PART B

Linear Algebra.
Vector Calculus

; CHAPTER 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems
CHAPTER 8 Linear Algebra: Matrix Eigenvalue Problems
CHAPTER 9 Vector Differential Calculus. Grad, Div, Curl
CHAPTER 10 Vector Integral Calculus. Integral Theorems

Linear algebra in Chaps. 7 and 8 consists of the theory and application of vectors and
matrices, mainly related to linear systems of equations, eigenvalue problems, and linear
transformations.

Linear algebra is of growing importance in engineering research and teaching because it
forms a foundation of numeric methods (see Chaps. 20-22), and its main instruments,
matrices, can hold enormous amounts of data—think of a net of millions of telephone
connections—in a form readily accessible by the computer.

Linear analysis in Chaps. 9 and 10, usually called vector calculus, extends differentiation
of functions of one variable to functions of several variables—this includes the vector
differential operations grad, div, and curl. And it generalizes integration to integrals over
curves, surfaces, and solids, with transformations of these integrals into one another, by
the basic theorems of Gauss, Green, and Stokes (Chap. 10).

[ Software suitable for linear algebra (Lapack, Maple, Mathematica, Matlab) can be found
in the list at the opening of Part E of the book if needed.

Numeric linear algebra (Chap. 20) can be studied directly after Chap. 7 or 8 because
‘ Chap. 20 is independent of the other chapters in Part E on numerics.
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CHAPTER 7

Linear Algebra: Matrices,
Vectors, Determinants.
Linear Systems

This is the first of two chapters on linear algebra, which concerns mainly systems of
linear equations and linear transformations (to be discussed in this chapter) and eigenvalue
problems (to follow in Chap. 8).

Systems of linear equations, briefly called linear systems, arise in electrical networks,
mechanical frameworks, economic models, optimization problems, numerics for
differential equations, as we shall see in Chaps. 21-23, and so on.

As main tools, linear algebra uses matrices (rectangular arrays of numbers or functions)
and vectors. Calculations with matrices handle matrices as single objects, denote them by
single letters, and calculate with them in a very compact form, almost as with numbers,
so that matrix calculations constitute a powerful “mathematical shorthand”.

Calculations with matrices and vectors are defined and explained in Secs. 7.1-7.2.
Sections 7.3—7.8 center around linear systems, with a thorough discussion of Gauss
climination, the role of rank, the existence and uniqueness problem for solutions (Sec. 7.5),
and matrix inversion. This also includes determinants (Cramer’s rule) in Sec. 7.6 (for
quick reference) and Sec. 7.7. Applications are considered throughout this chapter. The
Jast section (Sec. 7.9) on vector spaces, inner product spaces, and linear transformations
is more abstract. Eigenvalue problems follow in Chap. 8.

COMMENT. Numeric linear algebra (Secs. 20.1-20.5) can be studied immediately
after this chapter.

Prerequisite: None.
Sections that may be omitted in a short course: 1.5, 7.9.
References and Answers to Problems: App. 1 Part B, and App. 2.

7.1 Matrices, Vectors:
Addition and Scalar Multiplication

In this section and the next one we introduce the basic concepts and rules of matrix and
vector algebra. The main application to linear systems (systems of linear equations) begins
in Sec. 7.3.
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SEC. 71

EXAMPLE 1

Matrices, Vectors: Addition and Scalar Multiplication
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A matrix is a rectangular array of numbers (or functions) enclosed in brackets. These
numbers (or functions) are called the entries (or sometimes the elements) of the matrix.
For example,

dyy (5P iz
0.3 1 -5
Aoy Aao dsz | »
0 —-02 16
(1) asy ass dssz |
ik 2x2 47
> l[a; ay as),
&= 4x %_

are matrices. The first matrix has two rows (horizontal lines of entries) and three columns
(vertical lines). The second and third matrices are square matrices, that is, each has as
many rows as columns (3 and 2, respectively). The entries of the second matrix have two
indices giving the location of the entry. The first index is the number of the row and the
second is the number of the column in which the entry stands. Thus, as5 (read a two three)
is in Row 2 and Column 3, etc. This notation is standard, regardless of whether a matrix
is square or not.

Matrices having just a single row or column are called vectors. Thus the fourth matrix
in (1) has just one row and is called a row vector. The last matrix in (1) has just one
column and is called a column vector.

We shall see that matrices are practical in various applications for storing and processing
data. As a first illustration let us consider two simple but typical examples.

Linear Systems, a Major Application of Matrices

In a system of linear equations, briefly called a linear system, such as

I

4xq + 6x9 + 9xg 6
6x1 — 2x3 =20

Sxp — 8xg + x3 =10

the coefficients of the unknowns x,, xo, x3 are the entries of the coefficient matrix, call it A,

4 6 9 4 6 9 6
A=|6 0 -2 The matrix A=|6 0 -2 20
5 -8 1 5 -8 1 10

is obtained by augmenting A by the right sides of the linear system and is called the augmented matrix of the
system. In A the coefficients of the system are displayed in the pattern of the equations. That is, their position
in A corresponds to that in the system when written as shown. The same is true for A.

We shall see that the augmented matrix A contains all the information about the solutions of a system,
so that we can solve a system just by calculations on its augmented matrix. We shall discuss this in great
detail, beginning in Sec. 7.3. Meanwhile you may verify by substitution that the solution is x; = 3, x5 = 3,
xg3 = —1.

The notation xy, x5, x5 for the unknowns is practical but not essential; we could choose x, y, z or some other
letters. 9
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EXAMPLE 2

CHAP.7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

Sales Figures in Matrix Form

Sales figures for three products I IL, 11 in a store on Monday (M), Tuesday (T), - - - may for each week be
arranged in a matrix

M T N Th F S
400 330 810 0 210 470 I
A= 0 120 780 500 500 960 1T
100 0 0 270 430 780 11

If the company has ten stores, we can set up ten such matrices, one for each store. Then by adding corresponding
entries of these matrices we can get a matrix showing the total sales of each product on each day. Can you think
of other data for which matrices are feasible? For instance, in transportation or storage problems? Or in recording
phone calls, or in listing distances in a network of roads? i}

General Concepts and Notations

We shall denote matrices by capital boldface letters A, B, C, - - -, or by writing the general
entry in brackets; thus A = [ajk], and so on. By anm X n matrix (read m by n matrix)
we mean a matrix with m rows and n columns—rows come always first! m X n is called
the size of the matrix. Thus an m X n matrix is of the form

an ayz ain
asy Qg Aoy

@ A = [ag] =
(229951 aAm2 Amn

The matrices in (1) are of sizes 2 X 3,3%X3,2X2,1X 3,and 2 X 1, respectively.

Each entry in (2) has two subscripts. The first is the row number and the second is the
column number. Thus as; is the entry in Row 2 and Column 1.

If m = n, we call A an n X n square matrix. Then its diagonal containing the entries
@iy, Boon * * * + G 18 called the main diagonal of A. Thus the main diagonals of the two
square matrices in (1) are dy3, dag, ds3 and e, 4x, respectively.

Square matrices are particularly important, as we shall see. A matrix that is not square
is called a rectangular matrix.

Vectors

A vector is a matrix with only one row or column. Its entries are called the components
of the vector. We shall denote vectors by lowercase boldface letters a, b, - - - or by its
general component in brackets, a = [g;], and so on. Our special vectors in (1) suggest
that a (general) row vector is of the form

a=[-2 5 08 0 1L

a=([a; az ", p]- For instance,
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A column vector is of the form

by
4

by
b= . For instance, b = 0
-7

Bigy

Matrix Addition and Scalar Multiplication

What makes matrices and vectors really useful and particularly suitable for computers is
the fact that we can calculate with them almost as easily as with numbers. Indeed, we
now introduce rules for addition and for scalar multiplication (multiplication by numbers)
that were suggested by practical applications. (Multiplication of matrices by matrices
follows in the next section.) We first need the concept of equality.

DEFINITION Equality of Matrices

Two matrices A = [a;;] and B = [bj;;] are equal, written A = B, if and only if they
have the same size and the corresponding entries are equal, that is,
a1 = byq, ayo = bys, and so on. Matrices that are not equal are called different.

Thus, matrices of different sizes are always different.

EXAMPLE 3 Equality of Matrices

Let

ayq [45P) 4 0
A= and B = .
day asgo 3 -1

ajp =4, app= 0,

Then

A=B if and only if
asy = 3, age = —1.

The following matrices are all different. Explain!

P P

: DEFINITION Addition of Matrices

The sum of two matrices A = [a;;] and B = [by] of the same size is written
A + B and has the entries a;, + bj; obtained by adding the corresponding entries
of A and B. Matrices of different sizes cannot be added.

As a special case, the sum a + b of two row vectors or two column vectors, which must
have the same number of components, is obtained by adding the corresponding
components.
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EXAMPLE 4 Addition of Matrices and Vectors

—4 6 3 5 -1 0 1 5 3
It A= and B = , then A+ B= .
0 1 2 3 1 0 3 2 2

A in Example 3 and our present A cannot be added. If a = [5S 7 2] and b = [—-6 2 0], then
atb=[-1 9 2]
An application of matrix addition was suggested in Example 2. Many others will follow. ]
DEFINITION Scalar Multiplication (Multiplication by a Number)

The product of any m X n matrix A = [a;;| and any scalar ¢ (number c) is written
cA and is the m X n matrix cA = [cay;] obtained by multiplying each entry of A
by c.

Here (—1)A is simply written —A and is called the negative of A. Similarly, (—k)A is
written —kA. Also, A + (—B) is written A — B and is called the difference of A and B
(which must have the same size!).

EXAMPLE 5 Scalar Multiplication

27 —18 —2.7 1.8 3 =2 0 0

10
If A=|0 09|, then —A= 0 -0.9 |, TA =10 1|, OA=10 0
9.0 —45 -9.0 4.5 10, —3 0 0

If a matrix B shows the distances between some cities in miles, 1.609B gives these distances in kilometers. [l

Rules for Matrix Addition and Scalar Multiplication. From the familiar laws for the
addition of numbers we obtain similar laws for the addition of matrices of the same size
m X n, namely,

(a) A+B=B+A

3 (b) A+B)+C=A+B+C (written A + B + C)
(c) A+0=A
(d) A+ (—A) =0.

Here 0 denotes the zero matrix (of size m X n), that is, the m X n matrix with all entries
zero. (The last matrix in Example 5 is a zero matrix.)

Hence matrix addition is commutative and associative [by (3a) and (3b)].

Similarly, for scalar multiplication we obtain the rules

() cA+B)=cA + B
(b) (c + HA = cA + kA

(c) c(kA) = (ck)A (written ckA)
(d) 1A = A.

C))
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ADDITION AND SCALAR MULTIPLICATION
OF MATRICES AND VECTORS

Let
3 0 4 0 -5 -3
A=1]-1 2 21, B=|-5 2 4,
6 5 —4 -3 4 0
27] 6 1
C= 41, D=| -4 71,
2 -8 3
27 —4.5
u = 0, v= 0.8
—1] 1.2

Find the following expressions or give reasons why they
are undefined.

1.C+D,D+ C,6(D— C), 6C— 6D

. 4C, 2D, 4C + 2D, 8C — OD
.A+C—-D,C—-D,D—-C,B+2C + 4D
.2(A +B),2A + 2B, 5A — 1B, A+ B + C

. 3C — 8D, 4(3A), (4-3)A, B — £A

5A —3C,A — B + D, 4B — 6A), 4B — 24A
. 33u, 4v + 9u, 4(v + 2.25u), u — v

. A+ u, 12u + 10v, 0(B — v), 0B + u

= B Y L N

9. (Linear system) Write down a linear system (as in
Example 1) whose augmented matrix is the matrix B
in this problem set.

10. (Scalar multiplication) The matrix A in Example 2
shows the numbers of items sold. Find the matrix
showing the number of units sold if a unit consists of
(a) 5 items, (b) 10 items?

11. (Double subscript notation) Write the entries of A in
Example 2 in the general notation shown in (2).

12. (Sizes, diagonal) What sizes do A, B, C, D, u, v in
this problem set have? What are the main diagonals of
A and B, and what about C?

13. (Equality) Give reasons why the five matrices in
Example 3 are different.

14. (Addition of vectors) Can you add (a) row vectors
whose numbers of components are different, (b) a row
and a column vector with the same number of
components, (c) a vector and a scalar?

15. (General rules) Prove (3) and (4) for general 3 X 2
matrices and scalars ¢ and k.

16. TEAM PROJECT. Matrices in Modeling Networks.
Matrices have various applications, as we shall see,
in a form that these problems can be efficiently
handled on the computer. For instance, they can be
used to characterize connections in electrical
networks, in nets of roads, in production processes,
etc., as follows.

(a) Nodal incidence matrix. The network in Fig. 152
consists of 5 branches or edges (connections, numbered
1, 2,---,5) and 4 nodes (points where two or more
branches come together), with one node being
grounded. We number the nodes and branches and give
each branch a direction shown by an arrow. This we
do arbitrarily. The network can now be described by a
“nodal incidence matrix” A = [a;], where

+1 if branch & leaves node @
ay. = § —1 if branch k enters node @

J

0 if branch k does not touch @

Show that for the network in Fig. 152 the matrix A has
the given form

Branch 1 2 3 4 5

Node @ 1 -1 -1 0 0
Node @ 0 1 0 1 1
Node @ 0 0 1 0 -1

Node M |-1 0 0 -1 0
Fig. 152. Network and nodal incidence

matrix in Team Project 16(a)

(b) Find the nodal incidence matrices of the networks
in Fig. 153.
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@ @ ©) (+1 if branch k is in mesh

2 and has the same orientation

©) 3y p4 1 2 5 4 my, = § — 1 if branch k is in mesh

and has the opposite orientation

_L 3 @ L 0 if branch k is not in mesh

and a mesh is a loop with no branch in its interior (or

\ @ 3 @ in its exterior). Here, the meshes are numbered and
‘ directed (oriented) in an arbitrary fashion. Show that
5 in Fig. 154 the matrix M corresponds to the given

. 6 2 figure, where Row 1 corresponds to mesh 1, etc.

Q= 10

Fig. 153. Networks in Team Project 16(b)

(¢) Graph the three networks corresponding to the
nodal incidence matrices

1 0 0
1 -1 1 -1
0 -1 1
0o 0 -1 1], a
-1 1 0
-1 1 0 O 1 0o -1 0 0
0 0 -1
0 0 1 -1 1
1 1 1 0 0 O M=
0o -1 1 0 1 0
0 -1 0 0 —1 1 1 0 1 0 0 1 |
-1 0 o0 1 1 0 Fig. 154. Network and matrix M in :
0 0 -1 -1 0 -1 Team Project 16(d) }
(d) Mesh incidence matrix. A network can also be (e) Number the nodes in Fig. 154 from left to right 1, I
characterized by the mesh incidence matrix M = [myy], 2, 3 and the low node by 4. Find the corresponding 1
where nodal incidence matrix. |

/.2 Matrix Multiplication

Matrix multiplication means multiplication of matrices by matrices. This is the last
algebraic operation to be defined (except for transposition, which is of lesser importance).
Now matrices are added by adding corresponding entries. In multiplication, do we multiply
corresponding entries? The answer is no. Why not? Such an operation would not be of
much use in applications. The standard definition of multiplication looks artificial, but
will be fully motivated later in this section by the use of matrices in “linear
transformations,” by which this multiplication is suggested.
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DEFINITION

EXAMPLE 1

EXAMPLE 2

EXAMPLE 3
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Multiplication of a Matrix by a Matrix

The product C = AB (in this order) of an m X n matrix A = [a;;] times an r X p
matrix B = [b;;] is defined if and only if » = n and is then the m X p matrix
C = [¢ji] with entries

n :
.} = 1’ PR
Cit = > Quby = Gnbip © Gpbee t Lo B G b
=1 k=1,--+,p.

1

The condition » = n means that the second factor, B, must have as many rows as the first
factor has columns, namely n. As a diagram of sizes (denoted as shown):

A B = C
[m X nlnXr]=[mXr].

