satisfied. Clearly the new flow has strength |f| + .

This idea for obtaining a stronger flow becomes an algorithm
when we iterate it (starting with the O-flow) and incorporate a
systematic procedure for searching for special paths from s to ¢
with respect to the current flow. We make brief remarks concerning
termination in the notes to this chapter. But what happens when
we can go no further?

Suppose that no special path from source to sink exists with re-
spect to some flow fy. Let X be the set of vertices x which can be
reached from s by a special path, Y, the set of remaining vertices.
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In this way we produce a cut. If x € Xy, y € Y and e = (x,y) is
an edge, then e must be saturated or we could adjoin y to a special
path from s to x to get a special path from s to y, contradicting
the definitions of X and Y{. If, on the other hand, e = (y, x) is an
edge, then, for a similar reason, f(e) must be 0. In view of (7.1),
we have then

| fol = fo(Xo, Y0) — fo(Yo, Xo) = (X0, Y0).

Now it is clear that not only can no stronger flow be obtained by
our method of special paths, but that no stronger flows exist at all
because |f| < ¢(Xy, Y) for any flow f.

If fy is chosen to be a maximum flow (which exists by continuity
reasons in case one is unsure of the termination of the algorithm),
then surely no special paths from s to ¢ exist. Note that the con-
structed cut (Xo,Yp) is a minimum cut (i.e. a cut of minimum ca-
pacity), since ¢(X,Y) > |fo| for any cut (X,Y). Our observations
have combined to prove the following famous theorem of Ford and
Fulkerson (1956).

Theorem 7.1. In a transportation network, the maximum value
of | f| over all flows f is equal to the minimum value of ¢(X,Y") over
all cuts (X,Y).

This theorem is usually referred to as the ‘maxflow-mincut’ the-
orem. The procedure for increasing the strength of a flow that we
used above shows somewhat more.

Theorem 7.2. If all the capacities in a transportation network
are integers, then there is a maximum strength flow f for which all
values f(e) are integers.

Proor: Start with the O-flow. The argument above provides a way
to increase the strength until a maximum flow is reached. At each
step « is an integer, so the next flow is integer valued too. 0

Problem 7A. Construct a maximum flow for the transportation
network of Fig. 7.1.

Problem 7B. An elementary flow in a transportation network is
a flow f which is obtained by assigning a constant positive value
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a to the set of edges traversed by a simple (directed) path from s
to t, and 0 to all other edges. Show that every flow is the sum of
elementary flows and perhaps a flow of strength zero. (This means
we can arrive at a maxflow by starting from the 0-flow and using
only special paths with ‘forward’ edges.) Give an example of a
network and a flow which is not maximum, but with respect to
which there are no special paths using only ‘forward’ edges.

Problem 7C. Let (X7,Y7) and (X5, Y5) be minimum cuts (i.e. cuts
of minimum capacity) in a transportation network. Show that (X;U
X5,Y1 NY5) is also a minimum cut. (This can be done either from
first principles, or with an argument involving maximum flows.)

Problem 7D. Prove P. Hall’s marriage theorem, Theorem 5.1,
from Theorems 7.1 and 7.2.

It should be clear that the topic of this chapter is of great practi-
cal importance. Routing schemes for all kinds of products depend
on algorithms that produce optimal flows through transportation
networks. We do not go into the algorithmic aspect of this area.
Instead, we shall show a beautiful application of Theorem 7.2 to a
problem related to Birkhoff’s theorem, Theorem 5.5. Before giving
the theorem and its proof, we observe that several attempts were
made to prove it by reducing it to Theorem 5.5 but with no success.
The proof below is due to A. Schrijver. (If b = v in Theorem 7.3,
then we have the situation of Theorem 5.5.)

Theorem 7.3. Let A be ab x v (0,1)-matrix with k ones per row
and r ones per column (so bk = vr). Let a be a rational number,
0 < a < 1, such that k' = ak and ' = ar are integers. Then there
is a (0,1)-matrix A’ of size b x v with k' ones per row and r' ones
per column such that entries a, ; of A" are 1 only if the corresponding
entries of A are 1, i.e. A’ can be obtained from A by changing some
ones into zeros.

PROOF: We construct a transportation network with vertices s (the
source), 1, . .., xp (corresponding to the rows of A), y1,...,y, (cor-
responding to the columns of A), and ¢ (the sink). Edges are (s, x;)
with capacity k, 1 <1 < b, (z;,y;) with capacity 1 if and only if
a;; = 1, and (y;,t) with capacity r, 1 < j < v. The definition
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ensures that there is a maximum flow with all edges saturated.
We now change the capacities of the edges from the source to &’
and those of the edges to the sink to 7/. Again, all the capacities
are integers and clearly a maximum flow exists for which the flows
f((x;,y;)) are equal to a. By Theorem 7.2 there is also a maximum
flow f* for which all the flows are integers, i.e. f*((x;,y;)) = 0 or
1. From this flow, we immediately find the required matrix A’. O

The theorem above can be generalized in several ways with es-
sentially the same proof idea, but see below for a slightly different
approach.

For some combinatorial applications, it is convenient to use the
following theorem, which does not require the introduction of ca-
pacities or the concept of strength. It can be derived from Theorem
7.2—see Ford and Fulkerson (1956)—but we choose to give a direct
proof.

A circulation on a digraph D is a mapping f from E(D) to the
reals satisfying conservation of flow at every vertex. We do not
require nonnegativity. Circulations may be identified with vectors
in the null space of the incidence matrix of the digraph.

Theorem 7.4. Let f be a circulation on a finite digraph D. Then

there exists an integral circulation g such that for every edge e, g(e)
is equal to one of | f(e)] or [f(e)].

We may say that the values of g are those of f ‘rounded up or
down’. Of course, if f(e) is already an integer, then g(e) = f(e).

PRrROOF: Given a circulation f, consider a circulation g that satisfies

(7.2) Lf(e)] < g(e) < Tf(e)]

and for which the number of edges e with g(e) an integer is as large
as possible subject to (7.2).

Let H be the spanning subgraph of D with edge set consisting of
those edges of D for which g(e) is not an integer, i.e. for which strict
inequality holds both times in (7.2). Conservation of flow implies
that no vertex can have degree 1 in H, so if g is not integral, then
H contains a polygon.

Let P be a polygon in H and traverse P with a simple closed
path; let A be the set of edges of P that are forward edges of the
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path in D, and B the set of edges of P that are backward edges in
this path. For any constant ¢, we obtain a new circulation ¢’ by

gle)+c ifee A,
g(e):=1< gle)—c ifee€ B,
g(e) if e ¢ E(P).

If ¢ is small, (7.2) will still hold with g replaced by ¢’. Now choose

¢ i=min { min ([£(e)] = g(e) ) min (g(e) - [f(e)]) }-
ecA eeB

Then ¢’ still satisfies (7.2), yet ¢'(e) is an integer for at least one

more edge (any edge for the which term in the expression above

achieves the minimum). This would contradict the choice of g,

were g not integral. 0

Corollary. Let f be an integral circulation on a finite digraph
D and d any positive integer. Then f can be written as the sum
g1+ g2+ - - -+ g4 of integral circulations such that for each index j
and each edge e,

(7.3) Lf(e)/d] < gj(e) < [f(e)/d].

ProoF: By induction on d. For d = 1, there is nothing to prove.

Given d > 2, apply Theorem 7.4 to f/d to find an integral circu-
lation g; satisfying (7.3) for j = 1. Apply the induction hypothesis
to find

f—g=9p+gp+ -+

where for each j = 2,3,...,d, g; is an integral circulation satisfying

L(f(e) = gi(e))/(d = 1)] < gjle) < [(f(e) = qu(e))/(d = 1)].

An easy exercise is that if a is an integer and b is either |a/d| or
[a/d], then

a a—2>b a—2>b a

SI<15=5)  and [SI1<05)

so that the above inequalities imply (7.3) for j = 2,3,...,d. O
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From an m X nm matrix A of real numbers a;;, not necessarily
nonnegative or integers, we obtain a circulation on a digraph with
m + n + 2 vertices and mn +m 4+ n + 1 edges. The digraph is
similar to the one used in the proof of Theorem 7.3. There are ver-
tices z1,...,x, corresponding to the rows, vertices yi,..., ¥y, cor-
responding to the columns, and two others called s and ¢. There
is an edge from z; to y; with circulation value a;;, an edge from s
to x; with circulation value equal to the i-th row-sum r;, an edge
from y; to ¢t with circulation value equal to the j-th column-sum &;
(i=1,...,m,j=1,...,n), and an edge from ¢ to s with circula-
tion value equal to the sum of all entries of M. If we multiply this
circulation f by any scalar «, apply Theorem 7.4 to af, and rein-
terpret the resulting integral circulation as a matrix, we obtain part
(i) of the following theorem. Part (ii) follows from the corollary.

Theorem 7.5. (i) Given a matrix A and a real number «, there
is an integral matrix B so that the entries of B, the row-sums of
B, the column-sums of B, and the sum of all entries of B, are the
corresponding values for aA rounded up or down. (ii) If A is an
integral matrix and d any positive integer, then

A=DBy+By+-+ By

where each B; is an integral matrix whose entries, row-sums, column-
sums, and sum of all entries, are those of (1/d)A, rounded up or
down.

Problem 7E. Show that the following results are quick conse-
quences of Theorem 7.5: (i) Problem 5A(iii); (ii) Theorem 5.5; (iii)
Theorem 7.3; (iv) A finite graph all of whose vertices have even de-
gree has a balanced orientation, where the in-degree and out-degree
of each vertex are equal; (v) If a bipartite graph has minimum de-
gree d and maximum degree d, then its edges may be colored with
d colors so that the colors that appear at every vertex are distinct,
and with d colors so that all colors appear at each vertex.

Problem 7F. Show that the dimension of the vector space of all
circulations on a connected digraph D is |E(D)| — |V(D)| + 1.
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Notes.

The term augmenting path is often used instead of special path.

If the capacities of a transportation network are integers, the spe-
cial path method for constructing maximum flows will terminate af-
ter finitely many iterations, since the strength increases by at least
one each time. But Ford and Fulkerson (1962) give an example with
irrational capacities where certain contrived choices of special paths
lead to an infinite sequence of flows whose strengths converge—but
only to one-fourth of the actual maximum flow strength! If one
is careful to pick shortest special paths, however, then it can be
shown that a maximum flow is reached after at most O(n?) itera-
tions, where n is the number of vertices. See Edmonds and Karp
(1972).

The problem of finding a maximum flow is an example of a linear
programming problem and can be solved e.g. by the simplex algo-
rithm. The network flow problem is special in that its matrix is
totally unimodular, and this is one way of explaining why Theorem
7.2 holds. See the references below for more discussion of linear and
integer programming. Graphical methods are usually faster than
the simplex algorithm, and add insight.

Circulations on a digraph are called 1-cycles in algebraic topol-
ogy. An analogue of Theorem 7.4 holds for vectors f in the null
space of any totally unimodular matrix.

Theorems 7.1, 7.2, 7.4, and the algorithm have many further
combinatorial applications, since certain combinatorial problems
can be phrased in terms of transportation networks. For example,
finding a maximum matching in a bipartite graph is equivalent to
finding a maximum (integer valued) flow in a certain associated
network—see the references—and thus a good algorithm exists to
find a maximum matching. We give further applications of these
theorems in Chapter 16 to an existence problem on (0,1)-matrices,
and in Chapter 38 to a problem on partitions of sets.
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De Bruijn sequences

The following problem has a practical origin: the so-called rotating
drum problem. Consider a rotating drum as in Fig. 8.1.

Figure 8.1

Each of the segments is of one of two types, denoted by 0 and 1.
We require that any four consecutive segments uniquely determine
the position of the drum. This means that the 16 possible quadru-
ples of consecutive 0’s and 1’s on the drum should be the binary
representations of the integers 0 to 15. Can this be done and, if yes,
in how many different ways? The first question is easy to answer.
Both questions were treated by N. G. de Bruijn (1946) and for this
reason the graphs described below and the corresponding circular
sequences of 0’s and 1’s are often called De Bruijn graphs and De
Bruijn sequences, respectively.

We consider a digraph (later to be called G4) by taking all 3-
tuples of 0’s and 1’s (i.e. 3-bit binary words) as vertices and joining
the vertex xjxoxs by a directed edge (arc) to zaz30 and xaxsl.
The arc (z122x3, x2w324) is numbered e;, where xjzox324 is the
binary representation of the integer j. The graph has a loop at 000
and at 111. As we saw before, the graph has an Eulerian circuit
because every vertex has in-degree 2 and out-degree 2. Such a
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closed path produces the required 16-bit sequence for the drum.
Such a (circular) sequence is called a De Bruijn sequence. For
example the path 000 — 000 — 001 — 011 — 111 — 111 — 110 —
100 — 001 — 010 — 101 — 011 — 110 — 101 — 010 — 100 — 000
corresponds to 0000111100101101 (to be read circularly). We call
such a path a complete cycle.

We define the graph G, to be the directed graph on (n—1)-tuples
of 0’s and 1’s in a similar way as above. (So G,, has 2" edges.)

The graph Gy is given in Fig. 8.2. In this chapter, we shall call a
digraph with in-degree 2 and out-degree 2 for every vertex, a ‘2-in
2-out graph’. For such a graph G we define the ‘doubled’ graph G*
as follows:

(i) to each edge of G there corresponds a vertex of G*;

(ii) if @ and b are vertices of G*, then there is an edge from a to
b if and only if the edge of G corresponding to a has as terminal
end (head) the initial end (tail) of the edge of G corresponding to
b.

Clearly G = G)41.

0000

(,\\

100 1001

0100 Q\“
010
g
/wl%‘
110 0110 01 .

11,0 1y

1100

111
Figure 8.2

Theorem 8.1. Let G be a 2-in 2-out graph on m vertices with M
complete cycles. Then G* has 2™ 'M complete cycles.

PROOF: The proof is by induction on m.
(a) If m = 1 then G has one vertex p and two loops from p to p.
Then G* = G5 which has one complete cycle.
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(b) We may assume that G is connected. If G has m vertices
and there is a loop at every vertex, then, besides these loops, G is
a circuit p; — ps — - -+ — p,, — p1. Let A; be the loop p; — p; and
B; the arc p; — p;+1. We shall always denote the corresponding
vertices in G* by lower case letters. The situation in G* is as in
Fig. 8.3.

Figure 8.3

Clearly a cycle in G* has two ways of going from b; to b; ;. So
G* has 2" ! complete cycles, whereas G has only one.

(c) We now assume that G has a vertex x that does not have
a loop on it. The situation is as in Fig. 8.4, where P,Q, R, S are
different edges of G (although some of the vertices a,b,c,d may
coincide).

From G we form a new 2-in 2-out graph with one vertex less by
deleting the vertex x. This can be done in two ways: (G} is obtained
by the identification P = R, Q = S, and (G5 is obtained by P = 5,
@@ = R. By the induction hypothesis, the theorem applies to Gy
and to Gs.

a b g ]
G P T 9 G
R S
c d r s
Figure 8.4

There are three different types of complete cycle in G*, depending
on whether the two paths leaving r and returning to p, respectively
q, both go to p, both to g, or one to p and one to q. We treat one
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case; the other two are similar and left to the reader. In Fig. 8.5
we show the situation where path 1 goes from r to p, path 2 from
s to ¢, path 3 from s to p, and path 4 from r to q.

(2]
-

>

Figure 8.5

These yield the following four complete cycles in G*:

L, pr, 4, ¢s, 3, ps, 2, qr

L, ps, 2, qr, 4, qs, 3, pr

L, ps, 3, pr, 4, qs, 2, qr

L, ps, 2, ¢gs, 3, pr, 4, qr
In G} and G5 the situation reduces to Fig. 8.6.

4 2

G} G

Figure 8.6

In each of G} and G% one complete cycle using the paths 1,2, 3,4
is possible. In the remaining two cases, we also find two complete
cycles in G} and G35 corresponding to four complete cycles in G*.
Therefore the number of complete cycles in G* is twice the sum of
the numbers for G7 and G5. On the other hand, the number of
complete cycles in G is clearly equal to the sum of the correspond-
ing numbers for G; and G3. The theorem then follows from the
induction hypothesis. O

We are now able to answer the question how many complete
cycles there are in a De Bruijn graph.
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Theorem 8.2. G, has exactly 92" -n complete cycles.

PRrROOF: The theorem is true for n = 1. Since G = G,41, the
result follows by induction from Theorem 8.1. U
For a second proof, see Chapter 36.

Problem 8A. Let o be a primitive element in Fon. For 1 <4 <
m:=2"—1, let

n—1
o = g cijo .
=0
Show that the sequence
07 €10, €205 - - -, Cmo

is a De Bruijn sequence.

Problem 8B. Find a circular ternary sequence (with symbols
0,1,2) of length 27 so that each possible ternary ordered triple
occurs as three (circularly) consecutive positions of the sequence.
First sketch a certain directed graph on 9 vertices so that Eulerian
circuits in the graph correspond to such sequences.

Problem 8C. We wish to construct a circular sequence ay, ..., a7
(indices mod 8) in such a way that a sliding window a;, a;11, @43
(¢ =0,1,...7) will contain every possible three-tuple once. Show
(not just by trial and error) that this is impossible.

Problem 8D. Let m := 2" — 1. An algorithm to construct a De
Bruijn sequence ag,aq,...,a, works as follows. Start with ay =
ap = -+ =ap_1 = 0. For £k > n, we define a; to be the maximal
value in {0,1} such that the sequence (ap_n41,...,a5-1,a;) has
not occurred in (ay,...,a;-1) as a (consecutive) subsequence. The
resulting sequence is known as a Ford sequence. Prove that this
algorithm indeed produces a De Bruijn sequence.

Notes.

Although the graphs of this chapter are commonly called De
Bruijn graphs, Theorem 8.1 was proved in 1894 by C. Flye Sainte-
Marie. This went unnoticed for a long time. We refer to De Bruijn

(1975).



76 A Course in Combinatorics

N. G. de Bruijn (1918-), one of the best-known Dutch mathe-
maticians, worked in many different areas such as analysis, number
theory, combinatorics, and also computing science and crystalogra-
phy.

We mention a peculiarity concerning the spelling of some Dutch
names. When omitting the initials of N. G. de Bruijn, one should
capitalize the word ‘de’ and furthermore the name should be listed
under B. Similarly Van der Waerden is correct when the initials are
omitted and he should be listed under W.

For a proof of Theorem 8.1 using algebraic methods, we refer to
Chapter 36.
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9
Two (0,1,*) problems:

addressing for graphs and
a hash-coding scheme

The following problem originated in communication theory. For
a telephone network, a connection between terminals A and B is
established before messages flow in either direction. For a network
of computers it is desirable to be able to send a message from A
to B without B knowing that a message is on its way. The idea is
to let the message be preceded by some ‘address’ of B such that
at each node of the network a decision can be made concerning the
direction in which the message should proceed.

A natural thing to try is to give each vertex of a graph G a
binary address, say in {0, 1}*, in such a way that the distance of two
vertices in the graph is equal to the so-called Hamming distance of
the addresses, i.e. the number of places where the addresses differ.
This is equivalent to regarding G as an induced subgraph of the
hypercube Hy, which has V(Hy) := {0,1}* and where k-tuples are
adjacent when they differ in exactly one coordinate. The example
G = K3 already shows that this is impossible. We now introduce a
new alphabet {0, 1, *} and form addresses by taking n-tuples from
this alphabet. The distance between two addresses is defined to be
the number of places where one has a 0 and the other a 1 (so stars
do not contribute to the distance). For an addressing of a graph
G, we require that the distance of any two vertices in G is equal to
the distance of their addresses. It is trivial to show that this can be
done if n is large enough. We denote by N(G) the minimum value
of n for which there exists an addressing of G with length n.
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For a tree we can do without the stars as follows. We use in-
duction. For a tree with two vertices, we have a trivial addressing
with length 1. Suppose that we can address trees with k vertices.
If xg,x1, ...,z are the vertices of the tree T" and z is a monova-
lent vertex, then consider an addressing for the tree obtained by
removing xzo. Let x; be the address of x; and suppose x( is joined
to x1. We change all addresses to (0,%;), 1 < i < k, and give x
the address (1,x;). Clearly this is now an addressing for 7T'. So for
a tree, we have N(T') < |V(T)| — 1.

As a second example, consider K,,. In the identity matrix of
size m — 1, we replace the zeros above the diagonal by stars and
add a row of zeros. Any two rows now have distance 1 and hence
N(K;,)<m-—1.

As a third example, we consider the graph of Fig. 9.1.

3

4
Figure 9.1

A possible (though not optimal) addressing is

Tt W N =
OO ¥ =
OO OO =
O = O % =
O ¥ O = ¥
O ¥ = % ¥

We now show a correspondence between addressings of a graph
and quadratic forms (an idea of Graham and Pollak, 1971). Con-
sider the graph G of Fig. 9.1 and the addressing given above.
To the first column of the addressing, we associate the product
(x14+x2)(z4+x5). Here x; is in the first, respectively second, factor
if the address of 7 has a 1, respectively a 0, in the first column.
If we do the same thing for each column and then add the terms,
we obtain a quadratic form ) d;;x;x;, where d;; is the distance of
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the vertices ¢ and j in GG. Thus an addressing of G corresponds to
writing the quadratic form ) d;;x;z; as a sum of n products

(l‘il +"'+xik)(x,7'1 + +wjl)

such that no z; occurs in both of the factors. The number of vari-
ables is |V (G)].

Theorem 9.1. Let n., respectively n_, be the number of positive,
respectively negative, eigenvalues of the distance matrix (d;;) of the
graph G. Then N(G) > max{n,,n_}.

PRrROOF: Each of the quadratic forms mentioned above can be rep-
resented as %XTAX, where x := (z1,x9,...,2,) and A has entry
a;j = 1 if the term z;x; occurs in the quadratic form and 0 other-
wise. Such a matrix has rank 2 and trace 0. Therefore it has one
positive and one negative eigenvalue. Since (d;;) is the sum of the
matrices corresponding to the quadratic forms, it can have at most

n positive (respectively negative) eigenvalues. O
Theorem 9.2. N(K,,)=m — 1.

PROOF: We have already seen that N(K,,) <m — 1. Since J — I,
of size m, is the distance matrix of K, and the eigenvalues of J — I
are m — 1, with multiplicity 1, and —1, with multiplicity m — 1, the
result follows from Theorem 9.1. OJ

With slightly more work, we shall now show that the shortest
addressing for a tree T" has length |V (7T')| — 1.

Theorem 9.3. IfT is a tree on n vertices, then N(T') =n — 1.

Proor: We first calculate the determinant of the distance matrix
(d;j) of T'. We number the vertices py, ..., p, in such a way that p, is
an endpoint adjacent to p,_1. In the distance matrix, we subtract
row n — 1 from row n, and similarly for the columns. Then all
the entries in the new last row and column are 1 except for the
diagonal element which is equal to —2. Now renumber the vertices
P1,---,Pn—1 in such a way that the new vertex p,_; is an endpoint
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of T\{p,} adjacent to p,_s. Repeat the procedure for the rows and
columns with numbers n — 1 and n — 2. After n — 1 steps, we have
the determinant

0 1 1 1
1 -2 0 0
1 0 =2 0
1 0 0 -2

From this we find the remarkable result that the determinant D,,
of the distance matrix of a tree on n vertices satisfies

Dy = (-1)""'(n—1)2"72,

i.e. it depends only on |V (T')|. If we number the vertices accord-
ing to the procedure described above, then the k x k principal
minor in the upper left-hand corner of the distance matrix is the
distance matrix of a subtree on k vertices. Therefore the sequence
1,Dy,Ds,...,D,, where Dy, is the determinant of the £ x k£ minor,
is equal to

1,0,—1,4,-12,... (=) Y (n —1)2"2

If we consider the sign of 0 to be positive, then this sequence has
only one occurrence of two consecutive terms of the same sign. By
an elementary theorem on quadratic forms this implies that the
corresponding quadratic form has index 1, and hence (d;;) has one
positive eigenvalue; see B. W. Jones (1950), Theorem 4. Now the
result follows from Theorem 9.1. OJ

The conjecture that in fact N(G) < |V (G)|—1 for all (connected)
graphs G was proved by P. Winkler in 1983. The proof is construc-
tive. In order to describe the addressing, we need some preparation.
Consider the graph of Fig. 9.2.
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Figure 9.2

We pick a vertex xzy, then construct a spanning tree T by a
breadth-first search, and then number the vertices by a depth-first
search. The result is shown on the right-hand side of Fig. 9.2, where
edges of E(G)\E(T') are dashed.

Let n:= |V(G)| — 1. We need several definitions.
For ¢ < n, we define

P(i) :={j : z; is on a path from z to z; in T'}.
For example, P(6) = {0,3,4,6}. Let
i :=max(P(i) N P(5)).

We describe the general situation in Fig. 9.3.