¢ji in (1) is obtained by multiplying each entry in the jth row of A by the corresponding
entry in the kth column of B and then adding these n products. For instance,
Co1 as1b11 + assbsy + -+ + as,b,,, and so on. One calls this briefly a
“multiplication of rows into columns.” See the illustration in Fig. 155, where n = 3.

n=3 B=2 p=2
a1 G O3 11 %12 €1 C1p
. 01 %5 %5 21 %2 =| € 22 .
m = m=
31 % Y33 a1 Y3 €31 3
App @y 43 € Ca2
Fig. 155. Notations in a product AB = C

3 5 -1 2 —2 3 1 22 -2 43 42
AB = 4 0 2 5 0 7 8| =120 -—16 14 6
-6 -3 2 9 —4 I 1 -9 4 =37 -28

Here ¢;; =3+2 + 55+ (=1)+9 =22, and so on. The entry in the box is cgg =4:3 + 07 +2-1 = 14.
The product BA is not defined. &

Multiplication of a Matrix and a Vector

4 2 3 443 + 2+5 22 3 4 2
= = whereas is undefined. M
1 8 5 1-34+8-5 43 5 1 8
Products of Row and Column Vectors
1 1 3 6 1
3 6 1112 = [19], 213 6 1] = 6 12 2. &5
4 4 12 24 4
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EXAMPLE 4

EXAMPLE 5

CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

CAUTION! Matrix Multiplication Is Not Commutative, AB # BA in General

This is illustrated by Examples 1 and 2. where one of the two products is not even defined, and by Example 3,
where the two products have different sizes. But it also holds for square matrices. For instance,

1 1 —1 1 0 0 —1 1 1 1 99 99
= but = .
100 100 1 —l 0 0 12 =1 100 100 -99 —99

It is interesting that this also shows that AB = 0 does not necessarily imply BA =0 or A =0o0rB = 0. We
shall discuss this further in Sec. 7.8, along with reasons when this happens. [ |

Our examples show that the order of factors in matrix products must always be observed
very carefully. Otherwise matrix multiplication satisfies rules similar to those for numbers,
namely.

(a) (kA)B = k(AB) = A(kB)  written kAB or AkB

(b) ABC) = (AB)C written ABC

(2)
(¢) (A + B)XC =AC+ BC

(d CA +B)=CA+CB

provided A, B, and C are such that the expressions on the left are defined; here, k is any
scalar. (2b) is called the associative law. (2c) and (2d) are called the distributive laws.

Since matrix multiplication is a multiplication of rows into columns, we can write the
defining formula (1) more compactly as

(3) Cjk:ajbk, j:]’-..’nq; k:]’...’p’

where a; is the jth row vector of A and b, is the kth column vector of B, so that in
agreement with (1),

b1y

ajbk = [ajl Clj s ClJn] = jlblk + aj2b2k Sl a]nbnh

bnk

Product in Terms of Row and Column Vectors
If A = [aj] is of size 3 X 3 and B = [bjie] is of size 3 X 4, then

atby  ajhy  ajby azby
@) AB = | asbhy asby asbs ashy

aghy  agby  aghy  agh,
Takinga; =[3 5 —l1l,ag=1[4 0 2] etc., verify (4) for the product in Example 1. i
Parallel processing of products on the computer is facilitated by a variant of (3) for
computing C = AB, which is used by standard algorithms (such as in Lapack). In this

method, A is used as given, B is taken in terms of its column vectors, and the product is
computed columnwise; thus,

(5) AB=A[b, by - by =[Ab; Ab, --- Aby].
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EXAMPLE 6

Columns of B are then assigned to different processors (individually or several to each
processor), which simultaneously compute the columns of the product matrix Ab;, Ab,, etc.

Computing Products Columnwise by (5)

4 1 3 0 7 11 4 34
AB = =
=35 2 —1 -+ 6 =]7 8§ —23

from (5), calculate the columns

[ 1 | W F IO B B

of AB and then write them as a single matrix, as shown in the first formula on the right. ]

To obtain

Motivation of Multiplication by Linear Transformations

Let us now motivate the “unnatural” matrix multiplication by its use in linear
transformations. For n = 2 variables these transformations are of the form

Vi = apXy T odpeXsy
(6%)

Yo = dgiX1 T dagXy

and suffice to explain the idea. (For general n they will be discussed in Sec. 7.9.) For
instance, (6*) may relate an x;x,-coordinate system to a y;ys-coordinate system in the
plane. In vectorial form we can write (6%) as

»n arn ap | | X1 apXy T dyeXe
Vo gy dgg | | X dg1Xq T dgpXs

Now suppose further that the x;x,-system is related to a wywy-system by another linear
transformation, say,

X1 b1y bys w1 byiwy + bygws
Xo bax bos Wa

(7

boywy + bogwy

Then the y;y,-system is related to the w;wy-system indirectly via the x;x,-system, and we
wish to express this relation directly. Substitution will show that this direct relation is a
linear transformation, too, say,

C11 Ci2 Wy cpwr T crawy
®) y = Cw = .

Ca1 Coo | | We Co1W1 T CoaWy

Indeed, substituting (7) into (6), we obtain

v1 = ay1(byawy + b1aws) + ay9(baywy + bagws)
= (ay1by1 + arabapwy + (a11b12 + aiobag)ws
Vo = dgy(byywy + b1aws) + dgo(baywy + bagws)

= (agib11 + agabor)wy + (ag1b1s + agabog)ws.
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Comparing this with (8), we see that

c11 = G11b1n + a19bg C1g = a11b1a + aiabay

Co1 = dobyy + agabyy Cog = Ao1b1p + Aggbas.

This proves that C = AB with the product defined as in (1). For larger matrix sizes the
idea and result are exactly the same. Only the number of variables changes. We then have
m variables y and n variables x and p variables w. The matrices A, B, and C = AB then
have sizes m X n, n X p, and m X p, respectively. And the requirement that C be the
product AB leads to formula (1) in its general form. This motivates matrix multiplication
completely.

Transposition

Transposition provides a transition from row vectors to column vectors and conversely.
More generally, it gives us a choice to work either with a matrix or with its transpose,
whatever will be more practical in a specific situation.

DEFINITION Transposition of Matrices and Vectors

The transpose of an m X n matrix A = [a;] is the n X m matrix AT (read A transpose)
that has the first row of A as its first column, the second row of A as its second
column, and so on. Thus the transpose of A in (2) is AT = [ay;], written out

day;  da2a Tt Ay
T dyp A2 Crt Ape

(9) A = [akj] =
din  dop N

As a special case, transposition converts row vectors to column vectors and
conversely.

EXAMPLE 7 Transposition of Matrices and Vectors

5 4
5 -8 1
If A= , then AT=|-8 0
4 0 0
1 0
A little more compactly, we can write
5 4
5 -8 17" 301" 3 8
=| -8 0], =
4 0 0 8 -1 0 -1
1 0
6 61"
6 2 31"=]2], 21 =16 2 3]
3 3

Note that for a square matrix, the transpose is obtained by interchanging entries that are symmetrically positioned
with respect to the main diagonal, e.g., ajs and asq. and so on.
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EXAMPLE 8

EXAMPLE 9

Rules for transposition are

(a) ADT=A

(b) (A+B)T"=AT+BT
10)

(c) (cA)" = cAT

(d) (AB)" = B'A".

CAUTION! Note that in (10d) the transposed matrices are in reversed order. We leave
the proofs to the student. (See Prob. 22.)

Special Matrices

Certain kinds of matrices will occur quite frequently in our work, and we now list the
most important ones of them.

Symmetric and Skew-Symmetric Matrices. Transposition gives rise to two useful

classes of matrices, as follows. Symmetric matrices and skew-symmetric matrices are
square matrices whose transpose equals the matrix itself or minus the matrix, respectively:

3 i e i i
a1y A =A (thus ay; = a), Al ——A (thus ay; = —ay, hence a;; = 0).
Symmetric Matrix Skew-Symmetric Matrix

Symmetric and Skew-Symmetric Matrices

20 120 200 0 1 -3
A= 1120 10 150 is symmetric, and B=|-1 0 -2 is skew-symmetric.
200 150 30 3 2 0

For instance, if a company has three building supply centers Cy, Ca, C3, then A could show costs, say, a;; for
handling 1000 bags of cement on center Cj, and aj, (j # k) the cost of shipping 1000 bags from Cj to Cy.
Clearly, aj, = a; because shipping in the opposite direction will usually cost the same.

Symmetric matrices have several general properties which make them important. This will be seen as we
proceed. &

Triangular Matrices. Upper triangular matrices are square matrices that can have
nonzero entries only on and above the main diagonal, whereas any entry below the diagonal
must be zero. Similarly, lower triangular matrices can have nonzero entries only on and
below the main diagonal. Any entry on the main diagonal of a triangular matrix may be
Zero or not.

Upper and Lower Triangular Matrices

1 4 2 2 0 0
1 3 9 -3 0 0
[ } . 0o 3 2, 8 -1 0f, =
0 2 1 0 2 0
0 0 6 7 6 8
1 9 3 6
Upper triangular Lower triangular
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EXAMPLE 10

EXAMPLE 11

CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

Diagonal Matrices. These are square matrices that can have nonzero entries only on
the main diagonal. Any entry above or below the main diagonal must be zero.

If all the diagonal entries of a diagonal matrix S are equal, say, ¢, we call S a scalar
matrix because multiplication of any square matrix A of the same size by S has the same
effect as the multiplication by a scalar, that is,

(12) AS = SA = cA.

In particular, a scalar matrix whose entries on the main diagonal are all 1 is called a
unit matrix (or identity matrix) and is denoted by I, or simply by L. For I, formula (12)
becomes

(13) AL =IA = A.

Diagonal Matrix D. Scalar Matrix S. Unit Matrix |

2 0 0 c 0 0 1 0 0
D=|0 -3 0l, S=10 c ol, I=1|0 1 0 [ |
0 0 0 0 0 ¢ 0 0 1

Applications of Matrix Multiplication

Matrix multiplication will play a crucial role in connection with linear systems of
equations, beginning in the next section. For the time being we mention some other simple
applications that need no lengthy explanations.

Computer Production. Matrix Times Matrix

Supercomp Ltd produces two computer models PC1086 and PC1186. The matrix A shows the cost per computer
(in thousands of dollars) and B the production figures for the year 2005 (in multiples of 10000 units.) Find a
matrix C that shows the shareholders the cost per quarter (in millions of dollars) for raw material, labor, and
miscellaneous.

Quarter
PC1086 PC1186 1 2 3 4
1.2 1.6'] Raw Components
3 8 6 97 PC1086
A=1]03 0.4 | Labor B =
6 2 4 3] PCl186
0.5 0.6 | Miscellaneous
Solution.
Quarter
1 2 3 4

13.2 12.8 13.6 15.6 | Raw Components
C=AB= 33 3.2 34 3.9 | Labor

5.1 5.2 5.4 6.3 Miscellaneous

Since cost is given in multiples of $1000 and production in multiples of 10 000 units, the entries of C are
multiples of $10 millions; thus ¢1; = 13.2 means $132 million, etc. i
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EXAMPLE 12

EXAMPLE 13

Weight Watching. Matrix Times Vector

Suppose that in a weight-watching program, a person of 185 Ib burns 350 cal/hr in walking (3 mph), 500 in
bycycling (13 mph) and 950 in jogging (5.5 mph). Bill, weighing 185 Ib, plans to exercise according to the
matrix shown. Verify the calculations (W = Walking, B = Bicycling, ] = Jogging).

W B ]
MON | 1.0 0 05 825 | MON
350
WED | 1.0 1.0 05 1325 | WED
500 | =
FRI 1.5 0 05 1000 | FRI
950
SAT 20 1.5 1.0 2400 SAT [

Markov Process. Powers of a Matrix. Stochastic Matrix

Suppose that the 2004 state of land use in a city of 60 miZ of built-up area is

C: Commercially Used 25% I: Industrially Used 20% R: Residentially Used 55%.

Find the states in 2009, 2014, and 2019, assuming that the transition probabilities for 5-year intervals are given
by the matrix A and remain practically the same over the time considered.

From C From I From R

0.7 0.1 0 To C
A=102 0.9 0.2 Tol
0.1 0 0.8 To R

A is a stochastic matrix, that is, a square matrix with all entries nonnegative and all column sums equal to 1.
Our example concerns a Markov processl, that is, a process for which the probability of entering a certain state
depends only on the last state occupied (and the matrix A), not on any earlier state.

Solution. From the matrix A and the 2004 state we can compute the 2009 state,

C 0725 +0.1-20+ 0-55 0.7 0.1 0 25 19.5
1 0225+ 09-20+02-55| =102 0.9 0.2 20| = | 340
R 0.1-25+ 0-20+ 0.8-55 0.1 0 0.8 55 46.5

To explain: The 2009 figure for C equals 25% times the probability 0.7 that C goes into C, plus 20% times the
probability 0.1 that I goes into C, plus 55% times the probability 0 that R goes into C. Together,

25-0.7 +20-0.1 +55-0 = 19.5 [%]. Also 25-02 +20-09 + 55-0.2 = 34 [%].
Similarly, the new R is 46.5%. We see that the 2009 state vector is the column vector

y=[195 340 465" =Ax=A[25 20 55

where the column vector x = [25 20 SS]T is the given 2004 state vector. Note that the sum of the entries of
y is 100 [%]. Similarly, you may verity that for 2014 and 2019 we get the state vectors

z=Ay = AAx) = A% = [17.05 43.80 39.15]"
u=Az = A%y = A% = [16315 50.660 33.025]".

TANDREI ANDREJEVITCH MARKOV (1856-1922), Russian mathematician, known for his work in
probability theory.
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Answer. In 2009 the commercial area will be 19.5% (11.7 miz), the industrial 34% (20.4 miZ) and the
residential 46.5% (27.9 mi?). For 2014 the corresponding figures are 17.05%, 43.80%, 39.15%. For 2019 they
are 16.315%. 50.660%, 33.025%. (In Sec. 8.2 we shall see what happens in the limit, assuming that those
probabilities remain the same. In the meantime, can you experiment or guess?)

1-14| MULTIPLICATION, ADDITION, AND
TRANSPOSITION OF MATRICES AND
VECTORS
Let
6 -2 -2 9 4 -4
A= 10 -3 1|, B= 4 7 01,
-10 5 1 —4 0 11
3 1 5
c=|0 -2|, a=|1]|, b=[3 0 3]

4 0 2

Calculate the following products and sums or give reasons
why they are not defined. (Show all intermediate results.)

1.
_Ab" + BbT, (A + B)b", bA, B — BT
. AB, BA, AAT, ATA

Aa, Ab, Ab", AB

A2 B2, (A1)?, (A®)T

. a"A, bA, SB(3a + 2b"), 15Ba + 10Bb"

. ATb, b'B, 3A — 2B)"a, a"(3A — 2B)

. ab, ba, (ab)A, a(bA)

. ab — ba, —(4b)(7a), —28ba, 5abB

b (A+B)2,A2+AB+BA+B2,A2+2AB+B2
.(A+B)(A—B),A2—AB+BA—B2,A2—B2
. A2B, A3, (AB)2, A%B?

. B3, BC, (BC)2, (BC)(BC)"

. a"Aa, a"(A + Aa, bBb", b(B — BN)b'

. aTCCTa, a™C2a, bCTCb", bCC'D’

. (General rules) Prove (2) for 2 X 2 matrices A = [a)

B = [bji]. C = [cj] and a general scalar.
(Commutativity) Find all 2 X 2 matrices A = [aj]
that commute with B = [b;;], where by, = j + k.
(Product) Write AB in Probs. 1-14 in terms of row
and column vectors.

(Product) Calculate AB in Prob. 1 columnwise. (See
Example 6.)

TEAM PROJECT. Symmetric and Skew-
Symmetric Matrices. These matrices occur quite
frequently in applications, so it is worthwhile to study
some of their most important properties.

(a) Verify the claims in (11) that a; = ac for a
symmetric matrix, and a;; = —aj, fora skew-symmetric
matrix. Give examples.

20.

21.

22,

(b) Show that for every square matrix C the matrix
C + C7 is symmetric and C — C" is skew-symmetric.
Write C in the form C = S + T, where S is symmetric
and T is skew-symmetric and find S and T in terms of
C. Represent A and B in Probs. 1-14 in this form.
(c) A linear combination of matrices A, B, C, - - -,
M of the same size is an expression of the form

14) aA + bB + cC + - - -+ mM,

where a, - - -+, m are any scalars. Show that if these
matrices are square and symmetric, so is (14);
similarly, if they are skew-symmetric, so is (14).