% .y
Gl =~ = — e T:
zo Tinj e / I
" .‘le
zy

Figure 9.3

Note that in Fig. 9.3, we have ¢ < j if and only if £ < [.
For ¢ < n, we define

i’ := max(P(i)\{i}).
For example, 7 = 3 in Fig. 9.2. Define

i ~ j & P(i) C P(j) or P(j) C P(i).
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We denote distances in G, respectively T, by dg, respectively dr.
The discrepancy function c(i, j) is now defined by

c(i,§) == dr(xi, x;) — da(zi, ;).

For example, in Fig. 9.2, ¢(6,9) = 4.

Lemma 9.4.
(i) e(i,j) = e(4,7) > 0;
(ii) if i ~ j, then c(i,j) = 0;
(iii) if i o 7, then c(i,j") < c(i,7) < c(i,7") + 2.

PROOF: (i) is trivial; (ii) follows from the definition of T since
da(zi,x;) > |de(xj, x0) — da(xi, 20)| = dr(z;, z;);

(iii) follows from the fact that |d¢(zi, ;) —de(zi, )| < 1 and that

dT(xi,xj) = 1+dT(Z’¢,$J’/). L]

Now we can define the addressing. For 0 < ¢ < n the vertex z;
is given the address a; € {0, 1, *}", where

a; = (al(l), ai(2), e ,ai(n))
and
(1 if j € P(i),
c(i,j) —c(i,j') =2, or
a;(j) == ¢ * ifS ¢(i,j) —c(i,j) =1, i < j, c(i,]) even, or

C(Zaj> - C(ivj/) = 17 i > j7 C(Zm]) 0dd7
| 0 otherwise.

Theorem 9.5. d(a;,a;) = dg(z;, xy).

PrROOF: We may assume i < k.

(i) Suppose i ~ k. Then dg(z;, x;) = |P(k)\P(7)|. The values of
j such that j € P(k)\P(i) are exactly the positions where ay(j) =
1, a;(j) # 1. For these values of j we see that c¢(i,7) = 0, hence
a;(j) = 0 and we are done.

(ii) The hard case is when i ¢ k. The key observation is the
following. Let ny < ny < --- < n; be a nondecreasing sequence of
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integers such that |n;.1 — n;| < 2 for all 7. If m is an even integer
between n; and n; that does not occur in the sequence, then there
is an ¢ such that n;, = m — 1, n;,; = m + 1. Now consider the
sequence

c(iyk) > c(i, k') > (i, k") > -+ > c(i,iLNk) = 0.

By the definition of a;(j) and the observation above, a;(j) = * and
ar(j) = 1 exactly as many times as there are even integers between
c(i,iAk) and c(i, k). Similarly a;(j) = * and a;(j) = 1 as many
times as there are odd integers between c(i,iAk) and c(i, k). So

d(ai,ar) = [P(K)\P(@)| + [P(i)\P (k)| — c(i, k)
= dp(zi, x) — (i, k) = dg(x;, z1).

Therefore we have proved the following theorem.

Theorem 9.6. N(G) < |V(G)| — 1.

Problem 9A. If we use the scheme defined above, what are the
addresses of x5 and x¢ in Fig. 9.27

Problem 9B. Let G be a cycle (polygon) on 2n vertices. Deter-
mine N(G).

Problem 9C. Let G be a cycle (polygon) on 2n+1 vertices. Prove
that N(G) = 2n. Hint: if C} is the permutation matrix with
entries ¢;; = 1 if and only if j —4 = 1 (mod k) and ¢* = 1, then
(1,¢,¢2,...,¢% 1) is an eigenvector of Cj.

We now look at a second problem involving k-tuples from the
alphabet {0, 1,*}. The objects we shall study were introduced by
Rivest (1974) and given the (unfortunate) name associative block
design; cf. Chapter 19 for block designs. An ABD(k,w) is a set of
b := 2% elements of {0,1,x}* with the following properties: if the
elements are the rows of a b x k matrix C, then
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(i) each row of C has k — w stars;

(ii) each column of C has b(k — w)/k stars;

(iii) any two distinct rows have distance at least 1.

Note that the definition implies that each vector in F4 has dis-
tance 0 to exactly one row of C.

The origin of the problem is the following. Consider a file of k-bit
binary words. Each sequence in {0, 1,x}"* is called a partial match
query. The partial match retrieval problem is to retrieve from the
file all words agreeing with the query in those positions where the
query specifies a bit. So-called hash-coding schemes divide a file
into b disjoint lists Ly, Lo, ..., Ly. A record x will be stored in the
list with index h(z), where h is the ‘hash-function’ mapping {0, 1}*
onto {1,2,...,b}. For a given partial match query, some of the lists
must be searched. An analysis of the worst-case number of lists to
be searched led to the concept of ABD. In this case h(x) is the
index of the unique row of C' which has distance 0 to x.

Example 9.1. The following matrix is an ABD(4, 3):

— == OO O X
O = X = = O % O
— % O = O ¥ = O
> O R = X = OO

We first prove some elementary properties of an ABD.

Theorem 9.7. If an ABD(k,w) exists, then:

(1) it has exactly bw/(2k) zeros and bw/(2k) ones in each col-
umn;

(2) for each x in F% it has exactly (%) rows which agree with x
in u positions;

(3) the parameters satisty

1
2>9k(1-2=);
wz2e(1-7);
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(4) for any row, the number of rows with stars in the same
positions is even.

PrOOF: Let C be the ABD(k,w).

(1) A row of C with a star, respectively a zero, in column j rep-
resents (i.e. has distance 0 to) 2"~%~!  respectively 2=, elements
of F5. From (i) and (ii) of the definition, it follows that column j
must contain bw/(2k) zeros.

(2) Let x € F5. Denote by n; the number of rows of C' which
agree with x in ¢ positions. There are (IZC) vectors in F§ which agree

with x in exactly [ positions. Therefore (I;) =>n, (k:;), i.e.

L+2)f=10+2"" > nz

This proves that n; = (Z”)

(3) The sum of the distances between pairs of rows of C is k(52)?
by (1). Since any two rows have distance at least 1, this sum is at
least (g)

(4) Consider a row of C. Count vectors in F5 which have zeros
in the positions where the row has stars. Each row with a different
star pattern represents an even number of such vectors whereas a

row with the same star pattern represents exactly one such vector.
O

Note that property (1) in Theorem 9.7(3) implies that a neces-
sary condition for the existence of an ABD(k,w) is that k divides
w - 20

The following strengthening of Theorem 9.7(3) is due to A. E.
Brouwer (1999).

Theorem 9.8. Let C be an ABD(k,w) with w > 3.

(1) If two rows of C' agree in all but one position, then

(2) otherwise w? > 2k.



86 A Course in Combinatorics

PROOF: Suppose c¢; and ¢y are two rows of C' which differ only
in position one. Then all the other rows of C' must differ from c;
in some other position. So, by (i) of the definition and Theorem
9.7(3), we find

bw
To prove the assertion, we must show that the right-hand side of
the inequality cannot be equal to b — 2 or b — 1. In both cases,
equality would imply 2“~!|k which contradicts Theorem 9.7 unless
w = 4, which is excluded by substitution.

(ii) Consider two rows of C' which have the same star pattern.
By hypothesis, they differ in more than one position. Again, count
the sum of the distances of all the rows from one of this pair. This
sum is at least 2 + (b — 2) = b and, by Theorem 9.7.1, it is equal
to w - (bw)/(2k). So w? > 2k. We must show that equality cannot
hold. By the argument above, equality would imply that rows with
the same star pattern occur in pairs which have distance 2, and
furthermore all the other rows have distance 1 to each row of such
a pair. Without loss of generality, such a pair would be

(kx---%00...000) and (x*---x00...011).

The bw/(2k) — 1 other rows ending in a 1 would have to end in
01, for otherwise they would have distance 0 to the second row or
distance > 1 to the first row. Similarly, there would be bw/(2k) — 1
rows ending in 10. Since we now have rows with distance 2, we
find that necessarily bw/(2k) —1 = 1. Therefore 2% = 2w, which is
impossible if w > 3. OJ

Corollary. An ABD(8,4) does not exist.

Using these results, it is easy to find all ABD(k,w) with w < 4.
Of course, w = 0 is trivial. For w = 1, 2, or 4, we must have k = w
(no stars). If w = 3, then either £ = 3 (no stars) or k = 4. In that
case there are two types of ABD, one given in Example 9.1.

Problem 9D. Construct an ABD(4,3) that has the same first
four rows as Example 9.1 but differs in the others.

In 1987 La Poutré and Van Lint proved that an ABD(10,5)
does not exist but the smaller possibility ABD(8,5) turned out to
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be quite difficult to handle. In 1999 D. E. Knuth asked Brouwer
whether any progress had been made in this area since the early
results and this made Brouwer decide it was time the question was
settled. An example can be found in Brouwer (1999). It does not
seem to have any structure. Now the smallest open case is the
question whether an ABD(12,6) exists.

We shall now describe some construction methods. Some of the
ideas will be used in other chapters.

Theorem 9.9. If an ABD(k;,w;) exists for i = 1,2, then an
ABD (kykg, wyws) exists.

PROOF: We can assume wy > 0. Partition the rows of ABD(ksy, ws)
into two classes Ry and Ry of equal size. In ABD (k;,w;) we replace
each star by a row of ks stars, each 0 by a row from R, and each 1
by a row from R; in all possible ways. A trivial calculation shows
that the resulting matrix is an ABD(kiko, wiws). O

Corollary. An ABD(4',3") exists.

For the proof of the next theorem, we introduce a new symbol,
namely —. A k-tuple consisting of the symbols 0, 1,*, and — rep-
resents all possible words with only 0, 1, x that can be obtained by
replacing each — by a 0 or a 1 in all possible ways.

Theorem 9.10. Let w > 0. Suppose an ABD(k,w) exists, where
k= k-2, ko odd. Then an ABD(k,w + ikg) exists for 0 < i <
(l{? — w)/k‘o

PRroOF: It is sufficient to consider i = 1. Let C be the ABD(k, w).
Define a matrix A of the same size by requiring a;; = 1 if Cj; = *
and a;; = 0 otherwise. By Theorem 7.3, A is the sum of two
matrices A; and As, where A; has ky ones in each row and 2%~
ones in each column. In a row of C, replace stars by — if the star

occurs in a position where A; has a one. This produces the required
ABD(k,w + ko). OJ

Theorem 9.11. If ABD(k,w) exists and « > 1 is a number such
that ok and aw are integers, then an ABD(ak,aw) exists.

PRrOOF: It is sufficient to show that ABD(k + [,w + m) exists for
(k+1)/(w+m) = k/w and (I,m) = 1. Let k = ko - 2°, ko odd.
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From (ii) of the definition we know that ko|w. Therefore wl = mk
and (I,m) = 1 imply that [ is a power of 2. Consider the | x [
circulant matrix with a row of [ — m stars and m minus signs as
first row. Since [ divides b we can adjoin a column of b/l copies
of this circulant to the matrix C of the ABD(k,w). It is easy to
check that this larger matrix is an ABD(k + [, w + m). O]

Example 9.2. From the corollary to Theorem 9.9 we have an
ABD(64,27). Theorem 9.10 then shows that an ABD(64, w) exists
for 27 < w < 64. In particular, there is an ABD(64,32). Then
Theorem 9.11 implies that an ABD (2w, w) exists for all w > 32.
As mentioned before, nonexistence has been shown for w = 4 and
w = 5 and the case w = 6 is still open.

Notes.

The first problem considered in this chapter was introduced by
J. R. Pierce at Bell Laboratories as the loop switching problem.
Several people (including one of the present authors) tried in vain
to solve it. Shortly after R. L. Graham raised the reward for the
solution to $200, it was solved by P. Winkler. It is worth noting that
Winkler stated that the idea of numbering the vertices as was done
in the proof was a regular habit due to his background in computer
science. Going over the proof, one sees that this numbering indeed
played a crucial role.
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The principle of inclusion
and exclusion;
inversion formulae

As we have seen in several of the previous chapters, many problems
of combinatorial analysis involve the counting of certain objects.
We now treat one of the most useful methods for counting. It
is known as the principle of inclusion and exclusion. The idea is
as follows. If A and B are subsets of S and we wish to count
the elements of S\{A U B}, then the answer is not |S| — |A| — |B]|
because the elements of AN B have been subtracted twice. However
|S|—|A|—|B|+|ANB| is correct. The following theorem generalizes
this idea.

Theorem 10.1. Let S be an N-set; Ei,...,FE, not necessarily
distinct subsets of S. For any subset M of {1,...,r}, we define
N(M) to be the number of elements of S in (,c,; E;i and for 0 <
j <, wedefine Nj := 3", _; N(M). Then the number of elements
of S not in any of the subsets E;, 1 <1i <r, is

(10.1) N — Ny + Ny — N3+ -+ (=1)'N,.

Proor: (i) If x € S and z is in none of the E;, then x contributes
1 to the expression (10.1).

(ii) If x € S and z is in exactly k of the sets E;, then the contri-
bution to (10.1) equals

1-— (I;)+ (g) —---+(—1)’“(Z> =(1-1F=0.
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Remark. If we truncate the sum in (10.1) after a positive (respec-
tively, negative) term, then we have an upper (respectively, lower)
bound for the number of elements of S not in any of the Ej.

Because this method is of great importance, we shall give several
examples as illustration.

Example 10.1. Let d,, denote the number of permutations 7 of
1,2,...,n such that 7(¢) # ¢ for all i (these are called derange-
ments). Let S := S,,, and let E; be the subset of those permutations
7w with 7(i) = 4. By (10.1) we find

(10.2) dy =3 "(-1) (’Z) (n—i)l=ny (-;)Z'

i=0 i=0

From this formula, we see that for large values of n the probability
that a permutation is a derangement is nearly e~!. From (10.2) for
n and n — 1, we find a recursion formula for d,,:

(10.3) dy = ndn_y + (—1)".

The formula (10.2) can also be obtained by inversion as follows.
Consider the power series D(z) := Yo" d,%r (dy = 1). Now if
F(x) :=e"D(z), then

o0 m m x,rn
e =3 (Z ()d> o
and since " (") dp—, = m!, we find F(z) = (1—2) ' It follows
that D(z) = e %(1 — 2)~! and by multiplying the power series for
the two factors, we find (10.2) again.

Example 10.2. Let X be an n-set, Y = {y1,...,yr} a k-set. We
count the surjections of X to Y. Let S be the set of all mappings
from X to Y, E; the subset of mappings for which y; is not in the
image of X. By (10.1) we find the number of surjections to be
Z?ZO(—l)i(’;)(k —4)". Now this number is trivially 0 if £ > n and
clearly n! if k = n. So we have proved:

k

wo - fen)er- {3 13

1=0
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There are many formulae like (10.4) that are often quite hard to
prove directly. The occurrence of (—1)* is usually a sign that count-
ing the right kind of objects using the principle of inclusion and ex-
clusion can produce the formula, as in this example. Nevertheless
it is useful in this case to see another proof.

Let P(zx) be a polynomial of degree n, with highest coefficient a,,.
We denote the sequence of values P(0), P(1),... by P. We now
consider the sequence of differences P(1) — P(0), P(2) — P(1),....
This is Qi, where Qi(x) := P(x + 1) — P(x), a polynomial of
degree n — 1 with highest coefficient na,. By repeating this pro-
cedure a number of times, we find a sequence Q; whose terms are
Zfzo(—l)i(];)P(ac + k — i), corresponding to the polynomial Q(z)
of degree n — k with highest coefficient n(n —1)...(n — k + 1)a,.
If K = n, then all the terms of Qy are nla, and if £ > n, then they
are all 0. Take P(x) = 2. We again find (10.4).

Example 10.3. The following identity is a well known relation
between binomial coefficients:

(10.5) zn:(—l)"(g (m ZZ_ Z) - { ((;Z) ii Z i IZ

1=0

We see that if we wish to prove this using inclusion-exclusion, then
the sets F; that we wish to exclude involve choosing from an n-
set, and after choosing ¢ of them, we must choose k£ — i elements
from some set of size m 4+ n — ¢. This shows us that the following
combinatorial problem will lead us to the result (10.5). Consider a
set Z =X UY, where X = {xy,...,z,} is an n-set of blue points
and Y is an m-set of red points. How many k-subsets consist of red
points only? The answer is trivially the right-hand side of (10.5).
If we take S to be all the k-subsets of Z and E; those k-subsets
that contain z;, then (10.1) gives us the left-hand side of (10.5).

Again we can ask whether this result can be proved directly. The
answer is yes. To do this, we use the following expansion:

(10.6) i (aﬂ)xf = (1- )L

=0~ J
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Note that (—1)"(") is the coefficient of 2’ in the expansion of (1 —
z)". From (10.6) we find that (m+fl ") is the coefficient of z*~ in
the expansion of (1 — z)*"™ "~1 So the left-hand side of (10.5) is

the coefficient of z* in the expansion of (1 —z)* ™ 1 If m < k—1,
this is obviously 0 and if m > k, it is ('), again by (10.6).

Example 10.4. (The Euler function) Let n = pi*py*...p'" be a
positive integer. We denote by ¢(n) the number of integers k& with
1 <k < n such that the g.c.d. (n,k) = 1. We apply Theorem 10.1
with S := {1,2,...,n} and E; the set of integers divisible by p;,
1 <4 <r. Then (10.1) yields

(10.7)  ¢(n) =n— Z Z

1<i<j<r

p7pj i1 Di .

The next theorem is used quite often.
Theorem 10.2. 3, ¢(d) = n.

ProoF: Consider {1,2,...,n} = N. For each m € N, we have
(m,n)|n. The number of integers m with (m,n) = d, i.e. m = myd,
n = md and (my,ny) = 1 clearly equals ¢(n;) = ¢(n/d). So
n =)y, ¢(n/d) which is equivalent to the assertion. O

At this point, it is useful to introduce the so-called Mobius func-
tion:

(10.8) wu(d) :=
1 if d = product of an even number of distinct primes,

—1 if d = product of an odd number of distinct primes,

0  otherwise, i.e. d not squarefree.

Theorem 10.3.
ifn=1,
Z p(d
0 otherwise.

PRrROOF: If n = 1, there is nothing to prove. If n = p{*...p%", then
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by (10.8) we have

O

Note how similar the proofs of Theorems 10.1 and 10.3 are.
Using the Mdbius function, we can reformulate (10.7) as follows:

(10.9) @ => @.

dln

Problem 10A. How many positive integers less than 1000 have
no factor between 1 and 107

Problem 10B. How many monic polynomials of degree n are
there in [F,[z] that do not take on the value 0 for z € F),?

Problem 10C. Determine »_ _ u(n)| 7]

n

Problem 10D. One of the most famous functions in complex
analysis is the so-called Riemann -function ((s) := >~ n~*%, de-
fined in the complex plane for Re(s)> 1. Prove that 1/{(s) =

D ey H(n)n 0,

Problem 10E. Let f,(z) be the function that has as its zeros all
numbers 7 for which " = 1 but n* # 1 for 1 < k < n. Prove that

fn(Z) = H(Zk _ l)u(n/k).

kln
Theorem 10.3 makes it possible to derive a very useful inversion
formula known as the Mébius inversion formula.

Theorem 10.4. Let f(n) and g(n) be functions defined for every
positive integer n satisfying

(10.10) fn) =Y "g(d).

d|n
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Then g satisties

(10.11) g(n) = Zu(d)f(g)-
dln

PRrROOF: By (10.10) we have

> adF() = n(5)f(d)
dln d|n

=Y uZ) Y gd) =D g(d) > ulm).

dln d'|d d'|n ml|(n/d")

By Theorem 10.3 the inner sum on the right-hand side is 0 unless
d =n. O

Remark. The equation (10.11) also implies (10.10).

Example 10.5. We shall count the number N, of circular se-
quences of 0’s and 1’s, where two sequences obtained by a rotation
are considered the same. Let M(d) be the number of circular se-
quences of length d that are not periodic. Then N, = >, M(d).
We observe that >, dM(d) = 2" since this counts all possible cir-
cular sequences. By Theorem 10.4 we find from this equation that
nM(n) =>4, 1(d)2"? and therefore

(10.12) N, =Y M(d)=>)_ % ZM(%)%

dln dln lld
2! ulk) 1 n. .
ST e
ln k| ln

The final expression has the advantage that all the terms are posi-
tive. This raises the question whether we could have obtained that
expression by some other counting technique. We shall see that
the following theorem, known as Burnside’s lemma (although the
theorem is actually due to Cauchy and Frobenius; see the notes),
provides the answer.
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Theorem 10.5. Let GG be a permutation group acting on a set X.
For g € G let v¥(g) denote the number of points of X fixed by g.
Then the number of orbits of G is equal to ﬁ > gec ¥(9)-

ProOF: Count pairs (g,x), where g € G, x € X, 29 = x. Starting
with g, we find } ;9 (g). For each x € X there are |G|/[|O,|
such pairs, where O, is the orbit of x. So the total number equals
|G| > .cx 1/|0z|. The orbits of G partition X, and if we sum the
terms 1/|0,| over all x in a particular orbit, we obtain 1. Thus
Y wex 1/]0;| is the number of orbits. O

Example 10.5 (continued). Let G be the cyclic group of order
n, i.e. the group of rotations of a circular sequence of 0’s and 1’s.
If d|n there are ¢(n/d) integers g such that (n,g) = d and for each
such g there are 2¢ circular sequences that are fixed by the rotation
over g positions. So Theorem 10.5 immediately yields the result
(10.12).

Example 10.6. The following problem, introduced by Lucas in
1891, is known as the ‘probleme des ménages’. We wish to seat n
couples at a circular table so that men and women are in alternate
places and no husband will sit on either side of his wife. In how
many ways can this be done? We assume that the women have
been seated at alternate places. Call the ladies 1 to n and the
corresponding men also 1 to n. The problem amounts to placing
the integers 1 to n on a circle with positions numbered 1 to n such
that for all ¢ the integer ¢ is not in position ¢ or position 7 + 1
(mod n). Let F; be the set of seatings in which husband i is sitting
next to his wife. We now wish to use inclusion-exclusion and we
must therefore calculate in how many ways it is possible to seat r
husbands incorrectly. Call this number A,. We do this as follows.
Consider a circular sequence of 2n positions. Put a 1 in position
2¢ — 1 if husband 7 is sitting to the right of his wife; put a 1 in
position 2i if he is sitting to the left of his wife. Put zeros in
the remaining positions. The configurations that we wish to count
therefore are circular sequences of 2n zeros and ones, with exactly r
ones, no two adjacent. Let A/ be the number of sequences starting
with a 1 (followed by a 0). By considering 10 as one symbol, we
see that we must choose » — 1 out of 2n —r — 1 positions. To count
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the number A” of sequences starting with a 0, we place the 0 at the
end, and then it amounts to choosing r out of 2n — r places. Hence

Ar:A;—f—AZ: 2n—r—1 n 2n —r _ 2n 2n—7“.
r—1 r 2n —r r

By (10.1) we find that the number of ways to seat the men is

(10.13) i(_l)r(n_ﬂ!(zn—r) 20

r on—r
r=0

Problem 10F. We color the integers 1 to 2n red or blue in such
a way that if 7 is red then 7 — 1 is not blue. Prove that

Z(_l)k (2nk_ k> 22TL—2]€ — 2,n + 1

k=0
Can you prove this identity directly?

Problem 10G. Count the number of permutations x1, xs, ..., T,
of the integers 1 to 2n such that x; + ;.1 # 2n + 1 for ¢ =
1,2,...,2n —1.

Problem 10H. Prove that for 0 < k <n

Notes.

The principle of inclusion and exclusion occurred as early as 1854
in a paper by Da Silva and later in a paper by Sylvester in 1883.
For this reason (10.1) and similar formulae are sometimes called the
formula of Da Silva, respectively Sylvester. A better name that is
also often used is ‘sieve formula’. The formula is indeed an example
of a principle that is used extensively in number theory, referred to
as ‘sieve methods’. An example that is probably familiar to most
readers is the sieve of Eratosthenes: to find the primes < n?, take
the integers < n? and sieve out all the multiples of primes < n.
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The derangements treated in Example 10.1 occur again in Exam-
ple 14.1 and Example 14.10. The first occurrence of this question
is in one of the early books on games of chance: FEssai d’analyse
sur les jeuxr de hazard by P. R. de Montmort (1678-1719). It is
still often referred to by the name that he gave it: ‘probleme des
rencontres’. Formula (10.2) is sometimes stated as follows. If n
persons check their umbrellas (a typical Dutch example; it’s always
raining in Holland) and subsequently pick one at random in the
dark after a power failure, then the probability that nobody gets
his own umbrella is roughly e™! (if n is large).

The second proof in Example 10.2 is an example of the use of
‘calculus of finite differences’, used extensively in numerical analy-
sis.

A. F. Mdbius (1790-1868) was an astronomer (and before that an
assistant to Gauss) who made important contributions to geometry
and topology (e.g. the Mobius band).