(d) Show that AB with symmetric A and B is
symmetric if and only if A and B commute, that is,
AB = BA.

(e) Under what condition is the product of skew-
symmetric matrices skew-symmetric?

(Idempotent and nilpotent matrices) By definition,
A is idempotent if A2 = A, and B is nilpotent if
B™ = 0 for some positive integer m. Give examples
(different from 0 or I). Also give examples such that
A2 = I (the unit matrix).

(Triangular matrices) Let U;, U, be upper triangular
and L;, L, lower triangular. Which of the following
are triangular? Give examples. How can you save half
of your work by transposition?

U, + Uy, UjU,, Uy%, Up + Ly, UgLly, Ly + Lo,
L1L27 le

(Transposition of products) Prove (10a)-(10c).
Illustrate the basic formula (10d) by examples of your
own. Then prove it.

APPLICATIONS

23.

24.

(Markov process) If the transition matrix A has the
entries a;; = 0.3, agp = 0.3, ag = 0.5, ag = 0.7 and
the initial state is [1 1]7, what will the next three
states be?

(Concert subscription) In a community of 300 000
adults, subscribers to a concert series tend to renew their
subscription with probability 90% and persons presently
not subscribing will subscribe for the next season with
probability 0.1%. If the present number of subscribers
is 2000, can one predict an increase, decrease, or no
change over each of the next three seasons?
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25.

26.

27.

28.

CAS Experiment. Markov Process. Write a program
for a Markov process. Use it to calculate further steps in
Example 13 of the text. Experiment with other stochastic
3 X 3 matrices, also using different starting values.
(Production) In a production process, let N mean “no
trouble” and T “trouble.” Let the transition probabilities
from one day to the next be 0.9 for N — N, hence 0.1
for N— T, and 0.5 for T — N, hence 0.5 for T — T.
If today there is no trouble, what is the probability of
N two days after today? Three days after today?
(Profit vector) Two factory outlets F; and Fy in New
York and Los Angeles sell sofas (S), chairs (C), and
tables (T) with a profit of $110, $45, and $80,
respectively. Let the sales in a certain week be given by
the matrix

S C T

|:600 400 100} F,
A=
300 820 205 F,

Introduce a “profit vector” p such that the components
of v = Ap give the total profits of F; and Fs.
TEAM PROJECT. Special Linear Transformations.
Rotations have various applications. We show in this
project how they can be handled by matrices.

(a) Rotation in the plane. Show that the linear
transformation y = Ax with matrix

cos § —sin 0 X1
A= and X = ;
sin@  cos @ Xy

is a counterclockwise rotation of the Cartesian xjxo-
coordinate system in the plane about the origin, where
0 is the angle of rotation.

(b) Rotation through n6. Show that in (a)

cos nf —sinné
A" =
sinnf  cosnéb

Is this plausible? Explain this in words.

287

(¢) Addition formulas for cosine and sine. By
geometry we should have

cosa —sina| [cosp —sinp

{ sina  cos O(j| [ sinf3 cos ,B:l
cos (@ + B)  —sin(a + B)

Lin (@ + B } '

cos (@ + B)

Derive from this the addition formulas (6) in App. A3.1.

(d) Computer graphics. To visualize a three-
dimensional object with plane faces (e.g., a cube), we
may store the position vectors of the vertices with
respect to a suitable x;xyx5-coordinate system (and a
list of the connecting edges) and then obtain a two-
dimensional image on a video screen by projecting
the object onto a coordinate plane, for instance, onto
the x;xo-plane by setting x3 = 0. To change the
appearance of the image, we can impose a linear
transformation on the position vectors stored. Show
that a diagonal matrix D with main diagonal entries
3, 1, gives from an x = [x] the new position vector
y = Dx, where y; = 3x; (stretch in the x;-direction
by a factor 3), y, = X, (unchanged), y; = xs
(contraction in the xz-direction). What effect would a
scalar matrix have?

(e) Rotations in space. Explain y = Ax geometrically
when A is one of the three matrices

1 0 0
0 cos§ —sin 6
0 sinf  cos 6
cos ¢ 0 —sing cos iy —siny 0
0 1 0 ; singy  cos i 0
sin ¢ 0 cos o, 0 0 1

What effect would these transformations have in
situations such as that described in (d)?

/.3 Linear Systems of Equations.

Gauss Elimination

The most important use of matrices occurs in the solution of systems of linear equations,
briefly called linear systems. Such systems model various problems, for instance, in
frameworks, electrical networks, traffic flow, economics, statistics, and many others. In
this section we show an important solution method, the Gauss elimination. General
properties of solutions will be discussed in the next sections.
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Linear System, Coefficient Matrix, Augmented Matrix

A linear system of m equations in n unknowns x,, - - -, x,, is a set of equations of the form
ay1X1 e b Uyt — b]_
ao1X1 RO AopXy = b2

@
Xy t L Gy il

The system is called linear because each variable x; appears in the first power only, just
as in the equation of a straight line. ayq, - -, dy,, are given numbers, called the
coefficients of the system. by, - - -, b, on the right are also given numbers. If all the b;
are zero, then (1) is called a homogeneous system. If at least one b; is not zero, then (1)
is called a nonhomogeneous system.

A solution of (1) is a set of numbers xy, - * -, x,, that satisfies all the m equations.
A solution vector of (1) is a vector x whose components form a solution of (1). If the
system (1) is homogeneous, it has at least the trivial solution x; = 0,- - -, x, = 0.

Matrix Form of the Linear System (1). From the definition of matrix multiplication
we see that the m equations of (1) may be written as a single vector equation

@ Ax=b

where the coefficient matrix A = [a;;] is the m X n matrix

Cx,T
ap  dip C 0 dip by
gy dgg "~ d2p

A= , and x=| - and b =
Ap1 Am2 "7 Amn bm

L*n

are column vectors. We assume that the coefficients aj, are not all zero, so that A is not
a zero matrix. Note that x has n components, whereas b has m components. The matrix

by

a0 i

>
I

|
|
|
[
\
Ay " Apn | bm
is called the augmented matrix of the system (1). The dashed vertical line could be
omitted (as we shall do later); it is merely a reminder that the last column of A does not
belong to A.

The augmented matrix A determines the system (1) completely because it contains all
the given numbers appearing in (1).
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EXAMPLE 1

Unique solution

Infinitely
many solutions

No solution

Fig. 156. Three
equations in
three unknowns
interpreted as
planes in space

Geometric Interpretation. Existence and Uniqueness of Solutions
If m = n = 2, we have two equations in two unknowns xq, xo
aynxy + apaxg = by
a91X1 T Ag9Xe = bs.
If we interpret x1, xo as coordinates in the xyxs-plane, then each of the two equations represents a straight line,

and (xq, xg) is a solution if and only if the point P with coordinates x, x5 lies on both lines. Hence there are
three possible cases:

(a) Precisely one solution if the lines intersect.
(b) Infinitely many solutions if the lines coincide.
(c) No solution if the lines are parallel

For instance,

X +x,=1 X +x,=1 X +x,=1
2%, -%,=0 22 +2x,=2 X1 +%,=0
Case (a) Case (b) Case (c)
X2 *2 X2
2P
\
i x 1 x) 1 x

If the system is homogenous, Case'(c) cannot happen, because then those two straight lines pass through the
origin, whose coordinates 0, O constitute the trivial solution. If you wish, consider three equations in three
unknowns as representations of three planes in space and discuss the various possible cases in a similar fashion.
See Fig. 156. =

Our simple example illustrates that a system (1) may perhaps have no solution. This poses
the following problem. Does a given system (1) have a solution? Under what conditions
does it have precisely one solution? If it has more than one solution, how can we
characterize the set of all solutions? How can we actually obtain the solutions? Perhaps
the last question is the most immediate one from a practical viewpoint. We shall answer
it first and discuss the other questions in Sec. 7.5.

Gauss Elimination and Back Substitution

This is a standard elimination method for solving linear systems that proceeds
systematically irrespective of particular features of the coefficients. It is a method of great
practical importance and is reasonable with respect to computing time and storage demand
(two aspects we shall consider in Sec. 20.1 in the chapter on numeric linear algebra). We
begin by motivating the method. If a system is in “triangular form,” say,

2)('1 + SXZ = 2
13, = —26

we can solve it by “back substitution,” that is, solve the last equation for the variable,
Xo = —26/13 = —2, and then work backward, substituting x, = —2 into the first equation
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and solve it for x;, obtaining x; = (2 = 5xp) = 3(2 — 5+ (=2)) = 6. This gives us the idea
of first reducing a general system to triangular form. For instance, let the given system be

2x; + Sxo = 2 2 5 2
Its augmented matrix is
—4x; + 3x, = —30. —4 3 =30

We leave the first equation as it is. We eliminate x; from the second equation, to get a triangular
system. For this we add twice the first equation to the second, and we do the same operation
on the rows of the augmented matrix. This gives —4x; + 4y + 3xp + 10xg = —30 +2-2,
that is,

2.)(:1 + S.X2 — 2 2 5 2

13x, = —26 Row?2 +2Row 1 LO 13 —26

where Row 2 + 2 Row 1 means “Add twice Row 1 to Row 27 in the original matrix.
This is the Gauss elimination (for 2 equations in 2 unknowns) giving the triangular form,
from which back substitution now yields xo = —2 and x; = 6, as before.

Since a linear system is completely determined by its augmented matrix, Gauss
elimination can be done by merely considering the matrices, as we have just indicated.
We do this again in the next example, emphasizing the matrices by writing them first and
the equations behind them, just as a help in order not to lose track.

Gauss Elimination. Electrical Network

Solve the linear system

xi - xgt+ x3 =0
—x1+ xp— x3= 0
10xy + 25x3 = 90

20x; + 10xg = 80.

Derivation from the circuit in Fig. 157 ( Optional). This is the system for the unknown currents
Xq = i1, Xo = Ig, X3 = i3 in the electrical network in Fig. 157. To obtain it, we label the currents as shown,
choosing directions arbitrarily; if a current will come out negative, this will simply mean that the current flows
against the direction of our arrow. The current entering each battery will be the same as the current leaving it.
The equations for the currents result from Kirchhotf’s laws:

Kirchhoff’s current law (KCL). At any point of a circuit, the sum of the inflowing currents equals the sum
of the outflowing currents.

Kirchhoff’s voltage law (KVL). In any closed loop, the sum of all voltage drops equals the impressed
electromotive force.

Node P gives the first equation, node Q the second, the right loop the third, and the left loop the fourth, as
indicated in the figure.

Q Node P: i- i+ 3= 0
i is
Node Q: =i+ i,— iy= 0
80 Vl 10Q l 90V
. Right loop: 107, + 250, = 90
L]
P 15Q Left loop:  20i,; + 101, =80

Fig. 157. Network in Example 2 and equations relating the currents
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Solution by Gauss Elimination. This system could be solved rather quickly by noticing its particular
form. But this is not the point. The point is that the Gauss elimination is systematic and will work in general,
also for large systems. We apply it to our system and then do back substitution. As indicated let us write the
augmented matrix of the system first and then the system itself:

Augmented Matrix A Equations
Pivot | ——[ (1) -1 1 0 Pivot | —— ()~ s+ 1= 0
2 1 -1 o x|+ xp— xg= 0
I
Eliminate ——> 0 10 25 : 90 Eliminate ——> 10x9 + 25x3 = 90
I
200 10 0 1 80 20x| + 10xg = 80.

Step 1. Elimination of x,
Call the first row of A the pivot row and the first equation the pivot equation. Call the coefficient 1 of its
x;-term the pivot in this step. Use this equation to eliminate x; (get rid of xq) in the other equations. For this, do:

Add 1 times the pivot equation to the second equation.
Add —20 times the pivot equation to the fourth equation.

This corresponds to row operations on the augmented matrix as indicated in BLUE behind the new matrix in
(3). So the operations are performed on the preceding matrix. The result is

1 -1 1 : 0 X1— X9+ x3= 0
0 0 0 : 0 Row 2 + Row 1 0= 0
3) !
0 10 25 : 90 10xy + 25x3 = 90
|
0 30 —20 1 80 Row 4 — 20 Row 1 30xy — 20x3 = 80.

Step 2. Elimination of x5

The first equation remains as it is. We want the new second equation to serve as the next pivot equation. But
since it has no xo-term (in fact, it is 0 = 0), we must first change the order of the equations and the corresponding
rows of the new matrix. We put 0 = 0 at the end and move the third equation and the fourth equation one place
up. This is called partial pivoting (as opposed to the rarely used total pivoting, in which also the order of the
unknowns is changed). It gives

1 -1 1 : 0 X1— x99+ x3 =0
|

Pivot 10— | 0 25 | 90 Pivot 10— (10xp) + 253 = 90
|

Eliminate 30— | 0 —20 : 80 Eliminate 30xg —> — 20x3 = 80
|

0 0 01 0 0=20

To eliminate x5, do:

Add —3 times the pivot equation to the third equation.

The result is
1 -1 1 : 0 X1 — X9t x3= 0
0 10 25/ 90 10xy + 25x5 = 90
@ 0 0 —95 i —190 | Row 3 — 3 Row 2 — 95x3 = —190
0 0 0 : 0 0= 0

Back Substitution. Determination of x5, x5, x, (in this order)
Working backward from the last to the first equation of this “triangular” system (4), we can now readily find
x3, then xo, and then xy:

—95x3 = —190 x3 = i3 = 2 [A]
10xs + 25x3 = 90 Xo = 1590 — 25x3) = iy = 4 [A]
Xy —  Xxg X3 = 0 Xp = X9 —x3 = i1 = 2 [A]
where A stands for “amperes.” This is the answer to our problem. The solution is unique. B
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Elementary Row Operations. Row-Equivalent Systems

Example 2 illustrates the operations of the Gauss elimination. These are the first two of
three operations, which are called

Elementary Row Operations for Matrices:

Interchange of two rows
Addition of a constant multiple of one row to another row

Multiplication of a row by a nonzero constant c.

CAUTION! These operations are for rows, not for columns! They correspond to the
following

Elementary Operations for Equations:

Interchange of two equations
Addition of a constant multiple of one equation to another equation

Multiplication of an equation by a nonzero constant c.

Clearly, the interchange of two equations does not alter the solution set. Neither does that
addition because we can undo it by a corresponding subtraction. Similarly for that
multiplication, which we can undo by multiplying the new equation by 1/c (since ¢ # 0),
producing the original equation.

We now call a linear system S; row-equivalent to a linear system Sy if S; can be
obtained from S, by (finitely many!) row operations. Thus we have proved the following
result, which also justifies the Gauss elimination.

Row-Equivalent Systems

Row-equivalent linear systems have the same set of solutions.

Because of this theorem, systems having the same solution sets are often called
equivalent systems. But note well that we are dealing with row operations. No column
operations on the augmented matrix are permitted in this context because they would
generally alter the solution set.

A linear system (1) is called overdetermined if it has more equations than unknowns,
as in Example 2, determined if m = n, as in Example 1, and underdetermined if it has
fewer equations than unknowns.

Furthermore, a system (1) is called consistent if it has at least one solution (thus, one
solution or infinitely many solutions), but inconsistent if it has no solutions at all, as
x; + x9 = 1, x; + x5 = 0 in Example 1.

Gauss Elimination: The Three Possible Cases of Systems

The Gauss elimination can take care of linear systems with a unique solution (see Example
2), with infinitely many solutions (Example 3, below), and without solutions (inconsistent
systems; see Example 4).
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EXAMPLE 3

EXAMPLE 4

Gauss Elimination if Infinitely Many Solutions Exist

Solve the following linear systems of three equations in four unknowns whose augmented matrix is

3020 20 50 1 80 + 2.0xy + 2.0x3 — 5.0x, = 80

(5) 06 15 15 —-54 | 27/, Thus, 0.6x,|+ 1.5x5 + 1.5x3 — 54x, = 2.7
|

12 —03 —03 24 1 21 1.2x;|— 03xy — 03x3 + 2.4x, = 2.1

Solution. As in the previous example, we circle pivots and box terms of equations and corresponding entries
to be eliminated. We indicate the operations in terms of equations and operate on both equations and matrices.