G. F. B. Riemann (1826-1866) was professor in Gottingen, where
he also obtained his doctorate under Gauss. He is famous for many
of his ideas, which include the Riemann integral, Riemann surfaces
and manifolds, and of course the so-called Riemann hypothesis on
the location of the zeros of the (-function. One wonders what he
would have left us if he had not died so young.

In most books in which it occurs, Theorem 10.5 is called Burn-
side’s lemma. This is just one of many examples of theorems, etc.
attributed to the wrong person. For a history of this misnomer, we
refer to Neumann (1979).

F. E. A. Lucas (1842-1891) was a French number theorist. He
is known for his books on number theory and mathematical recre-
ations. The former book contained the problem of Example 10.6.
The Fibonacci numbers were given this name by Lucas. See the
notes to Chapter 14.

References.

F. E. A. Lucas (1891), Théorie des nombres, Gauthier-Villars,
Paris.

P. M. Neumann (1979), A lemma that is not Burnside’s, Math.
Scientist, 4, 133-141.
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Permanents

Before introducing the main topic of this chapter, we present a
generalization of Theorem 10.1. As in Theorem 10.1, let S be an
n-set, F1,..., E, (not necessarily distinct) subsets of S. Let F be
any field. To each element a € S, we assign a weight w(a) in F.
For any subset M of {1,2,...,r}, we define W (M) to be the sum
of the weights of the elements of S in ﬂieM FE;. For 0 < j <r, we
define Wj := > ,;_; W(M) (so Wy =" cqw(a)).

Theorem 11.1. If E(m) denotes the sum of the weights of the
elements of S that are contained in exactly m of the subsets Fj,
1 <4<, then

]

(11.1) E(m) = 7;:(—1)1'(”1,“) Wi

PrOOF: The proof is nearly the same as for Theorem 10.1. If
x € S and x is contained in exactly m of the subsets F;, then the
contribution of = to the sum in (11.1) is w(z). If x € S and = is
contained in exactly m + k of the subsets F;, then the contribution
to the sum equals

w(z) é(—l)i(mj N
— w(z) (m; k) Ek:(—w (]:) 0.

1=0

OJ
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We now give the definition of a permanent. Let A = (ay,...,a,)
be an n X n matrix with columns a; = (ayj,...,a,;) . Then per
A, the permanent of A, is defined by
(11.2) per A := Z Air(1) """ Anr(n)-

TESH

So the permanent is defined in the same way as the determinant
but without the signs depending on whether the permutation 7 is
even or odd.

From the definition, the following properties of the permanent
are obvious.

(11.3) per A=per A";

(11.4)
if P and () are permutation matrices, then per A = per PAQ);

(11.5) per A is a linear function of a;, 1<j <n.

Of course per A is also a linear function of each of the rows of
A. The permanent of A is much more difficult to calculate than
its determinant. However, it is clear from (11.2) that expansion by
rows or columns is possible. So define A;; to be the matrix obtained
from A by deleting row ¢ and column j. Then

per A = { Z?ﬂ ajjper Aij, 1<j<n,

Z;L:1 a;jper Az‘j, 1< <n.

(11.6)

The following method of calculating a permanent (due to Ryser) is
an application of Theorem 11.1.

Theorem 11.2. Let A be ann x n matrix. If A, is obtained from
A by deleting r columns, then S(A,) denotes the product of the
row-sums of A,. We define %, to be the sum of the values of S(A,)
for all possible choices of A,. Then

(11.7) per A = 2_:(—
r=0
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PROOF: Let S be the set of all products p = ay;, ... ay;, and define
w(p) := p. Define E; to be the set of products p for which j ¢
{i1,...,i,}. Then the permanent of A is the sum of the weights of
the elements of S that are not in any of the subsets E;. So (11.7)
is an immediate consequence of (11.1). O

Problem 11A. Prove (10.4) using Theorem 11.2.

Remark. If A;,..., A, are subsets of {1,...,n} and a;; = 1 if
j € A;, 0 otherwise, then per A counts the number of SDRs of the
sets Aq,...,A,.

Example 11.1. We find another formula for the number of de-
rangements of 1,2,...,n. The permanent of the matrix J — I of
size n is clearly d,,. From (11.7) we find

n—

(11.8) d, = i(—w(:) (n—7)(n—r—1)"".

r=0

n—r

By expanding the term (n — 1 —r) and applying (10.4) after
changing the order of summation, we find a complicated proof of
(10.2).

During the 1970’s, several well known conjectures on permanents
of (0,1)-matrices were proved, often by ingenious arguments. In
fact, much of the research on permanents was motivated by these
conjectures. Therefore we will devote attention to a number of
these results in this and the next chapter. As an introduction, we
consider (0,1)-matrices with two ones in each row and column.

Theorem 11.3. If A is a (0, 1)-matrix in which all row-sums and
column-sums are 2, then

1

per A < olznl,

Proor: Consider the graph G whose vertices correspond to the
rows of A, whose edges correspond to the columns of A, and where
vertex ¢ and edge j are incident exactly when A(i,j) = 1. This
graph is regular of degree 2, and hence is the disjoint union of
polygons. The submatrix corresponding to the vertices and edges
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of a polygon is, after reordering rows and columns if necessary, a
circulant

110000
0110--00
0011--00
0000--11
1000--01

(This may degenerate into a 2 by 2 matrix of 1’s.) The matrix A
is the direct sum of such matrices, each of which has permanent
2. The number of factors is at most [in] and we see that equality
holds in the theorem if A is the direct sum of |in] matrices J of
size 2. U

This elementary theorem is concerned with the relationship be-
tween the row-sums of a matrix and the permanent of that matrix,
and the same is true for many of the following theorems. This
brings us to the first difficult question. It was conjectured by H.

Minc in 1967 that if A is a (0,1)-matrix with row-sums rq,...,r,,
then
(11.9) per A < [J(r;)""s.

j=1

Observe that the proof of Theorem 11.3 shows that equality can
hold in (11.9) and in fact, we have equality if A is the direct sum of
matrices J,, Several results that were weaker than (11.9) were proved,
often by intricate and long arguments. The conjecture was finally
proved in 1973 by L. M. Brégman. All the more surprising is the fact
that A. Schrijver came up with an extremely elegant and very short
proof of Minc’s conjecture in 1977. The proof depends on the
following lemma.

Lemma 11.4. Iftq,ts,...,t, are nonnegative real numbers, then
titetty
t cee bt
(M) < gheglr
T

PROOF: Since zlogz is a convex function, we have

t+-+t, (t1_|_..._|_tr> tilog t1 4+ ...t logt,
——log <
r

Y

T T
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which proves the assertion. 0

In the following, we use (11.6) in the following form:

per A = Z per A;.

k‘ﬂik:l

Theorem 11.5. Let A be an n x n (0,1)-matrix with r; ones in
row i, 1 <1 <n. Then

per A < H(ri)!l/”.
i=1

PrOOF: The proof is by induction on n. For n = 1, the theorem is
trivial. We assume that the theorem is true for matrices of size n—1.
The idea is to estimate (per A)"P* 4 and to split this expression
into several products. Now note that r; is the number of values of
k for which a;; = 1 and apply the lemma. We find:

n

(11.10) (per A)"Per4 = H(per Ayper 4

i=1

n
per A per Ak
<II{w" 11 per 4%
=1

k,a;=1

Now, let S denote the set of all permutations v of {1,...,n} for
which a;, = 1 for i = 1,...,n. So |S| = per A. Furthermore,
the number of v € S such that v; = k is per A;; if a;; = 1 and 0
otherwise. So the right-hand side of (11.10) is equal to

o () (e}

We now apply the induction hypothesis to each A;,,. This yields

(11.12) (per A)"Ped <

11 (Hm) 1 I o9 T (G =yt

ves 1=1 1=1 JF#, J#i,

a’jui:O ajl,i:1
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Since the number of ¢ such that ¢ # j and a;,, = 0 is n—r;, and the
number of ¢ such that ¢ # j and a;,, = 1is r; — 1, we can replace
the right-hand side of (11.12) by

I (1) T c -

i — T e
HH | G

vesS i=1 i=1

3

and the assertion is proved. O

We now shall consider a special class of (0,1)-matrices, namely
the (0,1)-matrices that have exactly k ones in each row and column.
We denote this class by A(n, k). We define:

(11.13) M(n, k) := max{per A: A€ A(n,k)},

(11.14) m(n, k) := min{per A: A € A(n,k)}.
By taking direct sums, we find the following inequalities:

(11.15) M(?‘Ll + ng,k‘) > M(n1,]€)M(n2, k’),

(11.16) m(ny + ne, k) < m(ny, k)m(ne, k).

These two inequalities allow us to introduce two more functions
using the following result, known as Fekete’s lemma.

Lemma 11.6. Let f : N — N be a function for which f(m+n) >
f(m)f(n) for all m,n € N. Then lim,, ., f(n)"/" exists (possibly

Proor: Fix m and fix [, | < m. By induction, we find from the
inequality for f that f(I + km) > f(I)[f(m)]¥. Therefore

lim inf f(l + k-m)l/(l-‘rkm) > f(m)l/m
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and since there are m possible values for [, we in fact have
liminf f(n)Y/™ > f(m)Y™.
Now let m — oo. We find that
lim inf f(n)Y" > limsup f(m)Y™,

but then these are equal. O]

The assertion of the lemma is also true if in the inequality for f
we replace > by <. By applying the lemma to (11.15) and (11.16),
we can define:

(11.17) M (k) == lim {M(n, k)Y,
(11.18) m(k) = 7112]2@{771(71, k)Y,

Problem 11B. Prove that M(n,k)
(k'/*. Show by example that M (k)
M (k) = (k)Y

The function m(n, k) is much more difficult to handle. What we
should expect is based on a famous problem still referred to as the
Van der Waerden conjecture, although in 1981 two different proofs
of the conjecture appeared (after nearly 50 years of research on this
question!). We formulate the conjecture below, and the proof will
be given in the next chapter.

k!. Prove that M (k) <

> k.
> (K!)Y/%. This shows that

Conjecture. If A is an n X n matrix with nonnegative entries in
which all row-sums and column-sums are 1, then

(11.19) per A>nln™".

The matrices considered in the conjecture are usually called dou-
bly stochastic matrices. If A € A(n,k), then dividing all the ele-
ments of A by k yields a doubly stochastic matrix. Therefore the
conjecture (now a theorem) shows that m(k) > k/e. This is re-
markable because the value of M (k) given in Problem 11B tends
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to k/e for k — oo (see the notes). This means that for large n,
and A an arbitrary element of A(n, k), the value of (per A)Y/" is
nearly k/e. For a long time, the best lower bound for m(n, 3) was
n + 3 and even that was not easy to prove. Once again, the next
improvement was both considerable and elementary. We now give
the proof of that result, due to Voorhoeve (1979).

Theorem 11.7. m(n,3) >6- (3)">.

Proor: Let U, denote the set of n x n matrices with nonnegative
integers as entries and all row-sums and column-sums 3; u(n) =
min{per A : A € U,}. Denote by V,, the set of all matrices obtained

from elements of U,, by decreasing one positive entry by 1; v(n) :=
min{per A: A € V,}. We first show that

(11.20) u(n) > Bv(nﬂ .

Let A be an element of U, with first row a = (ay, a9, a3,0,...,0),
where a; > 0 for ¢+ = 1,2, 3. Since

232011(041—1,0(2,0(3,0,...,0)—|—042<041,042—1,0&3,0,...,0)

+ ()[3(0[1,042,0[3 - ]-707 s 70)7

we find from (11.5) that 2u(n) > (o + ao + az)v(n) = 3v(n),
proving the assertion.
Next, we show that

(11.21) v(n) > Ev(n— 1)} |

We must distinguish between two cases. In the first one, A is an
element of V,, with first row (1,1,0,...,0) and the matrix obtained
from A by deleting the first row has the form (cy,co, B). The
column-sum of c3 := ¢; + ¢ is either 3 or 4. By (11.6), we have

per A = per (1, B) + per (cs, B) = per (cz, B).

If the column-sum of cj3 is 3, then the matrix (c3, B) is in U,,_1 and
we are done by (11.20). If the sum is 4, then we use the same trick as
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above: write 3c3 as a linear combination of four vectors d; such that
each matrix (d;, B) is in V},_; and we find that 3per A > 4v(n—1).
The second case that we have to consider is that A has (2,0,...,0)
as first row. If we delete the first row and column of A, then there
are again two possibilities. We obtain a matrix B that is either in
U,-1 orin V,_;. So we have per A > 2min{u(n—1),v(n—1)} and
we are done by (11.20). By combining (11.20) and (11.21) with the
trivial value v(1) = 2, the assertion of the theorem follows. O

We now consider a larger class of n x n matrices, namely those
with nonnegative integers as entries and all row-sums and column-
sums equal to k. We denote this class by A(n, k) and the minimal
permanent within the class by A(n, k). Again we have A(m+n, k) <
A(m, k)A(n, k) and by Fekete’s lemma, we can define

(11.22) 6(k) = lim (A(n, k))m.

From Theorem 11.3 and Theorem 11.7, we know that A(n,2) = 2
and A(n,3) > 6-(3)"*. From (11.19), we have seen above that
A(n,k) > n!(E)". We have also seen that there is a connection
between permanents and SDRs. We now show a proof in which
this connection is exploited.

Theorem 11.8. A(n, k) < kZ”/(7T)

Proor: We denote by P, ;. the collection of all ordered partitions
of the set {1,2,...,nk} into classes of size k. We have

(nk)!

Now let A := (Ay,...,A,) be such a partition. The number of
SDRs of the subsets Aq,..., A, is k. Consider a second partition
B := (By,...,B,;). We denote by s(A, B) the number of common
SDRs of A and B. We define an n X n matrix A with entries a;;
by «;; := |A; N Bj|. The point of the proof is the fact that per A
counts the number of common SDRs of A and B. Furthermore, by
definition of the partitions, the matrix A is in A(n, k). Therefore

(11'23) Pk = |Pn7k| =

s(A,B) = per A > A\(n, k).
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If A€ P, is given and some SDR of A is given, then there are
n!p, r—1 ordered partitions B that have this same SDR. Hence we
have

Z s(A,B) =k" -nlpyi_1.

BGPnJc

Combining this with (11.23) and the inequality for A(n, k), we find

k" - n!pn,kfl . an
Pnk B (nk’) '

n

An, k) <

O

This proof is due to Schrijver and Valiant (1980) who also gave
the following corollary.

Corollary. 6(k) < %

Proor: This follows in the usual way from the previous theorem
by using Stirling’s formula: n! ~ n"e™"(27n)"/2. O

The corollary combined with Theorem 11.7 gives us one more

value of §(k), namely 6(3) = 3.

Problem 11C. Consider the set of integers 1,2,...,64. We first
remove the integers = 1 (mod 9), i.e. 1 = 1,...,25 = 64. Then
we remove the integers z; + 8, where 72 is to be interpreted as
8. This leaves us with a set S of 48 elements. We partition S
into subsets A1,..., Ag and also into subsets Bi, ..., Bg, where A;
contains integers in the interval (8(i — 1),8i] and B; contains the
integers = ¢ (mod 8). How many common SDRs are there for the
systems Ai,...,Ag and By, ..., Bg?

Problem 11D. We return to Problem 5G. Again, consider a bi-
partite graph on 2n vertices that is regular of degree 3. Give a
lower bound for the number of perfect matchings.

Problem 11E. On a circular arrangement of the integers 1,2,...,n
consider the subsets {i,i + 1,7 + 2} where ¢ = 1,2,...,n and inte-
gers are interpreted mod n. How many SDR’s does this collection
of sets have?
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Notes.

In his book Permanents, H. Minc (1978) mentions that the name
permanent is essentially due to Cauchy (1812) although the word as
such was first used by Muir in 1882. Nevertheless, a referee of one of
Minc’s earlier papers admonished him for inventing this ludicrous
name! For an extensive treatment of permanents, we refer to Minc’s
book. There, one can find much of the theory that was developed
mainly to solve the Van der Waerden conjecture (without success
at the time of writing of the book).

Theorem 11.2 is from Ryser (1963).

For a number of results related to the Minc conjecture, we refer
to Van Lint (1974).

The lemma known as Fekete’s lemma occurs in Fekete (1923).
For another application, we refer to J. W. Moon (1968).

The term doubly stochastic matriz can be motivated by consid-
ering the entries to be conditional probabilities. However, perma-
nents do not seem to play a role of importance in probability theory.

The remarks concerning m(k) and M (k) preceding Theorem 11.7
are based on Stirling’s formula and the related inequality n! >
n"e~". This inequality is easily proved by induction, using the fact
that (1+n~!)" is increasing with limit e. Actually Stirling’s formula
was first given by de Moivre. Stirling derived an asymptotic series
for the gamma function which leads to the estimate

I(z) = gt e (27) z¢f/(122) ,

where 0 <6 < 1. (n!=T(n+1).)
A. Schrijver (1998) has established equality in the Corollary to
Theorem 11.8 by proving that

Mty > (02
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The Van der Waerden
conjecture

In this chapter, we denote the set of all doubly stochastic matrices
of size n x §,. The subset consisting of matrices for which all
entries are positive is denoted by Q. We define J,, := n~1J, where
J denotes the n x n matrix for which all entries are 1. The vector
(1,1,...,1)T is denoted by j.

In 1926, B. L. van der Waerden proposed as a problem to deter-
mine the minimal permanent among all doubly stochastic matrices.
It was natural to assume that this minimum is per J, = n! n™" (as
stated in (11.19)). The assertion

(12.1) (A e, and A # J,) = (per A > per J,)

became known as the ‘Van der Waerden conjecture’ (although in
1969 he told one of the present authors that he had not heard this
name before and that he had made no such conjecture). In 1981 two
different proofs of the conjecture appeared, one by D. I. Falikman,
submitted in 1979, and one by G. P. Egoritsjev, submitted in 1980.
We shall give our version of Egoritsjev’s proof which had a slightly
stronger result than Falikman’s, cf. Van Lint (1981).

In the following, we shall use the term minimizing matriz for a
matrix A € Q, such that per A = min{per S : S € Q,}. As usual,
the matrix obtained from A by deleting row ¢ and column j is
denoted by A;;. We often consider A as a sequence of n columns and

write A = (ai,...,a,). Later on, we shall consider permanents of
matrices of size n—1 but we wish to use the notation for matrices of
size n. The trick is to write per (aj, ..., a,_1,€;), where e; denotes

the j-th standard basis vector. This permanent does not change
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value if the j-th row and n-th column are deleted. We remind the
reader that by Problem 5C (Birkhoff), the set €2, is a convex set
with the permutation matrices as vertices.

We need a few elementary results on matrices in €2,,. The first
statement is the same as Theorem 5.4.

Theorem 12.1. If A is an n X n matrix with nonnegative entries,
then per A = 0 if and only if A contains an s X t zero submatrix
such that s +t=mn+ 1.

We shall call an n x n matrix partly decomposable if it contains
a k x n — k zero submatrix. So A is partly decomposable if there
exist permutation matrices P and () such that

rio=(8 5)

where B and D are square matrices. If a matrix is not partly
decomposable, then we shall say that it is fully indecomposable. 1f
A €, and A is partly decomposable, then, in the representation
given above, we must have C' = O, because the sum of the entries
of B equals the number of columns of B and the sum of the entries
of B and C' is equal to the number of rows of B. So in that case,

A is the direct sum B + D of an element of 2, and an element of
ank-

Problem 12A. Let A be an n X n matrix with nonnegative entries
(n > 2). Prove that A is fully indecomposable if and only if per
Ai; > 0 for all ¢ and j.

Problem 12B. Let A be an n X n matrix with nonnegative en-
tries. Prove that if A is fully indecomposable, then AA"T and AT A
are also fully indecomposable.

Theorem 12.2. A minimizing matrix is fully indecomposable.

PRrROOF: Let A € Q, be a minimizing matrix and suppose that A
is partly decomposable. Then, as we saw above, A = B+ C, where
B € Q and C € Q,_j. By Theorem 12.1, we have per Aj ;11 =0
and per A1 = 0. By Birkhoff’s theorem, we may assume that B
and C have positive elements on their diagonals. In A we replace
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brr by brr — € and c¢11 by ¢11 — € and we put an € in the positions
k,k+ 1 and k£ + 1, k. The new matrix is again in 2, if € is small
enough. The permanent of the new matrix is equal to

per A — eper Ay —eper Apii g + O(€?).

Since per Ay, and per Ay 41 are both positive, this new perma-
nent is smaller than per A if € is sufficiently small. This contradic-
tion proves the assertion. [l

Corollary. (i) A row of a minimizing matrix has at least two pos-
itive entries.

(ii) For any a;; in a minimizing matrix, there is a permutation o
such that o(i) = j and a5 > 0 for 1 <s < n, s # .

PRrROOF: Clearly (i) is trivial, and (ii) follows from Problem 12A.
0J

Let us now look at how far we can get with calculus. A very
important step in the direction of a proof of (12.1) is the following
surprising result due to Marcus and Newman (1959).

Theorem 12.3. If A € Q, is a minimizing matrix and ap; > 0,
then per Ay, = per A.

PROOF: Let S be the subset of €2,, consisting of the doubly stochas-
tic matrices X for which z;; = 0 if a;; = 0. Then A is an interior
point of the set S, which is a subset of R for some m. If we denote
the set of pairs (7, j) for which a;; = 0 by Z, we can describe S by
the relations:

n
g xij =1, j=1,...,n;
i=1

n
E ill‘ijzl, ZII,...,TL;
i=1

a:iij, i,jzl,...,n;
zij =0,  (i,j) € Z.

Since A is minimizing, the permanent function has a relative mini-
mum in the interior point A of the set S and we can use Lagrange
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multipliers to describe the situation. So we define:

F(X):=per X — Z)\,; (Zmzk — 1) — Z/“Lj (Zxk] — 1) )
i=1 k=1 j=1 k=1
For (i,7) ¢ Z, we have:
F(X)/@:L’Z] = per Xij - )\7 — My
It follows that per A;; = A; + p; and from this we find that for
1<i<n
(12.2) per A = Zamper Ajj = Za” i) =N+ Z aijlhg,
Jj=1 j=1
and similarly for 1 < j < n,
(12.3) per A= pu; + Z aij i
i=1

We introduce the vectors A = (Ay,..., \,) " and p = (pg,...,1n) "
From (12.2) and (12.3), we find

(12.4) (per A)j= A+ Apu=p+ AT\
Multiplying by A" gives us
(per A)j = AT A+ AT Ap,

and hence pt = AT Ay, and similarly A = AA"X. The matrices AAT
and AT A are both in ,, and by Problem 12B and Theorem 12.2,
they have eigenvalue 1 with multiplicity one corresponding to the
eigenvector j. So we see that both A and p are multiples of j. By
(12.4), we have \; + p1; = per A and since per A;; = \; + pj, we are
finished. 0
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Remark. It was shown by Marcus and Newman that Theorem
12.3 implies that a minimizing matrix in €2’ must be J,,. The proof
depends on the following idea. Let A be an element of (2, with
the property that per A, = per A for all h, k. If we replace any
column of A by a vector x for which > | x;; = 1, then the value of
the permanent does not change (by (11.6)). We shall refer to this
idea as the substitution principle. If A is a minimizing matrix in {27,
then the substitution principle allows us to replace any two columns
of A by their average and thus obtain a new minimizing matrix. In
this way, one constructs a sequence of minimizing matrices which
tends to J,. The uniqueness of the minimum takes a little extra
work.

A final result that uses ideas from calculus is the following gen-
eralization of Theorem 12.3 due to London (1971).

Theorem 12.4. If A € ), is a minimizing matrix, then per A;; >
per A for all i and j.

PROOF: Let i and j be given. By Corollary (ii) of Theorem 12.2,
there is a permutation o such that o(i) = j and a,,) > 0 for
1 <s<mn,s#1 Let P be the corresponding permutation matrix.
For 0 < 6 <1 we define f(6) := per ((1 —6)A+ 60P). Since A is a

minimizing matrix, f’(0) > 0, i.e.

0 S Z Z(—aij —|—pij)per Az‘j = —nper A -+ Zper As,a(s)'

i=1 j=1 s=1

By Theorem 12.3 we have per A, ,(,) = per A for s # i and therefore
per A;; > per A. ]

Problem 12C. Show that Theorem 12.3 implies that if A € Q
is a minimizing matrix, then there is a minimizing matrix B € )}
that has aJ of size 4 as a principal submatrix. Then show that a
must be %

We now come to the main tool in the proof of the Van der Waer-
den conjecture. This time we need linear algebra. We shall give a
direct proof of a theorem on symmetric bilinear forms which leads
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to the inequality that was derived by Egoritsjev from the so-called
Alexandroff-Fenchel inequalities (which we do not treat).