Step 1. Elimination of x; from the second and third equations by adding
— 0.6/3.0 = —0.2 times the first equation to the second equation,

— 1.2/3.0 = —0.4 times the first equation to the third equation.

This gives the following, in which the pivot of the next step is circled.

30 20 20 —501 80 3.0x; + 2015 + 2.0x3 — 5.0x, = 8.0

+ Llxg — 44xy = 1.1
Flin]- i + 445 = —11

(6) 0 11 11 —44! 11| Row2—02Row I

|
0 —-1.1 -—1.1 441 —1.1 Row 3 — 0.4 Row 1

Step 2. Elimination of x5 from the third equation of (6) by adding
1.1/1.1 = 1 times the second equation to the third equation.
This gives
3.0 20 20 -50 1 8.0 3.0x; + 2.0xg + 2.0x3 — 5.0x4 = 8.0
@) 0 1.1 1.1 —44 “ 1.1 / Llxg + Llxg — 44xy, = 1.1
I
I

0 0 0 0 0 Row 3 + Row 2 0

0 .

Back Substitution. From the second equation, x5 = 1 — x5 + 4x4. From this and the first equation,
x; = 2 — x4 Since x3 and x4 remain arbitrary, we have infinitely many solutions. If we choose a value of
x5 and a value of x4, then the corresponding values of x; and x5 are uniquely determined.

On Notation. If unknowns remain arbitrary, it is also customary to denote them by other letters #1, fg, * * - .
In this example we may thus write x; = 2 — x4 =2 — g, X9 = 1 —x3 + 4xg = 1 — 11 + 415, x3 = 11 (first
arbitrary unknown), x4 = 5 (second arbitrary unknown).

Gauss Elimination if no Solution Exists

What will happen if we apply the Gauss elimination to a linear system that has no solution? The answer is that
in this case the method will show this fact by producing a contradiction. For instance, consider

+ =

302 113 @ 2y + x3=3

2 1 110 2|+ xp+ x3=0
|

6 2 416 6x1|+ 2xp + 4z = 6.

Step 1. Elimination of x; from the second and third equations by adding

—2 times the first equation to the second equation,

—$% = —2 times the first equation to the third equation.
This gives
32 13 3y + g+ xg= 3
o -3 3 :~2 Row 2 — 2 Row | + lxg= -2
0o -2 2 : 0] Row3 —2Row I [~ 2]+ 253= 0.
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Step 2. Elimination of x from the third equation gives

3 2 113 35+ 29+ x3= 3
I
|
0o -1 1 | —2 — 1+ lyg=-2
I
0 0 0 112 Row 3 — 6 Row 2 0= 12.
The false statement O = 12 shows that the system has no solution. |

Row Echelon Form and Information From It

At the end of the Gauss elimination the form of the coefficient matrix, the augmented
matrix, and the system itself are called the row echelon form. In it, rows of zeros, if
present, are the last rows, and in each nonzero row the leftmost nonzero entry is farther
to the right than in the previous row. For instance, in Example 4 the coefficient matrix
and its augmented in row echelon form are

302 1 3 02 11! 3
|

0 5 & and o -1 i -2
|

0 0 0 0 0 01 12

Note that we do not require that the leftmost nonzero entries be 1 since this would have
no theoretic or numeric advantage. (The so-called reduced echelon form, in which those
entries are 1, will be discussed in Sec. 7.8.)

At the end of the Gauss elimination (before the back substitution) the row echelon form
of the augmented matrix will be

Ay Qe ay, Eljl
Con | b,
Lo
R I 2
(8) krn ‘|~br
:Z.)r+1
[ .
12
L By

Here, r = m and a;; # 0, cos # 0, -+ . k. # 0, and all the entries in the blue triangle
as well as in the blue rectangle are zero. From this we see that with respect to solutions
of the system with augmented matrix (8) (and thus with respect to the originally given
system) there are three possible cases:

(a) Exactly one solution if r = n and Dpoyy e , b,,, if present, are zero. To get the
solution, solve the nth equation corresponding to (8) (which is k,,x,, = by) for x,,, then
the (n — 1)st equation for x,,_;, and so on up the line. See Example 2, wherer=n=3
and m = 4.

(b) Infinitely many solutions if r < n and boiyst by, if present, are zero. To obtain
any of these solutions, choose values of x,., , = = -, x,, arbitrarily. Then solve the rth equation
for x,, then the (r — 1)st equation for x,_;, and so on up the line. See Example 3.

(¢c) No solution if r < m and one of the entries Brirs v, b, is not zero. See Example
4, wherer =2 <m=3andb,,, = bz = 12.
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1-16| GAUSS ELIMINATION AND BACK 15. 3x + Ty — 4z = —46
SUBSTITUTION o 1 A + 8 -+ _ .
Solve the following systems or indicate the nonexistence of " * o © 7
solutions. (Show the details of your work.) 8w + 4y — 2z = 0
1. 5x — 2y = 209 2. 3.0x + 6.2y = 0.2 —w + 6x +2z= 13
—x + 4y =—-19.3 2.1x + 8.5y = 4.3 16. —2w — 17x + 4y + 3z = 0
3. 0.5¢ + 3.5y =57 4. 4y =27 = 2 Tw Ty -2= 0

—x + 5.0y =7.8 6x — 2y + z =29 25+ 8y — 6z = —20

4x + 8y — 4z = 24 Sw—13x — y + 5z = 16

17-19| MODELS OF ELECTRICAL NETWORKS

2. O+ 129 — Dubz = —7.8 Using Kirchhoff’s laws (see Example 2), find the currents.
2 6x + 17z = 153 (Show the details of your work.)
4.0x — 73y — 1.5z = 1.1 17. AN
R
I, 2
6. 14x — 2y — 4z =0 7. y+ z= =2 AN
I, R
18x — 2y — 62=0 4y + 6z = —12 I !
11
4x + 8y — 147 =0 x+ y+ z= 2 — B,
8. 2x+yv—37=8 9. 4y + 47 = 24 18
R
5t +2z=3 3% — 11y — 2% = —6 ! B, By
8x —y+7z=0 6x — 17y + z = 18 ElT LEz
[ a1
I] 13
10. 0.6x + 03y — 04z =—1.9
19 I I
—46x + 05y + 1.2z = —1.3 - =
2Q I
1. 2x— y+3z=-1 3a g SR
_ _ = 95V 35V
4x + 2y — 62 2 T 50 L i
M
12. —2y — 2z = -8
200 400
3x + 4y — 5z = 13
X1
13. x+ y—2z= 0 300 400
Xy X5
—4w — x— y+2z=-4
—2w + 3x + 3_)7 = 6Z = =3 500 X3 600
14. w—2x +5y — 3z = I 300 500
“3dwHox+ y+ z2=0 Wheatstone bridge Net of one-way streets

2w —4x +3y — z =3 (Prob. 20, next page) (Prob. 21, next page)
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20.

21.

22.

23.

24.
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(Wheatstone bridge) Show that if R./R3 = Ri/Ry in
the figure, then I = 0. (R, is the resistance of the
instrument by which 7 is measured.) This bridge is a
method for determining R,. Ry, Ry, Rz are known. R
is variable. To get R,, make I = 0 by varing Rs. Then
calculate R, = R3R/Rs.

(Traffic flow) Methods of electrical circuit analysis
have applications to other fields. For instance, applying
the analog of Kirchhoff’s current law, find the traffic
flow (cars per hour) in the net of one-way streets (in
the directions indicated by the arrows) shown in the
figure. Is the solution unique?

(Models of markets) Determine the equilibrium
solution (D; = Sy, Dy = Sy) of the two-commodity
market with linear model (D, S, P = demand, supply,
price; index 1 = first commodity, index 2 = second
commodity)

D, = 60 — 2Py — Py, S = 4Py — 2Py + 14
Dy = 4P, — Py + 10, Sy = 5Py — 2.

(Equivalence relation) By definition, an equivalence
relation on a set is a relation satisfying three conditions
(named as indicated):

(i) Each element A of the set is equivalent to itself
(“Reflexivity”).

(i) If A is equivalent to B, then B is equivalent to A
(“Symmetry”).

(iii) If A is equivalent to B and B is equivalent to C,
then A is equivalent to C (“Transitivity™).

Show that row equivalence of matrices satisfies these

three conditions. Hinz. Show that for each of the three

elementary row operations these conditions hold.

PROJECT. Elementary Matrices. The idea is that
elementary operations can be accomplished by matrix
multiplication. If A is an m X n matrix on which we
want to do an elementary operation, then there is a
matrix E such that EA is the new matrix after the
operation. Such an E is called an elementary matrix.
This idea can be helpful, for instance, in the design of
algorithms. (Computationally, it is generally preferable

25.

to do row operations directly, rather than by
multiplication by E.)

(a) Show that the following are elementary matrices,
for interchanging Rows 2 and 3, for adding —5 times
the first row to the third, and for multiplying the fourth
row by 8.

T 10 0 0'1
o 0 1 0
E, = :
o 1 0 0
Lo o o 1]
T 10 0 OW
o 1 0 0
E, = ,
5 0 1 0
Lo o o 1]
I 0 0 0]
o 1 0 0
E; =
o 0o 1 0
Lo o o sl

Apply Ey, E;, E3 to a vector and to a 4 X 3 matrix of
your choice. Find B = E;E;E;A, where A = [ag] is
the general 4 X 2 matrix. Is B equal to C = E,E;E3A?
(b) Conclude that E;, Es, E; are obtained by doing
the corresponding elementary operations on the 4 X4
unit matrix. Prove that if M is obtained from A by an
elementary row operation, then

M = EA,

where E is obtained from the n X n unit matrix I, by
the same row operation.

CAS PROJECT. Gauss Elimination and Back
Substitution. Write a program for Gauss elimination
and back substitution (a) that does not include pivoting,
(b) that does include pivoting. Apply the programs to
Probs. 13—16 and to some larger systems of your choice.

7.4 Linear Independence. Rank of a Matrix.

Vector Space

In the last section we explained the Gauss elimination with back substitution, the most
important numeric solution method for linear systems of equations. It appeared that such
a system may have a unique solution or infinitely many solutions, or it may be inconsistent,
that is, have no solution at all. Hence we are confronted with the questions of existence
and uniqueness of solutions. We shall answer these questions in the next section. As the
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EXAMPLE 1

DEFINITION

key concept for this (and other questions) we introduce the rank of a matrix. To define
rank, we first need the following concepts, which are of general importance.

Linear Independence and Dependence of Vectors

Given any set of m vectors agy, * * * , a¢y,, (With the same number of components), a linear
combination of these vectors is an expression of the form

C1aqy T CAp) + -0 -+ Cpagy
where ¢y, ¢y, * * *, C,,, are any scalars. Now consider the equation
88 C1aqy t Coapy + 0 - + cpag, = 0.

Clearly, this vector equation (1) holds if we choose all ¢;’s zero, because then it becomes
0 = 0. If this is the only m-tuple of scalars for which (1) holds, then our vectors
Ay, *, Ay are said to form a linearly independent set or, more briefly, we call them
linearly independent. Otherwise, if (1) also holds with scalars not all zero, we call these
vectors linearly dependent, because then we can express (at least) one of them as a
linear combination of the others. For instance, if (1) holds with, say, ¢; # 0, we can
solve (1) for ag:

aqy = keap) + - -+ + kyag, where k; = —cj/cy.

(Some k;’s may be zero. Or even all of them, namely, if ag, = 0.)

Why is this important? Well, in the case of linear dependence we can get rid of some
of the vectors until we arrive at a linearly independent set that is optimal to work with
because it is smallest possible in the sense that it consists only of the “really essential”
vectors, which can no longer be expressed linearly in terms of each other. This motivates
the idea of a “basis” used in various contexts, notably later in our present section.

Linear Independence and Dependence

The three vectors
aq,=[ 3 0 2 2]

agy =[—-6 42 24 54]
ag, =[ 21 =21 0 —15]
are linearly dependent because
6ag) ~ 33 — ag = 0.

Although this is easily checked (do it!), it is not so easy to discover. However, a systematic method for finding
out about linear independence and dependence follows below.

The first two of the three vectors are linearly independent because cyac1y + caa9y = 0 implies c5 = 0 (from
the second components) and then ¢; = 0 (from any other component of a(y,).

Rank of a Matrix

The rank of a matrix A is the maximum number of linearly independent row vectors
of A. It is denoted by rank A.
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EXAMPLE 2

THEOREM 1

EXAMPLE 3

THEOREM 2

CHAP.7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

Our further discussion will show that the rank of a matrix is an important key concept for
understanding general properties of matrices and linear systems of equations.

Rank

The matrix

(2) A=|-6 4 24 54

has rank 2, because Example 1 shows that the first two row vectors are linearly independent, whereas all three
row vectors are linearly dependent.
Note further that rank A = 0 if and only if A = 0. This follows directly from the definition. |

We call a matrix A, row-equivalent to a matrix A, if A; can be obtained from A by
(finitely many!) elementary Tow operations.

Now the maximum number of linearly independent row vectors of a matrix does not
change if we change the order of rows or multiply a row by an nonzero ¢ or take a linear
combination by adding a multiple of a row to another row. This proves that rank is
invariant under elementary row operations:

Row-Equivalent Matrices

Row-equivalent matrices have the same rank.

Hence we can determine the rank of a matrix by reduction to row-echelon form
(Sec. 7.3) and then see the rank directly.
Determination of Rank

For the matrix in Example 2 we obtain successively

3 0 2 2
A=|-6 42 24 54| (given)
L 21 21 0 —15
3 0 2 2

0 42 28 58 Row 2 + 2 Row |
L 0 -21 —14 -29] Row3 — 7Row I
3 o 2 2
0 42 28 58
0 0 0 0] Row3 + 3 Row?2 2

Since rank is defined in terms of two vectors, we immediately have the useful

Linear Independence and Dependence of Vectors

p vectors with n components each are linearly independent if the matrix with these
vectors as row vectors has rank p, but they are linearly dependent if that rank is
less than p.
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THEOREM 3

PROOF

EXAMPLE 4

Further important properties will result from the basic

Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent
column vectors of A.
Hence A and its transpose A" have the same rank.

In this proof we write simply “rows” and “columns” for row and column vectors. Let
A be an m X n matrix of rank A = r. Then by definition of rank, A has r linearly

independent rows which we denote by vy, - * -, v, (regardless of their position in A),
and all the rows a;), - -+, @, of A are linear combinations of those, say,

aq = uVay T CVe) T Ve

A9 = Co1Vay T CaoVy T 0 T OV
3)

Am) = Cm1Va) + Cm2V® et Cor V-

These are vector equations for rows. To switch to columns, we write (3) in terms of

components as n such systems, with k = 1, - -+ n,
ay = €1V T Cralg T 0+ €U
Ao = Co1Uyp t Coglg + ° ° + Co Uy
4
ke = Cma1lik + Cm2Ustk t+oee Cor Ui

and collect components in columns. Indeed, we can write (4) as

A1y ‘11 C12 Cir
Aoy Ca1 Ca2 Copr
5 . =V | - | TUx| . |+ tug
Amk Cm1 Cm2 Cor
where k = 1, - - -, n. Now the vector on the left is the kth column vector of A. We see

that each of these n columns is a linear combination of the same r columns on the right.
Hence A cannot have more linearly independent columns than rows, whose number is
rank A = r. Now rows of A are columns of the transpose A'. For AT our conclusion is
that AT cannot have more linearly independent columns than rows, so that A cannot have
more linearly independent rows than columns. Together, the number of linearly
independent columns of A must be r, the rank of A. This completes the proof. |

llustration of Theorem 3

The matrix in (2) has rank 2. From Example 3 we see that the first two row vectors are linearly independent
and by “working backward” we can verify that Row 3 = 6 Row 1 —% Row 2. Similarly, the first two columns
are linearly independent, and by reducing the last matrix in Example 3 by columns we find that

Column 3 = £ Column 1 + Z Column 2 and Column 4 = Z Column 1 + £ Column 2. M
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THEOREM 4

PROOF

EXAMPLE 5

THEOREM 5

PROOF

CHAP.7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

Combining Theorems 2 and 3 we obtain

Linear Dependence of Vectors

p vectors with n < p components are always linearly dependent.

The matrix A with those p vectors as row vectors has p rows and n < p columns; hence by
Theorem 3 it has rank A = n < p, which implies linear dependence by Theorem 2. &

Vector Space

The following related concepts are of general interest in linear algebra. In the present
context they provide a clarification of essential properties of matrices and their role in
connection with linear systems.

A vector space is a (nonempty) set V of vectors such that with any two vectors a and
b in V all their linear combinations aa + Bb (a, B any real numbers) are elements of V,
and these vectors satisfy the laws (3) and (4) in Sec. 7.1 (written in lowercase letters a,
b, u, - - -, which is our notation for vectors). (This definition is presently sufficient.
General vector spaces will be discussed in Sec. 7.9.)

The maximum number of linearly independent vectors in V' is called the dimension of
V and is denoted by dim V. Here we assume the dimension to be finite; infinite dimension
will be defined in Sec. 7.9.

A linearly independent set in V consisting of a maximum possible number of vectors
in Vis called a basis for V. Thus the number of vectors of a basis for V equals dim V.

The set of all linear combinations of given vectors acy, * = *, 8¢y With the same
number of components is called the span of these vectors. Obviously, a span is a vector
space.

By a subspace of a vector space V we mean a nonempty subset of V (including V itself)
that forms itself a vector space with respect to the two algebraic operations (addition and
scalar multiplication) defined for the vectors of V.

Vector Space, Dimension, Basis

The span of the three vectors in Example 1 is a vector space of dimension 2, and a basis is ay), acg), for instance,
or a(1), A(3), etc. |

We further note the simple

Vector Space R”

The vector space R™ consisting of all vectors with n components (n real numbers)
has dimension n.

A basis of n vectors is aq, = [1 0 -+~ 0], ap, = [0 1T O --- 0], ---,
a, =0 --- 0 1] E

In the case of a matrix A we call the span of the row vectors the row space of A and the
span of the column vectors the column space of A.
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Now, Theorem 3 shows that a matrix A has as many linearly independent rows as
columns. By the definition of dimension, their number is the dimension of the row space
or the column space of A. This proves

THEOREM 6 Row Space and Column Space

The row space and the column space of a matrix A have the same dimension, equal
to rank A.

Finally, for a given matrix A the solution set of the homogeneous system Ax = 0 is a
vector space, called the null space of A, and its dimension is called the nullity of A. In
the next section we motivate and prove the basic relation

(6) rank A + nullity A = Number of columns of A.
1-12| RANK, ROW SPACE, COLUMN SPACE 1 2 3 4
Find the rank and a basis for the row space and for the 2 3 4 5
column space. Hint. Row-reduce the matrix and its 10.
transpose. (You may omit obvious factors from the vectors 3 4 5 6
of thise bases.) ] 4 5 6 7
1 -2 8 2 5
2 4 8 16
1 0 0 2. | 16 6 29
16 8 4 2
L —3 6 L 4 [V — 11
_ 4 8 16 2
0 -2 1 3 ~ _
a b < L2 16 8 4
3. |1 4 0 7 4
Lb a c_| r _
s 5 5 5 0 0 7 1
_ - 0 0 5 0
0 3 4 1 1 a’l 12,
5/-3 0 -5 6|1 a 1 — 3 0 2
-4 5 0 la 1 1] L1 2 2 0
8 0 4 -2 3 -4 13-20| LINEAR INDEPENDENCE
0 2 0 I | 4 —1 Are the following sets of vectors linearly independent?
7. 8. (Show the details.)
4 0 2 d 4 1 -3 133 -2 0 4,05 0 0 11.[-6 1 0 1],
L0 4 0 4 -1 2 -3 2 0 0 3]
- 4.1 1 OL[1 O O01,[1 1 1
| 0 3 0 [ 1, [ I, [ ]
15.6 0 3 1 4 2,0 -1 2 7 0 3],
0 5 8 —37 [12 3 0 —19 8 -—11]
9.
3 g 7 0 16. [3 4 71,2 0 3L,[8 2 31,5 5 6]
17. [0.2 1.2 53 2.8 1.6],
L0 —37 0 37 [43 34 09 20 -—4.3]
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18.03 2 1,0 0 0L[4 3 6

.01 85 B s B s s
ERENE ]

20,1 2 3 4.12 3 4 5.3 45 6l
4 5 6 7]

21. CAS Experiment. Rank. (a) Show experimentally
that the n X n matrix A = [a;] with a;. = j+k—1
has rank 2 for any n. (Problem 20 shows n = 4.) Try
to prove it.

(b) Do the same when aj, = J + k + ¢, where ¢ is
any positive integer.
(¢) What is rank A if ay, = 2i+k=29 Try to find other
large matrices of low rank independent of n.
PROPERTIES OF RANK
AND CONSEQUENCES

Show the following.

22. rank BTAT = rank AB. (Note the order!)

23. rank A = rank B does not imply rank A2 = rank B2
(Give a counterexample.)

24. If A is not square, either the row vectors or the column
vectors of A are linearly dependent.

25. If the row vectors of a square matrix are linearly
independent, so are the column vectors, and
conversely.

26. Give examples showing that the rank of a product of
matrices cannot exceed the rank of either factor.

VECTOR SPACES

Is the given set of vectors a vector space? (Give reason.) It
your answer is yes, determine the dimension and find a
basis. (vq, Ug, * -+ denote components.)

27. All vectors in R® such that vy + vy =0

28. All vectors in R* such that 2v, — 3vg = k

29. All vectors in R? with v; = 0,0, = —4v3

30. All vectors in R? with v1 = vy

31. All vectors in R® with 4v; + vg = 0,302 = U3
32. All vectors in R* with vy
33. All vectors in R" with [v)| = 1 forj=1,--".n

—UZ:O,U3:5U1,U4:0

34. All ordered quadruples of positive real numbers
35. All vectors in R® with v, = 205 = 303 = 404 = 5Us

36. All vectors in R* with
3v, —v3:0,201+3vz—4v4:0

7.5 Solutions of Linear Systems:
Existence, Uniqueness

Rank as just defined gives complete information about existence, uniqueness, and general
structure of the solution set of linear systems as follows.

A linear system of equations in 7 unknowns has a unique solution if the coefficient matrix
and the augmented matrix have the same rank 71, and infinitely many solution if that common

rank is less than n. The system has no soluti

on if those two matrices have different rank.

To state this precisely and prove it, we shall use the (generally important) concept of

a submatrix of A. By this we mean any matri
or columns (or both). By definition this includes

X obtained from A by omitting some rows
A itself (as the matrix obtained by omitting

no rows or columns); this is practical.

THEOREM 1

Fundamental Theorem for Linear Systems

(a) Existence. A linear system of m equations in n unknowns xi,* * * > Xn

aq1X1 - aq19X9 it

”'+a1nxn:b1

dpy Xy T AgaXy T

AyaXy T AmaXe i
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PROOF

is consistent, that is, has solutions, if and only if the coefficient matrix A and the
augmented matrix A have the same rank. Here,

ain Tt diy dyy to ay, ! by

A= and A =

L %m1 e (v L%m1 T Umn | bm
(b) Uniqueness. The system (1) has precisely one solution if and only if this
common rank r of A and A equals n.

(c) Infinitely many solutions. If this common rank r is less than n, the system
(1) has infinitely many solutions. All of these solutions are obtained by determining
r suitable unknowns (whose submatrix of coefficients must have rank r) in terms of
the remaining n — r unknowns, to which arbitrary values can be assigned. (See
Example 3 in Sec. 7.3.)

(d) Gauss elimination (Sec. 7.3). If solutions exist, they can all be obtained by
the Gauss elimination. (This method will automatically reveal whether or not
solutions exist; see Sec. 7.3.)

(a) We can write the system (1) in vector form Ax = b or in terms of column vectors
Cy * * * s €y OF A

(2) cpyXr t exp + 0 ey, = b

A is obtained by augmenting A by a single column b. Hence, by Theorem 3 in Sec. 7.4,

rank A equals rank A or rank A + 1. Now if (1) has a solution x, then (2) shows that b

must be a linear combination of those column vectors, so that A and A have the same

maximum number of linearly independent column vectors and thus the same rank.
Conversely, if rank A = rank A, then b must be a linear combination of the column

vectors of A, say,

(2%) b= acq T+ acq,

since otherwise rank A = rank A + 1. But (2%) means that (1) has a solution, namely,
X1 = ay, " ,X, = @, as can be seen by comparing (2*) and (2).

(b) If rank A = n, the n column vectors in (2) are linearly independent by Theorem 3
in Sec. 7.4. We claim that then the representation (2) of b is unique because otherwise

CpXr T Capky, = CpXy T T Cup Xy

This would imply (take all terms to the left, with a minus sign)

(p = Xpeqy + 0+ (6 — Xy = 0
and x; — X; = 0, -,x, — X, = 0 by linear independence. But this means that the
scalars xy, - - -, x, in (2) are uniquely determined, that is, the solution of (1) is unique.




304

THEOREM 2

CHAP.7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

(¢) If rank A = rank A = r < n, then by Theorem 3 in Sec. 7.4 there is a linearly
independent set K of r column vectors of A such that the other n — r column vectors of
A are linear combinations of those vectors. We renumber the columns and unknowns,
denoting the renumbered quantities by *, so that {€), - - -, &} is that linearly independent
set K. Then (2) becomes

Cayky + 0t ke T it o Cphn = by
ity - * > Copy are linear combinations of the vectors of K, and so are the vectors
Rpi1€ei1 77 s Xnin- Expressing these vectors in terms of the vectors of K and collecting

terms, we can thus write the system in the form

(3 Cpyr + T ey =b
with y; = &; + B;, where f; results from the n — r terms &, X411, * * > €ty here,
j=1,---,r Since the system has a solution, there are yq, * - -, ¥, satisfying (3). These
scalars are unique since K is linearly independent. Choosing £,,1, "+ *, %, fixes the B;
and corresponding £; = y; — Bj, where j = 1, -, 1.

(d) This was discussed in Sec. 7.3 and is restated here as a reminder. 5]

The theorem is illustrated in Sec. 7.3. In Example 2 there is a unique solution since
rank A = rank A = n = 3 (as can be seen from the last matrix in the example). In Example
3 we have rank A = rank A = 2 < n = 4 and can choose x5 and x, arbitrarily. In Example
4 there is no solution because rank A = 2 < rank A = 3.

Homogeneous Linear System

Recall from Sec. 7.3 that a linear system (1) is called homogeneous if all the b;’s are
zero, and nonhomogeneous if one or several b;’s are not zero. For the homogeneous
system we obtain from the Fundamental Theorem the following results.

Homogeneous Linear System

A homogeneous linear system

ay1X1 o ay19X9 o e b AypXpn = 0
ag1 Xy + A9oXo e Ui AopXy = 0
)
A1y T+ GpaXs + + apnX, =0
always has the trivial solution x; = 0, - - -, x,, = 0. Nontrivial solutions exist if and

only if rank A < n. If rank A = r < n, these solutions, together with x = 0, form a
vector space (see Sec. 7.4) of dimension n — r, called the solution space of (4).

In particular, if X, and X, are solution vectors of (4), then X = ¢;Xq, T CoX2,
with any scalars ¢y and cy is a solution vector of (4). (This does not hold for
nonhomogeneous systems. Also, the term solution space is used for homogeneous
systems only.)
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PROOF

THEOREM 3

THEOREM 4

PROOF

The first proposition can be seen directly from the system. It agrees with the fact that
b = 0 implies that rank A = rank A, so that a homogeneous system is always consistent.
If rank A = n, the trivial solution is the unique solution according to (b) in Theorem 1.
If rank A < n, there are nontrivial solutions according to (c) in Theorem 1. The solutions
form a vector space because if X4, and X, are any of them, then Ax,, = 0, Ax, = 0,
and this implies A(Xq, + X@)) = AXqy, T AX = 0 as well as A(cXq)) = cAxqy = 0,
where ¢ is arbitrary. If rank A = r < n, Theorem 1 (c) implies that we can choose
n — r suitable unknowns, call them x,., -, x,, in an arbitrary fashion, and every
solution is obtained in this way. Hence a basis for the solution space, briefly called a basis
of solutions of (4), s ¥1), * * * , Ya—n» Where the basis vector y ;, is obtained by choosing
X,+; = 1 and the other x,.4, - * -, x,, zero; the corresponding first » components of this
solution vector are then determined. Thus the solution space of (4) has dimension n — r.
This proves Theorem 2. =

The solution space of (4) is also called the null space of A because Ax = 0 for every x
in the solution space of (4). Its dimension is called the nullity of A. Hence Theorem 2
states that

Q) rank A + nullity A = n

where 7 is the number of unknowns (number of columns of A).
Furthermore, by the definition of rank we have rank A = m in (4). Hence if m < n,
then rank A < n. By Theorem 2 this gives the practically important

Homogeneous Linear System with Fewer Equations Than Unknowns

A homogeneous linear system with fewer equations than unknowns has always
nontrivial solutions.

Nonhomogeneous Linear Systems

The characterization of all solutions of the linear system (1) is now quite simple, as follows.

Nonhomogeneous Linear System

If a nonhomogeneous linear system (1) is consistent, then all of its solutions are
obtained as

(6) X = Xo T Xp,

where X, is any (fixed) solution of (1) and x;, runs through all the solutions of the
corresponding homogeneous system (4).

The difference x;, = x — X, of any two solutions of (1) is a solution of (4) because
Ax;, = AX — Xg) = AX — Axg = b—Db = 0. Since x is any solution of (1), we get all
the solutions of (1) if in (6) we take any solution X, of (1) and let x;, vary throughout the
solution space of (4). ]




306

CHAP.7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

7.6 For Reference:
Second- and Third-Order Determinants

PROOF

We explain these determinants separately from the general theory in Sec. 7.7 because they
will be sufficient for many of our examples and problems. Since this section is for
reference, go on to the next section, consulting this material only when needed.

A determinant of second order is denoted and defined by

dyy a2

) D =detA =

= dq1099 — d12021-

Aoy (5>))

So here we have bars (whereas a matrix has brackets).
Cramer’s rule for solving linear systems of two equations in two unknowns

(@) apxg + appxe = by

(2)
(b)  agyxy T dggXs = by
is
by ayp
o by azs| _ byasy — aiaby
T T p T D ’
3
ay by
_laz ba| ayby — biasy
2T Tp D
with D as in (1), provided
D # 0.

The value D = 0 appears for inconsistent nonhomogeneous systems and for homogeneous
systems with nontrivial solutions.

We prove (3). To eliminate x,, multiply (2a) by ass and (2b) by —a;5 and add,
(aq1095 — @12G21)X1 = biags — aybs.

Similarly, to eliminate x,;, multiply (2a) by —ag; and (2b) by a;; and add,
(411099 — G12021) Xy = a11bg — b1dsy.

Assuming that D = ay1dgy — 12021 # 0, dividing, and writing the right sides of these
two equations as determinants, we obtain (3). |
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EXAMPLE 1

Cramer’s Rule for Two Equations

4x1 + 3x9 = 12
If then Hn=—"=— =6, Xy = = -—4 H

2x1 + 5% = —8 4 3 14 4 3\ 14
2 5 2 5
Third-Order Determinants
A determinant of third order can be defined by
ay; diz di3

Aoy da3 dig  di13 dyjp  diz
4 D= las ax axg| = an — dg + as

Azg  dz3 dzg  ds3 Ago  do3

azy dzz dzz

Note the following. The signs on the right are + — +. Each of the three terms on the
right is an entry in the first column of D times its minor, that is, the second-order
determinant obtained from D by deleting the row and column of that entry; thus, for a;;
delete the first row and first column, and so on.

If we write out the minors in (4), we obtain

(4%) D = ay1a99a33 — d11dagdsg T dg1013039 — dg1019a33 T 31012093 — A3101302.

Cramer’s Rule for Linear Systems of Three Equations
a1y T dagpxe + agzxg = by
5 A91Xy T AgoXy T agzXg = by

ag1Xy T dAgeXe + aggxs = bg

D]. D2 D3
(6) xlzg_, XZZF, X3 = —— (DQEO)

with the determinant D of the system given by (4) and

by @y a3 a1 by ags a1 e by
Dy = |by azy ass|, Dy = |ag1 by ass|, Dy = |ag; agss by
by azy ass as; by ass dz1  dzz bg

Note that Dy, Dy, Dy are obtained by replacing Columns 1, 2, 3, respectively, by the
column of the right sides of (5).