Consider the space R" with a symmetric inner product (x,y) =
x'Qy. If Q has one positive eigenvalue and n — 1 negative eigen-
values, we shall speak of a Lorentz space. We use the following
standard terminology: a nonzero vector x is isotropic if (x,x) = 0,
positive, respectively negative, if (x,x) is positive, respectively neg-
ative.

Every nonzero vector in the (n — 1)-dimensional span of the neg-
ative eigenvectors is negative, so if a is positive and b is not a
scalar multiple of a, then the plane spanned by a and b must con-
tain a negative vector. Therefore the quadratic form in A given by
(a4 Ab,a + Ab) must have a positive discriminant. Thus we have
the following inequality, which is like the Cauchy inequality but the
other way around.

Theorem 12.5. If a is a positive vector in a Lorentz space and b
is arbitrary, then
(a,b)* > (a,a)(b,b)

and equality holds if and only if b = A\a for some constant .

The connection with permanents is provided by the following
definition. Consider vectors ay,...,a, o in R"” with positive coor-
dinates. As usual, let eq,...,e, be the standard basis of R". We
define an inner product on R" by

(12.5) (x,y) :=per (aj,as,...,a,-2,X,y),

i.e.
(x,y) =x'Qy,
where @ is given by

(126) qij ‘= per (al,ag,...,an,g,ei,ej).
Note that if A is a matrix with columns ai,...,a, and we delete

the last two columns and the rows with index ¢ and j, then the
reduced matrix has permanent equal to g;;.
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Theorem 12.6. The space R" with the inner product defined by
(12.5) is a Lorentz space.

PrOOF: The proof is by induction. For n = 2, we have ) = (2 é)

and the assertion is true. Now assume the theorem is true for R"~!.
In the first step of the proof, we show that () does not have the
eigenvalue 0. Suppose Q)c = 0, i.e.

(12.7) per (aj,...,a,-2,¢c,e;) =0 for 1 <j<n.

By deleting the last column and the j-th row, we can consider (12.7)
as a relation for vectors in R”~!. We consider the inner product
given by

(128) per (a17"'7a7L—37XJY7ej)j’IL

and apply the induction hypothesis, (12.7) and Theorem 12.5. Sub-
stitution of x = a,,_9, y = a,_» in (12.8) gives a positive value, and
X = a, 92, y = c gives the value 0. Therefore

(129) per (alv s 7an—37c7c7ej) <0 for 1 S] <n

and for each j equality holds if and only if all coordinates of c
except ¢; are 0. If we multiply the left-hand side of (12.9) by the
j-th coordinate of a,_» and sum over j, we find ¢'Qc. Therefore
the assumption (Qc = 0 implies that ¢ = 0.

For 0 < 6 < 1, we define a matrix @y by taking (12.5) and
replacing every a; by fa; + (1 — 0)j. From what we have shown
above, it follows that for every 6 in [0,1] the matrix @y does not
have the eigenvalue 0. Therefore the number of positive eigenvalues
is constant. Since this number is one for § = 0, it is also one for
0 = 1, which proves our assertion. O

We formulate the combination of Theorem 12.5 and Theorem
12.6 as a corollary. (The final assertion follows by continuity.)

Corollary. Ifai,...,a, 1 are vectors in R" with positive coordi-
nates and b € R", then

(per (ag,...,a, 1, b))2
> per (aj,...,a,-1,a,-1) - per (aj,...,a, 2, b,b)
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and equality holds if and only if b = M\a,,_; for some constant \.
Furthermore, the inequality also holds if some of the coordinates
of the a; are 0, but the assertion about the consequence of equality
then cannot be made.

We are now able to generalize Theorem 12.3.

Theorem 12.7. If A € ), is a minimizing matrix, then per A;; =
per A for all i and j.

PRrROOF: Suppose that the statement is false. Then by Theorem
12.4, there is a pair r, s such that per A,; > per A.

Choose t such that a,; > 0. Consider the product of two factors
per A. In the first of these we replace ay by a;, and in the second,
we replace a; by ay. Subsequently, we develop the first permanent
by column s and the second permanent by column ¢. By Theorem
12.5 and the Corollary to Theorem 12.6, we have

(per A (Z Qjy per Aks) (Z Qjs PEr Akt> )

k=1

By Theorem 12.4, every subpermanent on the right-hand side is at
least per A and per A, > per A. Since per A, is multiplied by
a,+ which is positive, we see that the right-hand side is larger than
(per A)?, a contradiction. O

We now use the substitution principle as follows. Take a mini-
mizing matrix A and let u and v be two columns of A. Replace u
and v by %(u + v). The new matrix is again a minimizing matrix
by Theorem 12.7.

Let A be any minimizing matrix and let b be any column of A,
say the last column. From Corollary (i) to Theorem 12.2, we know
that in every row of A there are at least two positive elements. We
now apply the substitution principle (as sketched above) a num-
ber of times but we never change the last column. In this way,
we can find a minimizing matrix A’ = (aj,...,al,_;,b) for which
a},...,a;, ; all have positive coordinates. Now apply the Corollary
to Theorem 12.6. By the substitution principle, equality must hold.
Hence b is a multiple of a] for any ¢ with 1 <4 < n—1. This implies
that b = n~'j and therefore A = n~'J,, which completes the proof
of the Van der Waerden conjecture.
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Theorem 12.8. The implication (12.1) is true.

Notes.

For a survey of the two proofs of the Van der Waerden conjec-
ture, we refer to Van Lint (1982). There one also finds historical
comments and a nice anecdote concerning the conjecture.

B. L. van der Waerden (1903-1996), a Dutch mathematician,
was known mostly for his work in algebra, although he published
in several fields. His work Moderne Algebra (1931) set the trend
for many decades.

Minc’s book on permanents is the best reference for all the work
that was done in relation to the Van der Waerden conjecture up to
1978.

The name Lorentz space is related to relativity theory and the
group of transformations that leave the quadratic form x? + y? +
2?2 —t? invariant. H. A. Lorentz was a Dutch physicist who won the
Nobel prize for his work.
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Elementary counting;
Stirling numbers

The next few chapters will be devoted to counting techniques and
some special combinatorial counting problems. We start with sev-
eral elementary methods that are used quite often. Consider map-
pings from {1,2,...,n} to {1,2,...,k}. Their total number is k".
In Example 10.2, we studied the case where the mappings were
required to be surjective. We return to this question in Theorem
13.5. If the mappings are injections, then their number is the falling
factorial

(13.1) (k) :=k(k—1)...(k—n+1) =k/(k —n)\.

We now consider a similar problem. The n objects to be mapped
are no longer distinguishable but the images are. We formulate this
as follows. We have n indistinguishable balls that are to be placed
in k£ boxes, marked 1,2, ..., k. In how many different ways can this
be done? The solution is found by using the following trick. Think
of the balls as being colored blue and line them up in front of the
boxes that they will go into. Then insert a red ball between two
consecutive boxes. We end up with a line of n+k — 1 balls, k — 1 of
them red, describing the situation. So the answer to the problem

is (”ﬁ;l) We formulate this as a theorem.

Theorem 13.1. The number of solutions of the equation

(13.2) x1+ a2+ -+ xp=n
in nonnegative integers is ("ﬁ;l)

PROOF: Interpret z; as the number of balls in box 1. (]
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Corollary. The number of solutions of the equation (13.2) in pos-
itive integers is (Zj)

PRrROOF: Replace z; by y; := x; — 1. Then > y; = n — k. Apply
Theorem 13.1. O

Example 13.1. By analogy with the question we encountered in
Example 10.6, we consider the problem of selecting r of the integers
1,2,...,n such that no two selected integers are consecutive. Let
1 < x9 < -+ < x, be such a sequence. Then z; > 1, z9 — 1 >
2,...,&. — xy_1 > 2. Define

yr:=2x1, Yi:=x —xi1— 1, 2<i <71y Yy i=n—a, + 1.

Then the y; are positive integers and Zf;l yi =n —1r+ 2. By the

Corollary to Theorem 13.1, we see that there are (”_:H) solutions.

Problem 13A. On a circular array with n positions, we wish to
place the integers 1,2,...,r in order, clockwise, such that consecu-
tive integers, including the pair (r, 1), are not in adjacent positions
on the array. Arrangements obtained by rotation are considered
the same. In how many ways can this be done?

Example 13.2. In how many ways can we arrange rq Palls of color
1, r9 balls of color 2,...,r; balls of color k in a sequence of length

n:=ri+ro+---+r;? If we number the balls 1 to n, then there are
n! arrangements. Since we ignore the numbering, any permutation
of the set of r; balls of color i, 1 < i < k, produces the same
arrangement. So the answer to the question is the multinomial
coefficient (741“7_‘.77%); see (2.1).

Example 13.3. We wish to split {1,2,...,n} into b; subsets of size
1, by subsets of size 2, ..., by subsets of size k. Here Zle ib; = n.
The same argument as used in Example 13.2 applies. Furthermore,
the subsets of the same cardinality can be permuted among them-
selves without changing the configuration. So the solution is

n!

(13.3) bl (1) 20 (R

Several counting problems (often involving binomial coefficients)
can be done in a more or less obvious way that leads to a (sometimes
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difficult) calculation. Often there is a less obvious ‘combinatorial’
way to do the counting that produces an immediate answer. We
give a few examples.

Example 13.4. Let A run through all subsets of {1,2,...,n}.
Calculate S = " |A|. Since there are (") subsets of size i, we
apparently must calculate Z?:Uz(’?) By differentiating (1 + x)",

we find .
(n) i—1 _ n—1
E il )z =n(l+x)
7

i=1
and substitution of z = 1 yields the answer S = n - 2", If we had
spent a little more time thinking, then this answer would have been
obvious! A set A and its complement together contain n elements
and there are exactly 2"~! such pairs.

Example 13.5. In Chapter 10 we saw some examples of formulae
involving binomial coefficients for which a combinatorial proof was
easier than a direct proof. The familiar relation

(13.4) kz: (2)2 = (2:)

is another example. Of course one can calculate this sum by de-
termining the coefficient of " in (1 4+ x)"(1 + z)" and using the
binomial formula. However, each side of (13.4) just counts (in two

ways) the number of ways of selecting n balls from a set consisting
of n red balls and n blue balls.

Problem 13B. Show that the following formula for binomial co-
efficients is a direct consequence of (10.6):

L) =20,

Give a combinatorial proof by considering (a + b + 1)-subsets of
the set {0,1,...,n}, ordering them in increasing order, and then
looking at the value of the integer in position a + 1.

Example 13.6. We consider a slightly more complicated example
where our previous knowledge could lead us to an involved solu-
tion. How many sequences Aj,..., Ay are there for which A; C
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{1,2,...,n},1 <i<k, and Ule A; ={1,2,...,n}? Since we wish
to avoid that 7, 1 < j < n, is not an element of the union of the
A;’s, we are tempted to use inclusion-exclusion. If we choose 7 ele-
ments from {1,2,...,n} and consider all sequences A, ..., A; not
containing any of these i elements, then we find (2"%)* sequences.
So by Theorem 10.1, the solution to the problem is

Zn:(—l)i (2’) o=k — (2k _ 1)n,

1=0

This answer shows that another approach would have been better.
If we describe a sequence A, ..., Ay by a (0,1)-matrix A of size
k x n, with the characteristic functions of the subsets as its rows,
then the condition on the sequences states that A has no column
of zeros. So there are (2¥ — 1)" such matrices!

Problem 13C. Give a solution involving binomial coefficients and
a combinatorial solution to the following question. How many pairs
(A1, As) of subsets of {1,2,...,n} are there such that Ay N Ay = 07

Problem 13D. Consider the set S of all ordered k-tuples A =
(Ay,..., Ay) of subsets of {1,2,...,n}. Determine

D IAIUA U U Ay
AeS

Problem 13E. The familiar relation

Zl: (m) B (z + 1)

— k k+1

is easily proved by induction. The reader who wishes to, can find a
more complicated proof by using (10.6). Find a combinatorial proof
by counting paths from (0,0) to (I+1, k+1) in the X-Y plane where
each step is of type (z,y) — (v + 1,y) or (z,y) — (z+ 1,y + 1).
Then use the formula to show that the number of solutions of

$1+$2+"‘+1’k~§’n
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in nonnegative integers is (”Zk). Can you prove this result combi-
natorially?

It is often possible to prove relations between binomial coeffi-
cients by considering (Z) formally as a polynomial in a defined by

(a> _ala=1)-(a—k+1)

k k!