Cramer’s rule (6) can be derived by eliminations similar to those for (3), but it also
follows from the general case (Theorem 4) in the next section.
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7.7 Determinants. Cramer’s Rule

Determinants were originally introduced for solving linear systems. Although impractical
in computations, they have important engineering applications in eigenvalue problems
(Sec. 8.1), differential equations, vector algebra (Sec. 9.3), and so on. They can be
introduced in several equivalent ways. Our definition is particularly practical in connection
with linear systems.

A determinant of order n is a scalar associated with an n X n (hence square!) matrix
A = [agl, which is written

a1 dy Ain

da1 daz tU Aoy
§)) D = detA =

Apn1 an2 C Apn
and is defined for n = 1 by
2) D = ay,
and for n = 2 by
(3a) D:ajICj1+aj2Cj2+-'-+aj Cin (j=1,2,---,0rn)
or
(3b) D = a;;.Cix + aoCop + *+* + aniCrie (k= 1,2,---,0rn)
Here,

Cjk = (- 1)j+ijk

and M, is a determinant of order n — 1, namely, the determinant of the submatrix of A
obtained from A by omitting the row and column of the entry aj, that is, the Jjth row and
the kth column.

In this way, D is defined in terms of n determinants of order n — 1, each of which is,
in turn, defined in terms of n — 1 determinants of order n — 2, and so on; we finally
arrive at second-order determinants, in which those submatrices consist of single entries
whose determinant is defined to be the entry itself.

From the definition it follows that we may expand D by any row or column, that is,
choose in (3) the entries in any row or column, similarly when expanding the Cj,’s in (3),
and so on.

This definition is unambiguous, that is, yields the same value for D no matter which
columns or rows we choose in expanding. A proof is given in App. 4.
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EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

Terms used in connection with determinants are taken from matrices. In D we have n®

entries g, also n rows and n columns, and a main diagonal on which ay,, ags, * * -, Gy,
stand. Two terms are new:

M is called the minor of a;, in D, and Cj, the cofactor of ay, in D.
For later use we note that (3) may also be written in terms of minors

n

(4a) D =2 (=1 FauM;, (j=1,2,-+-,0rn)
k=1

(4b) D = >, (—1Y*Fa; My, (k=1,2,--,o0rn).
j=1

Minors and Cofactors of a Third-Order Determinant

In (4) of the previous section the minors and cofactors of the entries in the first column can be seen directly.
For the entries in the second row the minors are

a2 ays ay ai3 a1 ay2
Mgy = , May = . Mys =
asz ass as1 ass asy as2
and the cofactors are Co; = —Magy, Cop = +Mas, and Cy3 = —Myg. Similarly for the third row—write these
down yourself. And verify that the signs in Cj, form a checkerboard pattern
+ - +
— + —
+ - 4+ 2]
Expansions of a Third-Order Determinant
1 3 0
6 4 2 4 2 6
D=| 2 6 41 =1 -3 +0
0 2 -1 2 -1 0
-1 0 2

112 -0) — 34 +4) + 00 +6)=—12.

This is the expansion by the first row. The expansion by the third column is

2 6 1 3 1 8
D=0 -4 +2 =0-12+0=-12,
-1 0 -1 0 2 6
Verify that the other four expansions also give the value —12. E
Determinant of a Triangular Matrix
-3 0 0
4 0
6 4 o =-3 = —3-4-5=-60
2 5
-1 2 5

Inspired by this, can you formulate a little theorem on determinants of triangular matrices? Of diagonal
matrices? &
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General Properties of Determinants

To obtain the value of a determinant (1), we can first simplify it systematically by
elementary row operations, similar to those for matrices in Sec. 7.3, as follows.

Behavior of an nth-Order Determinant under Elementary Row Operations

(@) Interchange of two rows multiplies the value of the determinant by — 1.

(b) Addition of a multiple of a row to another row does not alter the value of the
determinant.

(¢) Multiplication of a row by a nonzero constant ¢ multiplies the value of the
determinant by c. (This holds also when ¢ = 0, but gives no longer an elementary
row operation.)

(a) By induction. The statement holds for n = 2 because

a b c d
= bc — ad.

‘ = ad — bc, but

c d a b

We now make the induction hypothesis that (a) holds for determinants of order n — 1 = 2
and show that it then holds for determinants of order n. Let D be of order n. Let E be
obtained from D by the interchange of two rows. Expand D and E by a row that is not
one of those interchanged, call it the jth row. Then by (4a),

n n
®) D = E (*1)j+kajijk, E = 2 (_1)j+kajkNjk
k=1 k=1
where N, is obtained from the minor M, of aj, in D by the interchange of those two
rows which have been interchanged in D (and which N, must both contain because we
expand by another row!). Now these minors are of order n — 1. Hence the induction
hypothesis applies and gives Ny, = —Mj,,. Thus E = —D by (5).

(b) Add c times Row i to Row j. Let D be the new determinant. Its entries in Row j are
aj, + cay. 1f we expand D by this Row j, we see that we can write it as D = Dy + cDs,
where D; = D has in Row j the a;,, whereas Dy has in that Row j the a;, from the addition.
Hence D, has a;;, in both Row i and Row j. Interchanging these two rows gives Dy back,
but on the other hand it gives —Ds by (a). Together Dy = —Dy = 0, so that D =D, =D.

(¢) Expand the determinant by the row that has been multiplied.
CAUTION! det (cA) = ¢™det A (not ¢ det A). Explain why. =

Evaluation of Determinants by Reduction to Triangular Form

Because of Theorem | we may evaluate determinants by reduction to triangular form, as in the Gauss elimination
for a matrix. For instance (with the blue explanations always referring to the preceding determinant)

2 0 —4 6

4 5 1 0
D=

0 2 6 —1
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2 0 —4 6

0 5 9 —-12 Row 2 — 2 Row 1

0 2 6 -1

0 8 3 10 Row 4 + 1.5 Row 1

2 0 —4 6

0 5 9 -12

0 0 2.4 3.8 Row 3 — 0.4 Row 2

0 0 -—114 29.2 Row 4 — 1.6 Row 2

2 0 —4 6

0 5 9 —12

0 0 2.4 3.8

0 0 -0 47.25 Row 4 + 4.75 Row 3

=2-5-24-4725 = 1134. |

2 THEOREM 2 Further Properties of nth-Order Determinants

(a)—(c) in Theorem 1 hold also for coiumns.
(d) Transposition leaves the value of a determinant unaltered.
(e) A zero row or column renders the value of a determinant zero.

(f) Proportional rows or columns render the value of a determinant zero. In
particular, a determinant with two identical rows or columns has the value zero.

. PROOF (a)(e) follow directly from the fact that a determinant can be expanded by any row
column. In (d), transposition is defined as for matrices, that is, the Jjth row becomes the
Jjth column of the transpose.

(f) If Row j = ¢ times Row i, then D = ¢D;, where D; has Row j = Row i. Hence an
interchange of these rows reproduces D, but it also gives —D; by Theorem 1(a). Hence
D; = 0and D = ¢D; = 0. Similarly for columns. =

It is quite remarkable that the important concept of the rank of a matrix A, which is the
maximum number of linearly independent row or column vectors of A (see Sec. 7.4), can
be related to determinants. Here we may assume that rank A > 0 because the only matrices
with rank 0 are the zero matrices (see Sec. 7.4).

THEOREM 3 Rank in Terms of Determinants

An m X nmatrix A = [a;;] has rank r Z 1 if and only if A has an r X r submatrix
with nonzero determinant, whereas every square submatrix with more than r rows
that A has (or does not have!) has determinant equal to zero.

In particular, if A is square, n X n, it has rank n if and only if

L det A # 0.
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The key idea is that elementary row operations (Sec. 7.3) alter neither rank (by Theorem
1 in Sec. 7.4) nor the property of a determinant being nonzero (by Theorem 1 in this
section). The echelon form A of A (see Sec. 7.3) has r nonzero row vectors (which are
the first r row vectors) if and only if rank A = r. Let R be the r X r submatrix in the left
upper corner of A (so that the entries of R are in both the first » rows and r columns of A).
Now R is triangular, with all diagonal entries r;; nonzero. Thus, det R =rcc e # 0.
Also det R # 0 for the corresponding r X r submatrix R of A because R results from R
by elementary row operations. Similarly, det S = 0O for any square submatrix S of r + 1
or more rows perhaps contained in A because the corresponding submatrix S of A must
contain a row of zeros (otherwise we would have rank A = r + 1), so that det $§=0 by
Theorem 2. This proves the theorem for an m X n matrix.

In particular, if A is square, n X n, then rank A = 7 if and only if A contains an n X n
submatrix with nonzero determinant. But the only such submatrix can be A itself, hence

det A # 0. H

Cramer’s Rule

Theorem 3 opens the way to the classical solution formula for linear systems known as
Cramer’s rule2, which gives solutions as quotients of determinants. Cramer’s rule is not
practical in computations (for which the methods in Secs. 7.3 and 20. 1-20.3 are suitable),
but is of theoretical interest in differential equations (Secs. 2.10, 3.3) and other theories
that have engineering applications.

Cramer’s Theorem (Solution of Linear Systems by Determinants)

(@) If a linear system of n equations in the same number of unknowns xy, * * *, X
a11x1 st alzxz ap s i al,nxn = bl
AoyXy T GgeXe ++ T GopXn = by
(6)
ApXy T AnaXo + ot ApnXn T by,

has a nonzero coefficient determinant D = det A, the system has precisely one
solution. This solution is given by the formulas

) g = Do (Cramer's rule)
X1 3 Xy = D’ K D (Cramer’s rule

where Dy, is the determinant obtained from D by replacing in D the kth column by
the column with the entries by, = * * by,

(b) Hence if the system (6) is homogeneous and D # 0, it has only the trivial
solution x; = 0, x5 =0, ,x, = 0. If D = 0, the homogeneous systen also has
nontrivial solutions.

2GABRIEL CRAMER (1704-1752), Swiss mathematician.
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The augmented matrix A of the system (6) is of size n X (n + 1). Hence its rank can be
at most n. Now if

a1 U A1n

(8) D = detA = # 0,

Aan1 e Apn

then rank A = n by Theorem 3. Thus rank A = rank A. Hence, by the Fundamental
Theorem in Sec. 7.5, the system (6) has a unique solution.
Let us now prove (7). Expanding D by its kth column, we obtain

9 D = ay;,Cyy + agyCop + + =+ + ayp Crpes

where Cj;, is the cofactor of entry a;;, in D. If we replace the entries in the kth column of
D by any other numbers, we obtain a new determinant, say, D. Clearly, its expansion by
the kth column will be of the form (9), with ay, - * -, a,,; replaced by those new numbers
and the cofactors C;,, as before. In particular, if we choose as new numbers the entries
ay, * * °, ayy of the Ith column of D (where [ # k), we have a new determinant D which
has twice the column [ay; LR anl]T, once as its /th column, and once as its kth
because of the replacement. Hence D=0 by Theorem 2(f). If we now expand D by the
column that has been replaced (the kth column), we thus obtain

(10) ayCr + agCo + -+ + a4,y Cpy = 0 (# k.

We now multiply the first equation in (6) by Cy;, on both sides, the second by Cy, - - -,
the last by C,,;., and add the resulting equations. This gives

(11 Cirlanxy + -0+ apex,) + oo+ Coplapixy + - - + agyxy)
— blclk + -+ annk

Collecting terms with the same x;, we can write the left side as
x1(a11Crg + agCop + - -+ 4 Crp) + 00+ x(a1,Crpe + a2, Cope + 7+ + A Crg).
From this we see that x;, is multiplied by
a13.Crp + a9y Cop + -+ - + a3, Cpye-
Equation (9) shows that this equals D. Similarly, x; is multiplied by
a;Cre + a9 Cop. + - - - + a,,;Ciee

Equation (10) shows that this is zero when [ # k. Accordingly, the left side of (11) equals
simply x;.D, so that (11) becomes

.ka = blclk + b2C2k + oot annk
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1.

5.

11.

13.

5-16

CHAP.7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

Now the right side of this is Dy, as defined in the theorem, expanded by its kth column,
so that division by D gives (7). This proves Cramer’s rule.

If (6) is homogeneous and D # 0, then each Dy, has a column of zeros, so that D, = 0
by Theorem 2(e), and (7) gives the trivial solution.

Finally, if (6) is homogeneous and D = 0, then rank A < n by Theorem 3, so that
nontrivial solutions exist by Theorem 2 in Sec. 7.5. |

Iustrations of Theorem 4 for n = 2 and 3 are given in Sec. 7.6, and an important
application of the present formulas will follow in the next section.

(Second-order determinant) Expand a general second-
order determinant in four possible ways and show that
the results agree.

. (Minors, cofactors) Complete the list of minors and

cofactors in Example 1.

. (Third-order determinant) Do the task indicated in

Example 2. Also evaluate D by reduction to triangular
form.

. (Scalar multiplication) Show that det (kA) = k™ det A

(not k det A), where A is any n X n matrix. Give an
example.

EVALUATION OF DETERMINANTS
Evaluate, showing the details of your work.
13 8‘ cosnfl sinn@
6.
—2 7 —sinnf cosn0
14 2 5
cosa sina
8. | 2 0 8
sin B cos 3
5 8 -2
70.4 0.3 0.8 2 1 2
0 0.5 2.6 10. |—2 2 1
0 0 —-19 1 2 —2
0 3 -1 0 a b
—3 0 —4 12. |—a O c
1 4 0 -b —c 0
1 -2 0 0
u v w
4 3 5 0
w u v 14
0 2 7 5
v w u
0 0 2 4

17.

1 2 0 0 0 —2 1 0

3 4 0 0 2 0 —2 4
16.

0 0 5 6 -1 2 0 1

0 0 7 8 0 —4 -1 0

(Expansion numerically impractical) Show that the
computation of an nth-order determinant by expansion
involves n! multiplications, which if a multiplication
takes 107 sec would take these times:

n 10 15 20 25
. 0.004 22 77 0.5-10°
Time .
sec min years years

CRAMER’S RULE

Solve by Cramer’s rule and check by Gauss elimination and
back substitution. (Show details.)

18. 2x — 5y = 23
4x + 6y = =2
19. 3y + 4z = 1438
4x + 2y — z = —63
x— y+5z= 135
20. w + 2x —-3z=30
4x — 5y + 2z =13
2w + 8x — 4y + z =42
3w + y—5z=35
21-23| RANK BY DETERMINANTS

Find the rank by Theorem 3 (which is not a very practical
way) and check by row reduction. (Show details.)
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M 8 4
21. | -2 -1
L 6 3
2 1 0
22. | 13 —13 12
L.—3 5 —4
0.4 0 2.4 3.0
23. | 1.2 0.6 0 0.3
L O 1.2 1.2 0
24. TEAM PROJECT. Geometrical Applications:

Curves and Surfaces Through Given Points. The
idea is to get an equation from the vanishing of
the determinant of a homogeneous linear system as the
condition for a nontrivial solution in Cramer’s theorem.
We explain the trick for obtaining such a system for
the case of a line L through two given points Py: (x1, y1)
and Ps: (X9, o). The unknown line is ax + by = —c,
say. We write it as ax + by + ¢-1 = 0. To get a
nontrivial solution a, b, ¢, the determinant of the
“coefficients” x, y, 1 must be zero. The system is

ax+ by +c¢-1=0 (Line L)
12) ax; +by; +c+1 =0 (Pyonl)
axs + bys + ¢+ 1 =0 (Pyon L).

/.8 Inverse of a Matrix.
Gauss—Jordan Elimination

In this section we consider square matrices exclusively.
The inverse of an n X n matrix A = [a;;] is denoted by A~ and is an n X n matrix

such that

1)

25.

26.

315

(a) Line through two points. Derive from D = 0 in
(12) the familiar formula

X=X Y™ N

X1 7T Xe Y1 7= Y2

(b) Plane. Find the analog of (12) for a plane through
three given points. Apply it when the points are (1, 1, 1),
(3,2,6), (5,0,5).

(¢) Circle. Find a similar formula for a circle in the
plane through three given points. Find and sketch the
circle through (2, 6), (6, 4), (7, 1).

(d) Sphere. Find the analog of the formula in (c) for
a sphere through four given points. Find the sphere
through (0, 0, 5), (4, 0, 1), (0, 4, 1), (0, 0, —3) by this
formula or by inspection.

(e) General conic section. Find a formula for a
general conic section (the vanishing of a determinant
of 6th order). Try it out for a quadratic parabola and
for a more general conic section of your own choice.
WRITING PROJECT. General Properties of
Determinants. Illustrate each statement in Theorems
1 and 2 with an example of your choice.

CAS EXPERIMENT. Determinant of Zeros and
Ones. Find the value of the determinant of the n X n
matrix A,, with main diagonal entries all 0 and all others
1. Try to find a formula for this. Try to prove it by
induction. Interpret Az and A, as “incidence matrices”
(as in Problem Set 7.1 but without the minuses) of a
triangle and a tetrahedron, respectively; similarly for
an “n-simplex”, having n vertices and n(n — 1)/2 edges
(and spanning R"™1, n = 5,6, ).

AATl=A"TA =1

where I is the n X n unit matrix (see Sec. 7.2).
If A has an inverse, then A is called a nonsingular matrix. If A has no inverse, then

A is called a singular matrix.

If A has an inverse, the inverse is unique.
Indeed, if both B and C are inverses of A, then AB = I and CA = I, so that we obtain

the uniqueness from

B =1IB = (CA)B = C(AB) = CI = C.
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We prove next that A has an inverse (is nonsingular) if and only if it has maximum
possible rank n. The proof will also show that Ax = b implies x = A~ 'b provided At
exists, and will thus give a motivation for the inverse as well as a relation to linear systems.
(But this will not give a good method of solving Ax = b numerically because the Gauss
elimination in Sec. 7.3 requires fewer computations.)

Existence of the Inverse

The inverse A~' of an n X n matrix A exists if and only if rank A = n, thus (by

Theorem 3, Sec. 7.7) if and only if det A # 0. Hence A is nonsingular if rank A = n,
and is singular if rank A < n.

Let A be a given n X n matrix and consider the linear system
2) Ax = b.

If the inverse A~1 exists, then multiplication from the left on both sides and use of (1)
gives
A~'Ax = x = A7'b.
This shows that (2) has a unique solution x. Hence A must have rank 7 by the Fundamental
Theorem in Sec. 7.5.
Conversely, let rank A = n. Then by the same theorem, the system (2) has a unique
solution x for any b. Now the back substitution following the Gauss elimination (Sec. 1:3)

shows that the components x; of x are linear combinations of those of b. Hence we can
write

3) x = Bb
with B to be determined. Substitution into (2) gives
Ax = A(Bb) = (AB)b =Cb =D (C = AB)

for any b. Hence C = AB = 1, the unit matrix. Similarly, if we substitute (2) into (3) we
get

x = Bb = B(Ax) = (BA)X

for any x (and b = Ax). Hence BA = L Together, B = A1 exists. =

3WILHELM JORDAN (1842-1899), German mathematician and geodesist. [See American Mathematical
Monthly 94 (1987), 130-142.]

We do not recommend it as a method for solving systems of linear equations, since the number of operations
in addition to those of the Gauss elimination is larger than that for back substitution, which the Gauss—Jordan
elimination avoids. See also Sec. 20.1.
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EXAMPLE 1

Determination of the Inverse
by the Gauss—)Jordan Method

For the practical determination of the inverse A™! of a nonsingular n X n matrix A we
can use the Gauss elimination (Sec. 7.3), actually a variant of it, called the Gauss-Jordan
elimination® (footnote of p. 316). The idea of the method is as follows.

Using A, we form n linear systems

AXq) = eq) B AXir) = €
where eq,, ---, ey are the columns of the n X n unit matrix I; thus,
enp=1[1 0 --- 017, e =0 1 0 --- 017, etc. These are n vector equations
in the unknown vectors X, * * *, X,. We combine them into a single matrix equation
AX = 1, with the unknown matrix X having the columns Xq,, * -, X
Correspondingly, we combine the n augmented matrices [A  eq,], -, [A  eqy] into

one n X 2n “augmented matrix” A = [A I]. Now multiplication of AX = I by A™!
from the left gives X = A~ = A™L. Hence, to solve AX = I for X, we can apply the
Gauss elimination to A = [A  I]. This gives a matrix of the form [U H] with upper
triangular U because the Gauss elimination triangularizes systems. The Gauss—Jordan
method reduces U by further elementary row operations to diagonal form, in fact to the
unit matrix I. This is done by eliminating the entries of U above the main diagonal and
making the diagonal entries all 1 by multiplication (see the example below). Of course,
the method operates on the entire matrix [U H], transforming H into some matrix K,
hence the entire [U H] to [I K]. This is the “augmented matrix” of IX = K. Now
IX = X = A™!, as shown before. By comparison, K = A~1, so that we can read A~
directly from [I K].
The following example illustrates the practical details of the method.

Inverse of a Matrix. Gauss—Jordan Elimination

Determine the inverse A~ of

Solution. We apply the Gauss elimination (Sec. 7.3) to the following n X 21 = 3 X 6 matrix, where BLUE
always refers to the previous matrix.

—1 1 2 1 0 0
[A I = 3 -1 1 0 1 0
L—1 3 4 0 0 1
=1 1 2 1 0 07
0 2 7 3 1 0 Row 2 + 3 Row 1
Lo 2 2 -1 0 1J Row3 - Rowl
-1 1 2 1 0 07
0 2, 7 3 1 0
L O 0 -5 -4 -1 1 Row 3 — Row 2
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This is [U H] as produced by the Gauss elimination. Now follow the additional Gauss-Jordan steps, reducing
U to L, that is, to diagonal form with entries 1 on the main diagonal.

I =1 =2 -1 0 0 — Row 1
0 1 35 1.5 0.5 0 0.5 Row 2
LO 0 1 0.8 02 -0.2 —0.2 Row 3
r -1 0 06 04 -04 Row 1 + 2 Row 3
0 1 0 -13 =02 0.7 Row 2 — 3.5 Row 3
Lo o 1 08 02 —02
1 0o 0 -07 02 03 Row 1 + Row 2
0 1 0 -13 —-02 0.7
0 0 1 0.8 02 -02

The last three columns constitute AL Check:

-1 1 217-07 02 03 1 0 0
30 -1 t||-13 =-02 o07(=|0 1 0
-1 3 4 08 02 —02 o 0 1

Hence AA~! = L. Similarly, A™'A = L [ ]

Useful Formulas for Inverses

The explicit formula (4) in the following theorem is often useful in theoretical studies (as
opposed to computing inverses). In fact, the special case n = 2 occurs quite frequently in
geometrical and other applications.

THEOREM 2 Inverse of a Matrix

The inverse of a nonsingular n X n matrix A = [aji] is given Dy

Cn Cor e Cu

« &L CoT = 1 Ciz Cos Co Ch2
) = e G T e ’

Cin Con e Con

where Cj is the cofactor of aj, in det A (see Sec. 7.7). (CAUTION! Note well that
in A%, the cofactor Cj;, occupies the same place as ay; (not a ;) does in A.)
In particular, the inverse of

ay (D) 1 Qoo 12
@*) A= is A7l = Y .
Aoy Ao ot —day ayy
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PROOF

EXAMPLE 2

EXAMPLE 3

We denote the right side of (4) by B and show that BA = I. We first write
(%) BA =G = [gi]

and then show that G = I. Now by the definition of matrix multiplication and because of
the form of B in (4), we obtain (CAUTION! Cg,, not Cy)

n

(6) 8kl = E

s=1

Cgr. 1
detA BT GerA (a1, Cre + -+ 0+ @G-

Now (9) and (10) in Sec. 7.7 show that the sum (- - *) on the right is D = det A when
[ = k, and is zero when [ # k. Hence

1
= —— detA =1,
L det A ¢
g =0 (#k),
In particular, for n = 2 we have in (4) in the first row C;; = dgs, Co; = —a;5 and in
the second row Ci9 = —asy, Co9 = ay;. This gives (4%). H

Inverse of a 2 X 2 Matrix

3 1 1 4 -1 04 =0.1
A= : ATl= — J = [ J &
2 4 0] 3 -02 03
Further Illustration of Theorem 2

Using (4), find the inverse of

-1 1 2
A= 3 -1 1
-1 3 4
Solution. We obtain det A = —1(=7) — 113 + 2-8 = 10, and in (4),
-1 1 1 2 1 2
Ci1 = =7, Ca1 =2, Cs1 = =3,
4 4 -1 1
3 1 -1 2 -1 2
Cip = =—13, Cyy= = -2 Cas = — =7,
-1 4 - 4 3 1
3 -1 -1 1 =] 1
Ciz3 = =38, Coz = — =12, Cs3 = = -2,
-1 3 =1 3 3 -1
so that by (4), in agreement with Example 1,
—-0.7 0:2 0.3
Al =|-13 -02 07]. ]

08 02 -02
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PROOF
EXAMPLE 4
PROOF
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Diagonal matrices A = [aj;], aj = 0 when j # k, have an inverse if and only if all
a; # 0. Then A~1lis diagonal, too, with entries 1/aqq, - * +, V.

For a diagonal matrix we have in (4)

D Ay1dgg " * " lpn 4581
Inverse of a Diagonal Matrix
Let
-0.5 0 0
A= 0 4 0
0 0 1
Then the inverse is
-2 0 0
Al=| 0 o025 0 B
0 0 1

Products can be inverted by taking the inverse of each factor and multiplying these
inverses in reverse order,

(7) MO =C A

Hence for more than two factors,

() (AC---PQ)! = Q'pt. - C'A7L

The idea is to start from (1) for AC instead of A, that is, AC(AC)™! = I, and multiply
it on both sides from the left, first by A, which because of A7IA =1 gives

ATTACAC) ™t = C(AO)™!
=A"T=A",

and then multiplying this on both sides from the left, this time by C™! and by using
c'c=1,

ClC(AC)™' = (AC) P =C'ATL
This proves (7), and from it, (8) follows by induction. E
We also note that the inverse of the inverse is the given matrix, as you may prove,

) (A™H7TH = A
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THEOREM 3

PROOF

Unusual Properties of Matrix Multiplication.
Cancellation Laws

Section 7.2 contains warnings that some properties of matrix multiplication deviate from
those for numbers, and we are now able to explain the restricted validity of the so-called
cancellation laws [2.] and [3.] below, using rank and inverse, concepts that were not yet
available in Sec. 7.2. The deviations from the usual are of great practical importance and
must be carefully observed. They are as follows.

[1.] Matrix multiplication is not commutative, that is, in general we have

AB # BA.
[2.] AB = 0 does not generally imply A = 0 or B = 0 (or BA = 0); for example,
1 1 -1 1 0 0
[2 2}[ 1 ~1}:[0 0]
[3.] AC = AD does not generally imply C = D (even when A # 0).

Complete answers to [2.] and [3.] are contained in the following theorem.

Cancellation Laws
Let A, B, C be n X n matrices. Then:
(a) Ifrank A = n and AB = AC, then B = C.

(b) Ifrank A = n, then AB = 0 implies B = 0. Hence if AB = 0, but A # 0
as well as B # 0, then rank A < n and rank B < n.

(¢) If A is singular, so are BA and AB.

(a) The inverse of A exists by Theorem 1. Multiplication by A~ from the left gives
AT'AB = A7'AC, hence B = C.

(b) Let rank A = n. Then A™! exists, and AB = 0 implies A"'AB = B = 0. Similarly
when rank B = n. This implies the second statement in (b).

(¢y) Rank A < n by Theorem 1. Hence Ax = 0 has nontrivial solutions by Theorem 2
in Sec. 7.5. Multiplication by B shows that these solutions are also solutions of BAx = 0,
so that rank (BA) < n by Theorem 2 in Sec. 7.5 and BA is singular by Theorem 1.

(cz) AT is singular by Theorem 2(d) in Sec. 7.7. Hence BTAT is singular by part (c;),
and is equal to (AB)" by (10d) in Sec. 7.2. Hence AB is singular by Theorem 2(d) in
Sec. 7.7. JE1]

Determinants of Matrix Products

The determinant of a matrix product AB or BA can be written as the product of the
determinants of the factors, and it is interesting that det AB = det BA, although AB # BA
in general. The corresponding formula (10) is needed occasionally and can be obtained
by Gauss-Jordan elimination (see Example 1) and from the theorem just proved.
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THEOREM 4

1-12

state that it does not exist. Check by using (1).

n

PROOF

INVERSE
Find the inverse by Gauss—Jordan [or by (4¥) if n = 2] or

1.20
0.50

4.64
3.60

|
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Determinant of a Product of Matrices

For any n X n matrices A and B,

10) det (AB) = det (BA) = det A det B.

If A or B is singular, so are AB and BA by Theorem 3(c), and (10) reduces to 0 = 0 by
Theorem 3 in Sec. 7.7.

Now let A and B be nonsingular. Then we can reduce A to a diagonal matrix A= [aji]
by Gauss—Jordan steps. Under these operations, det A retains its value, by Theorem 1 in
Sec. 7.7, (a) and (b) [not (c)] except perhaps for a sign reversal in row interchanging when
pivoting. But the same operations reduce AB to AB with the same effect on det (AB).
Hence it remains to prove (10) for AB; written out,

a1 0 T 0 b1y bys o bin
" 0 Ao T 0 boy bos e bay,
AB =
0 0 T Apn bnl bn2 e bnn
a11b11 aq1b12 o ay1b1y T
ds2ba1 Aozboo T Aasbsy,
Lannbnl Ao e annbnn_

We now take the determinant det (AB). On the right we can take out a factor d,; from

the first row, dyy from the second, - - + , d,,, from the nth. But this product dyy dag * * * Guy
equals det A because A is diagonal. The remaining determinant is det B. This proves (10)
for det (AB), and the proof for det (BA) follows by the same idea. H

This completes our discussion of linear systems (Secs. 7.3-7.8). Section 7.9 on vector
spaces and linear transformations is optional. Numeric methods are discussed in Secs.
20.1-20.4, which are independent of other sections on numerics.

2 1 2

. 3 3 3

cos 260 sin 26 , y L

06 0.8 3. , 4. | -3 5 3

2. —sin 26 cos 26 L , )
0.8 —0.6 3 3 ~3
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m 5 —q 1 r 20 —11 10 13. (Triangular matrix) Is the inverse of a triangular
matrix always triangular (as in Prob. 7)? Give reason.
% (-5 6 -3 6. | —160 61 —55 14. (Rotation) Give an application of the matrix in Prob.
5 —2 2 55 —921 19 3 that makes the form of its inverse obvious.
15. (Inverse of the square) Verify (A%)~! = (A=) for
M1 0 0] M1 2 5 A in Prob. 5.
7. 12 1 0 8. lo —1 2 16. Prove the formula in Prob. 15. » ]
17. (Inverse of the transpose) Verify (A7)~ = (A™))
L5 4 L L2 4 1 for A in Prob. 5.
- _ 18. Prove the formula in Prob. 17.
K 1 0 0 8 0 . 11
19. (Inverse of the inverse) Prove that (A™})~! = A.
9. |1 0 0 10. (O 0 4 20. (Row interchange) Same question as in Prob. 14 for
ix in Prob. 9.
0 0 1 2 0 0 the matrix in Prob. 9
EXPLICIT FORMULA (4) FOR THE
(1 2 5 ! 2 -9 INVERSE
1 lo - ’ 2l 4 19 Formula 4) is. generally not very practical. To understand
its use, apply it:
L2 4 10 L 0 -1 2 21. To Prob. 9. 22. To Prob. 4. 23. To Prob. 7.

/.9 Vector Spaces, Inner Product Spaces,

Linear Transformations Optional

In Sec. 7.4 we have seen that special vector spaces arise quite naturally in connection
with matrices and linear systems, that their elements, called vectors, satisfy rules quite
similar to those for numbers [(3) and (4) in Sec. 7.1], and that they are often obtained as
spans (sets of linear combinations) of finitely many given vectors. Each such vector has
n real numbers as its components. Look this up before going on.

Now if we take all vectors with n real numbers as components (“real vectors”), we
obtain the very important real n-dimensional vector space R™. This is a standard name
and notation. Thus, each vector in R™ is an ordered n-tuple of real numbers.