If two polynomials of degree < k agree for k 4+ 1 values of the
variable, they are identical. We give an example.
Let

Fla):=Y" (1), 6= 3 (")t

k=0 k=0

From the binomial theorem we know that if a is an integer in the
interval [0,n], then F(a) = (x + y)"y" “ but so is G(a), again by
the binomial theorem. So, the polynomials are identical and we
can substitute any numbers for a,x, and y to obtain relations for
binomial coefficients. For instance, y = 2x and a = 2n + 1 yields:

z”: (27112r 1) on—k _ z”: (n —]g k) gk,

k=0 k=0

a relation that would be extremely difficult to prove by counting.

Two kinds of numbers that come up in many combinatorial prob-
lems are the so-called Stirling numbers of the first and second kind.
The numbers are often defined by the formulae (13.8) and (13.12)
given below. We prefer a combinatorial definition.

Let ¢(n, k) denote the number of permutations 7= € S, with ex-
actly k cycles. (This number is called a signless Stirling number of
the first kind.) Furthermore define ¢(0,0) = 1 and ¢(n,k) = 0 if
n<0ork <0, (nk)# (0,0). The Stirling numbers of the first
kind s(n, k) are defined by

(13.5) s(n, k) == (—=1)"Fe(n, k).
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Theorem 13.2. The numbers c(n, k) satisfy the recurrence rela-
tion

(13.6) cnyk)=(mn—1)cn—1,k)+ec(n—1,k—1).

Proor: If 7 is a permutation in S, 1 with k cycles, then there
are n — 1 positions where we can insert the integer n to produce
a permutation 7’ € S, with k cycles. We can also adjoin (n) as a
cycle to any permutation in 5,1 with £ — 1 cycles. This accounts
for the two terms on the right-hand side of (13.6). O]

Theorem 13.3. For n > 0 we have

(13.7) ic(n, Kb =z(x+1)...(x+n—1)
k=0
and

n

(13.8) > s(n, k)at = (@),
k=0

where (x),, is defined as in (13.1).
PROOF: Write the right-hand side of (13.7) as

Fu(z) =Y _b(n, k)a".
k=0

Clearly 6(0,0) = 1. Define b(n,k) :=0ifn <0or k <0, (n,k) #
(0,0). Since

F.(x)=(x+n—1)F,_1(x)
= bn—Lk—12"+(n-1)> bn-1,k)a",

k=1 k=0

we see that the numbers b(n, k) satisfy the same recurrence relation
as the ¢(n, k), namely (13.6). Since the numbers are equal if n < 0
or k <0, they are equal for all n and k.
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To prove (13.8) replace z by —x and use (13.5). O

We remark that it is possible to give a combinatorial proof of
(13.7) by showing that both sides of the equation count the same
objects.

We now define the Stirling numbers of the second kind: denote

by P(n,k) the set of all partitions of an n-set into k nonempty
subsets (blocks). Then

(13.9) S(n, k) :=|P(n,k)|.

Again we have S(0,0) = 1 and take the numbers to be 0 for all
values of the parameters not covered by the previous definition.
Again we have an easy recurrence relation.

Theorem 13.4. The Stirling numbers of the second kind satisfy
the relation

(13.10) S(n,k)=kS(n—1,k)+S(n—1,k—1).

ProOOF: The proof is nearly the same as for Theorem 13.3. A
partition of the set {1,2,...,n — 1} can be made into a partition
of {1,2,...,n} by adjoining n to one of the blocks or by increasing
the number of blocks by one by making {n} a block. O

We define the Bell number B(n) to be the total number of parti-
tions of an n-set, i.e.

(13.11) B(n) == iS(n, k), (n>1).
k=1

For the Stirling numbers of the second kind there is a formula
similar to (13.8).

Theorem 13.5. For n > 0 we have
(13.12) 2" =" S(n, k) (@)
k=0

PrROOF: We first remark that by (13.9) the number of surjective
mappings from an n-set to a k-set is k!1S(n, k) (a block of the parti-
tion is the inverse image of an element of the k-set). So by Example
10.2, we have
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(13.13) S(n,k) = %g(—ni (’;) (k—d)" = %g(—n’” (]j) i

Now let x be an integer. There are " mappings from the n-set
N :={1,2,...,n} to the z-set {1,2,...,x}. For any k-subset Y of
{1,2,...,z}, there are k!lS(n, k) surjections from N to Y. So we

find
n
n __
. _Z<k>k5nk ank

k=0
O
In Example 10.1, we saw that it can be useful to associate a so-
called generating function with a sequence ai,as,... of numbers.

In Chapter 14, we will see many uses of the generating function.
At this point we treat the generating functions for the Stirling
numbers.

Theorem 13.6. > ., S(n, k)% = f(e” — 1) (k> 0).

PROOF: Let Fj(x) denote the sum on the left-hand side. By (13.10)
we have

Fl(z) = kFy(z) + F_1(z).

The result now follows by induction. Since S(n,1) = 1, the as-

sertion is true for £ = 1 and the induction hypothesis yields a
differential equation for Fj, which with the condition S(k,k) =1
has the right-hand side of the assertion as unique solution. 0

For the Stirling numbers of the first kind, it is slightly more
difficult to find the generating function.

Theorem 13.7. Y7 s(n, k)% = L(log(1 + 2))*.

PROOF: Since

00
1
(1+Z);v: zlog(1+42) Zylogl‘FZ) k
k=0
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the right-hand side in the assertion is the coefficient of z* in the
expansion of (14 z)*. On the other hand, we have for |z| < 1,

(1+@m:§i(> ::52%

n=0
oo Z o o
— - r JE—
=2 =2 ") s(nn)
n=0 r=0 n=r
This completes the proof. O

Problem 13F. Show directly that the number of permutations of
the integers 1 to n with an even number of cycles is equal to the
number of permutations with an odd number of cycles (n > 1).
Also show that this is a consequence of Theorem 13.7.

Finally we mention that the Stirling numbers of the first and
second kind are related by

(13.14) > S(n,k)s(k,m) = G-

k=m
This follows immediately if we substitute (13.8) in (13.12). Since
the functions z", respectively (x),, with n > 0 both form a basis
of the vector space C|z], the formula (13.14) is just the standard
relation between the matrices for basis transformation.

Problem 13G. Show that (13.12) leads to B(n) = 2 3°7° &
Problem 13H. Let A be the n x n matrix with a;; := (;) for
i,7=0,...,n—1. Determine A~

Problem 13I. From (10.6) one finds, by taking = 3, that

> o (“*/)277 = 29*1. Using a method from this chapter prove

j
that
§:<a+]>23 2,
A
Prove the same result directly by defining

Cln:z<a'_]|—j>2 a ]

J=0



128 A Course in Combinatorics

substituting the basic recurrence for binomial coefficients, thus find-
ing that a, = %an + %an,l.

Problem 13J. Suppose we call a set nice if its cardinality is di-
visible by 3. How many nice subsets does an n-set have?

Problem 13K. Prove that >~ S(n,n —2)2" = "L((ll,tf)?

Notes.

Stirling numbers of the first and second kind appear in many
areas of mathematics; for example, they play a role in a number
of interpolation formulae and in the calculus of finite differences.
There are tables of the numbers in several books on tables of math-
ematical functions.

Later, in Chapter 37, these numbers will reappear.

James Stirling (1692-1770), a Scottish mathematician, studied
at Oxford. He taught mathematics at Venice and London but
switched to a career in business at the age of 43.
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Recursions and
generating functions

Many combinatorial counting problems with a solution a,, depend-
ing on a parameter n, can be solved by finding a recursion relation
for a,, and then solving that recursion. Sometimes this is done by
introducing an ordinary generating function

f(x) = Z apx"”,

n>0

or an exponential generating function

xn
flx) = Z anm,

n>0

and using the recursion to find an equation or a differential equation
for f(z), and solving that equation. We shall demonstrate several
of the techniques involved.

Example 14.1. As an introduction, consider once again Example
10.1. Let m be a derangement of {1,2,...,n + 1}. There are n
choices for m(n +1). If 7(n 4+ 1) =i and 7(i) = n + 1, then 7 is
also a derangement on the set {1,2,...,n}\{i}. If 7(n+1) =i and
(i) #n+ 1= 7(j), then replacing 7(j) by 7 yields a derangement
on the set {1,2,...,n}. Therefore

(14.1) dpyr = n(dy + dn-1),

which is also an immediate consequence of (10.3). Let D(z) be
the exponential generating function for the sequence dy = 1,d; =
0,ds,.... From (14.1) we immediately find

(1= =2)D'(z) = 2D(x),
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and from this we find D(z) = e /(1 — z) and (10.2).

In many cases, we use the generating functions only as a book-
keeping device, and our operations of addition, multiplication (and
even substitution and derivation, as we shall see below) are to be
interpreted formally. It is possible to give a completely rigorous
theory of formal power series (as algebraic objects) and we give
an introduction to this theory in Appendix 2. In most cases, it is
intuitively clear and easy to check that the operations are legiti-
mate. If the series that we use actually converge, then we can use
all appropriate knowledge from analysis concerning these series, as
we did in Example 14.1. We give another elementary example.

Example 14.2. Suppose that we have k£ boxes numbered 1 to k
and suppose that box i contains r; balls, 1 < i < k. A formal
bookkeeping device to list all possible configurations is to let the

named one correspond to the term z}'xy* - - - 2" in the product

(1—|—x1+x%+---)(1—{—m2+mg—|—~--)--~(1—|—ack—|—mi+~--).

We can collect all the terms involving exactly n balls by taking
x; = x for all 7, and considering the terms equal to x". Therefore we
find that the number of ways to divide n balls over k distinguishable
boxes is the coefficient of 2" in the expansion of (1 — z)~*, and by
(10.6) this is (k_}f”), giving a second proof of Theorem 13.1.

In many cases, the combinatorial problem that we are interested
in leads to a linear recursion relation with constant coeflicients,
which is easily solved by standard methods.

Example 14.3. We consider paths of length n in the X-Y plane
starting from (0,0) with steps R: (z,y) — (z+1,y), L: (z,y) —
(x—1,y),and U : (z,y) — (z,y+1) (i.e. to the right, to the left, or
up). We require that a step R is not followed by a step L and vice
versa. Let a, denote the number of such paths. First observe that
if we denote by b, the number of paths of length n starting with a
step U, then b, = a,,_1 and furthermore trivially b,.,, > b,b,, and
b, < 3" '. So by Fekete’s lemma, Lemma 11.6, lim,,_ b,ll/ " exists
and is at most 3. Next, note that ay = 1 and a; = 3. We split
the set of paths of length n into subsets depending on the last one
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or two steps. Clearly there are a,_; paths ending with the step U.
Take a path of length n — 1 and repeat the last step if it is L or R,
and adjoin a step L if the last step was U. In this way, we obtain
all the paths of length n that end in LL, RR, or UL. So there are
a1 of these. It remains to count the paths ending with UR and
again it is trivial that there are a,_5 of these. We have shown that

ay, = 2,1 + G2 (n>2).
Let f(z) = " anx™. Then the recursion implies that
flz) =143z 422 (f(z) — 1) + 22 f(x),
le.

_ 1tz 5@ 38
f(x)_l—233—3v2_1—0430—1—1—&%7

where oo =1 + \/5, G=1-— V2. Therefore

1
an = 5(04”“ + 6"

and we find lim,, ., a)/" = 1 + /2.

Problem 14A. (i) Let a, denote the number of sequences of 0’s
and 1’s that do not contain two consecutive 0’s. Determine a,,.
(ii) Let b, denote the number of sequences of 0’s and 1’s with no
two consecutive 1’s and for which a run of 0’s always has length 2
or 3, including possibly at the beginning or end of the sequence.

Show that b,ll/ " — ¢ for some ¢ and approximate c.

Example 14.4. Let a(r,n), where 0 < r < n, denote the number
of solutions of the problem of Example 13.1 (a(0,0) = 1). We
divide the set of possible sequences into two subsets: those with
x1 = 1 and those with 21 > 1. The first subset clearly contains
a(r —1,n — 2) elements, the second one a(r,n — 1) elements. So

(14.2) a(r,n) =a(r,n—1)4+a(r —1,n —2) (n>1).
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From this recursion, we can prove the result a(r,n) = (”_:“) by
induction. Using the generating function is more difficult. Try

From (14.2) we find

flay)=1+z+ay+az(-1+ f(z,y) + 2"y f(z,y),

i.e.
142y 1 > x2a_1ya

f(@,y) = 1—z—a2y 1—x+;(1—x)“+1.

Substitution of (10.6) for (1—x)~%"! produces the required binomial
coefficient for a(r,n).

As we saw in Example 14.3 (and Problem 14A) a linear recursion
with constant coefficients leads to a rational function as generating
function (and vice versa). Indeed, if a,, = 22:1 agan—j (n > 1) a