Particular cases are R2, the space of all ordered pairs (“vectors in the plane”) and R3,
the space of all ordered triples (“vectors in 3-space”). These vectors have wide applications
in mechanics, geometry, and calculus that are basic to the engineer and physicist.

Similarly, if we take all ordered n-tuples of complex numbers as vectors and complex
numbers as scalars, we obtain the complex vector space C", which we shall consider in
Sec. 8.5.

This is not all. There are other sets of practical interest (sets of matrices, functions,
transformations, etc.) for which addition and scalar multiplication can be defined in a
natural way so that they form a “vector space”. This suggests to create from the “concrete
model” R™ the “abstract concept” of a “real vector space” V by taking the basic properties
(3) and (4) in Sec. 7.1 as axioms. These axioms guarantee that one obtains a useful and
applicable theory of those more general situations. Note that each axiom expresses a simple
property of R™ or, as a matter of fact, of R3. Selecting good axioms needs experience and
is a process of trial and error that often extends over a long period of time.
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DEFINITION Real Vector Space

A nonempty set V of elements a, b, - - - is called a real vector space (or real linear
space), and these elements are called vectors (regardless of their nature, which will
come out from the context or will be left arbitrary) if in V there are defined two
algebraic operations (called vector addition and scalar multiplication) as follows.

L. Vector addition associates with every pair of vectors a and b of V a unique
vector of V, called the sum of a and b and denoted by a + b, such that the following
axioms are satisfied.

1.1 Commutativity. For any two vectors a and b of V,

at+tb=b+ a.
1.2 Associativity. For any three vectors u, v, w of V,
u+v)+w=u+(v+w (writtenu + v+ w).

1.3 There is a unique vector in V, called the zero vector and denoted by 0, such
that for every ain V,

a+0=a.

L.4 For every a in V there is a unique vector in V that is denoted by —a and is
such that

a+(—a)=0.

IL. Scalar multiplication. The real numbers are called scalars. Scalar
multiplication associates with every a in V and every scalar ¢ a unique vector of V,
called the product of ¢ and a and denoted by ca (or ac) such that the following
axioms are satisfied.

IL.1 Distributivity. For every scalar ¢ and vectors a and b in V.,

c(a+b)=ca+ch.

1.2 Distributivity. For all scalars ¢ and k and every a in V,

(c + k)a = ca + ka.

11.3 Associativity. For all scalars ¢ and k and every a in V,

c(ka) = (ck)a (written cka).

I1.4 For every ain V,

la = a.

A complex vector space is obtained if, instead of real numbers, we take complex numbers
as scalars.
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EXAMPLE 1

EXAMPLE 2

Basic concepts related to the concept of a vector space are defined as in Sec. 7.4.
A linear combination of vectors ag,, - -,a,, in a vector space V is an
expression

cagy 0+ cpag, (c1, * * +, ¢y, any scalars).

These vectors form a linearly independent set (briefly, they are called linearly
independent) if

) clagy t+ -+ cpag,, =0

implies that ¢; = 0, - - -, ¢,,, = 0. Otherwise, if (1) also holds with scalars not all zero,
the vectors are called linearly dependent.

Note that (1) with m = 1 is ca = 0 and shows that a single vector a is linearly
independent if and only if a # 0.

V has dimension rn, or is n-dimensional, if it contains a linearly independent set of n
vectors, whereas any set of more than n vectors in V is linearly dependent. That set of n
linearly independent vectors is called a basis for V. Then every vector in V can be written
as a linear combination of the basis vectors; for a given basis, this representation is unique
(see Prob. 14).

Vector Space of Matrices

The real 2 X 2 matrices form a four-dimensional real vector space. A basis is

1 0 0 1 0 0 0 0
By = |: . Bz = |: . By = . By = l:
0 0 0 0 1 0 0 1

because any 2 X 2 matrix A = [a;i] has a unique representation A = a1 Bqy + a13B1g + a21Bay + dssBas.
Similarly, the real m X n matrices with fixed m and n form an mn-dimensional vector space. What is the
dimension of the vector space of all 3 X 3 skew-symmetric matrices? Can you find a basis? il

Vector Space of Polynomials

The set of all constant, linear, and quadratic polynomials in x together is a vector space of dimension 3 with
basis {1, x, xz} under the usual addition and multiplication by real numbers because these two operations give
polynomials not exceeding degree 2. What is the dimension of the vector space of all polynomials of degree
not exceeding a given fixed n? Can you find a basis? H

If a vector space V contains a linearly independent set of n vectors for every n, no matter
how large, then V is called infinite dimensional, as opposed to a finite dimensional
(n-dimensional) vector space just defined. An example of an infinite dimensional vector
space is the space of all continuous functions on some interval [a, b] of the x-axis, as we
mention without proof.

Inner Product Spaces

If a and b are vectors in R", regarded as column vectors, we can form the product ab.
This is a 1 X 1 matrix, which we can identify with its single entry, that is, with a number.
This product is called the inner product or dot product of a and b. Other notations for
it are (a, b) and a*b. Thus b
! n
alb=(a,b)=ab=1[a,- -a,]| | =2 ab=aby + -+ ab,.
1=1

n
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We now extend this concept to general real vector spaces by taking basic properties of
(a, b) as axioms for an “abstract inner product” (a, b) as follows.

DEFINITION rReal Inner Product Space

A real vector space V is called a real inner product space (or real pre-Hilbert*
space) if it has the following property. With every pair of vectors a and b in V there
is associated a real number, which is denoted by (a, b) and is called the inner
product of a and b, such that the following axioms are satisfied.

I. For all scalars ¢; and ¢, and all vectors a, b, ¢ in V,
(g1a + gab, ©) = qa(a, ) + ga(b, ©) (Linearity).
II. For all vectors a and b in V,

(a, b) = (b, a) (Symmetry).
III. For every ain V,
(a’ a) g Oa

(Positive-definiteness).
(a,a) =0 ifandonlyif a=20

Vectors whose inner product is zero are called orthogonal.
The length or norm of a vector in V is defined by

2) lall = V(a,a) (= 0).

A vector of norm 1 is called a unit vector.
From these axioms and from (2) one can derive the basic inequality

lall bl (Cauchy-Schwarz® inequality).

A

3 |(a, b))
From this follows

) la + b =|all + [b] (Triangle inequality).
A simple direct calculation gives

5) la + b]| 2+ |la—bl|%=2C]all®+[b]? (Parallelogram equality).

4DAVID HILBERT (1862-1943), great German mathematician, taught at Konigsberg and Géttingen and was
the creator of the famous Gottingen mathematical school. He is known for his basic work in algebra, the calculus
of variations, integral equations, functional analysis, and mathematical logic. His “Foundations of Geometry”
helped the axiomatic method to gain general recognition. His famous 23 problems (presented in 1900 at the
International Congress of Mathematicians in Paris) considerably influenced the development of modern
mathematics.

If V is finite dimensional, it is actually a so-called Hilbert space; see Ref. [GR7], p. 73, listed in App. L.

S5HERMANN AMANDUS SCHWARZ (1843-1921). German mathematician, known by his work in complex
analysis (conformal mapping) and differential geometry. For Cauchy see Sec. 2.5.
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EXAMPLE 3

EXAMPLE 4

n-Dimensional Euclidean Space
R"™ with the inner product
©) (a,b)=a'b =aby + -+ a,b,

(where both a and b are column vectors) is called the n-dimensional Euclidean space and is denoted by E"™
or again simply by R"™. Axioms I-11I hold, as direct calculation shows. Equation (2) gives the “Euclidean norm”

(3 lall = Via,a) = VaTa:MA 5

An Inner Product for Functions. Function Space

The set of all real-valued continuous functions f(x), g(x), - - - on a given interval @ = x = B is a real vector
space under the usual addition of functions and multiplication by scalars (real numbers). On this “function
space” we can define an inner product by the integral

B
®) (f. 8 :f F) g(x) dx.

Axioms I-III can be verified by direct calculation. Equation (2) gives the norm

B
© Il = V@ H=/ f f)? dx. B

Our examples give a first impression of the great generality of the abstract concepts of
vector spaces and inner product spaces. Further details belong to more advanced courses
(on functional analysis, meaning abstract modern analysis; see Ref. [GR7] listed in App. 1)
and cannot be discussed here. Instead we now take up a related topic where matrices play
a central role.

Linear Transformations

Let X and Y be any vector spaces. To each vector x in X we assign a unique vector y in
Y. Then we say that a mapping (or transformation or operator) of X into Y is given.
Such a mapping is denoted by a capital letter, say F. The vector y in ¥ assigned to a vector
x in X is called the image of x under F and is denoted by F(x) [or Fx, without parentheses].

F is called a linear mapping or linear transformation if for all vectors v and x in X
and scalars c,

F(v + x) = F(v) + F(x)
(10)
F(cx) = cF(x).

Linear Transformation of Space R” into Space R™

From now on we let X = R™ and Y = R™. Then any real m X n matrix A = [a;,] gives
a transformation of R™ into R™,

am y = Ax.

Since A(u + x) = Au + Ax and A(cx) = cAX, this transformation is linear.

We show that, conversely, every linear transformation F of R™ into R™ can be given
in terms of an m X n matrix A, after a basis for R™ and a basis for R™ have been chosen.
This can be proved as follows.
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Let e, * * * » €y, be any basis for R™. Then every x in R™ has a unique representation
X = xi€qy t 0t X800
Since F is linear, this representation implies for the image F(x):
F(x) = F(xeq, * ** * + X80y = X1F(eq) + -+ T X, Fleqy).

Hence F is uniquely determined by the images of the vectors of a basis for R". We now
choose for R™ the “standard basis”

_1_} _0_\ _OW
0 1 0
(12) en =101, e =101 B e = |0

o o] "

where e;, has its jth component equal to 1 and all others 0. We show that we can now
determine an m X n matrix A = [a;] such that for every x in R™ and image y = F(x) in R™,

y = F(x) = Ax.

Indeed, from the image y© = F(e(,) of e, we get the condition

@ B 1]
Y1 Ay co amT 1
€))
Y2 ds1 ce Aoy, 0
@ _
y = . =
@
Lym n Laml tt amn_ _0_

from which we can determine the first column of A, namely ay; = y§, da1 = y§", - -+
@y = v,. Similarly, from the image of e, we get the second column of A, and so on.

This completes the proof. 22|

We say that A represents F, or is a representation of F, with respect to the bases for R"
and R™. Quite generally, the purpose of a “representation” is the replacement of one
object of study by another object whose properties are more readily apparent.

In three-dimensional Euclidean space E? the standard basis is usually written e, = i,
€ = J» €3 = k. Thus,

1 0 0
13) i=(0{, i=|1], k=10
0 0 1
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These are the three unit vectors in the positive directions of the axes of the Cartesian
coordinate system in space, that is, the usual coordinate system with the same scale of
measurement on the three mutually perpendicular coordinate axes.

EXAMPLE 5 Linear Transformations
Interpreted as transformations of Cartesian coordinates in the plane, the matrices
0 1 1 0 =1 0 a 0
[1 0] [o »1] [ 0 —1] [0 J
represent a reflection in the line xg = xy, a reflection in the x;-axis, a reflection in the origin, and a stretch
(when a > 1, or a contraction when 0 < a < 1) in the x;-direction, respectively. |
EXAMPLE 6 Linear Transformations

Our discussion preceding Example 5 is simpler than it may look at first sight. To see this, find A representing
the linear transformation that maps (xq, xg) onto (2x; — 5xo, 3x; + 4xo).

Solution. Obviously, the transformation is
y1 = 2x1 — Sxp
Vo = 3x1 + 4dxy.

From this we can directly see that the matrix is
2 =5 A21 2 =57 Tx 2x1 — Sxo
A= : Check: = = . |
3 4 Yo 3 41 [xg 3x1 + 4xy
If A'in (11) is square, n X n, then (11) maps R"™ into R™. If this A is nonsingular, so that
A~ exists (see Sec. 7.8), then multiplication of (11) by A™! from the left and use of
A7'A = I gives the inverse transformation

(14) x = Aly.

It maps every y = y, onto that x, which by (11) is mapped onto y,. The inverse of a linear
transformation is itself linear, because it is given by a matrix, as (14) shows.

VECTOR SPACES 6. All vectors in R* with v, + vy = 0, vg — v, = 1
(Additional problems in Problem Set 7.4.) 7. All skew-symmetric 2 X 2 matrices
Is the given set (taken with the usual addition and scalar 8. All n X n matrices A with fixed n and det A = 0
multiplication) a vector space? (Give a reason.) If your 9. All polynomials with positive coefficients and degree
answer is yes, find the dimension and a basis. 3 or less
L. All vectors in R? satisfying 5v; — 3v, + 203 = 0 10. All functions f(x) = a cosx + b sinx with any
2. All vectors in R® satisfying 2v, + 3v, — vg = 0, constants a and b
Uy ~4vy tu3 =0 11. All functions f(x) = (ax + b)e”™ with any constants
3. All 2 X 3 matrices with all entries nonnegative aand b
4. All symmetric 3 X 3 matrices 12. All 2 X 3 matrices with the second row any multiple

5. All vectors in R® with the first three components 0

of [4 0 —9]
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13. (Different bases) Find three bases for RZ.

14. (Uniqueness) Show that the representation
vV = cia, + ©+ + cpag, of any given vector in
an n-dimensional vector space V in terms of a given
basis a¢yy, * * * , ¢y, for Vis unique.

LINEAR TRANSFORMATIONS

Find the inverse transformation. (Show the details of your
work.)

15. y1 = x; — 2x4 16. y; = 5x; — x5
yo = 4x; — 3xg Yo = 3x1 — Xg
17. y; = 3xy — X 18. y; = 0.25x; — 0.1xs
Yo = —5x1 + 2x5 Yo = X9 — 0.8x3
V3 = OZXg
19. y, = 2x; — 3x
yo = —10x; + 16x5 + x3
yg = —Tx; + 1lxy + x3

1. What properties of matrix multiplication differ from
those of the multiplication of numbers? What about
division of matrices?

2. Let A be a 50 X 50 matrix and B a 50 X 20 matrix.
Are the following expressions defined or not? A + B,
A2, B2, AB, BA, AAT, B'A, B'B, BB', B'AB. (Give
reasons.)

3. How is matrix multiplication motivated?

4, Are there any linear systems without solutions? With
one solution? With more than one solution? Give simple
examples.

5. How can you give the rank of a matrix in terms of row
vectors? Of column vectors? Of determinants?

6. What is the role of rank in connection with solving
linear systems?

7. What is the row space of a matrix? The column space?
The null space?

8. What is the idea of Gauss elimination and back
substitution?

9. What is the inverse of a matrix? When does it exist?
How would you determine it?

10. What is Cramer’s rule? When would you apply it?

11-19| LINEAR SYSTEMS

Find all solutions or indicate that no solution exists. (Show
the details of your work.)

QUESTIONS AND PROBLEMS

CHAP. 7 Linear Algebra: Matrices, Vectors, Determinants. Linear Systems

20. y; = Xyt xg — 2x3
Yo = X1t xp + 2x3
yg = —2x; + 2xy + 4x3

INNER PRODUCT. ORTHOGONALITY

Find the Euclidean norm of the vectors

21.[4 2 —6]"

22.[0 -3 3 0 5 17
23. 16 —32 0"

4.3 85 2

25.00 1 0O (T) -1 1 —17

% -4 4
27. (Orthogonality) Show that the vectors in Probs. 21
and 23 are orthogonal.

28. Find all vectors v in R® orthogonal to [2 0 1]".

29. (Unit vectors) Find all unit vectors orthogonal to
[4 —3]". Make a sketch.

30. (Triangle inequality) Verify (4) for the vectors in
Probs. 21 and 23.

11. 9x — 3y = 15
5x + 4y = 48

12. —2x —4y + 7z = —6

x +2y +16z= 3

13. 3x + 5y — 8z =18 14. 5x — 10y = 2
x+2y—3z= 6 3x+ y=13
—-x+ 6y = 6
15. —8x +2z=1 16. 2y + z= -1
6y + 4z=3 2% + 3y — g= —12
12x + 2y =2 5x — 4y + 3z = 32
17.3x + 7y = 0 18. —x +4y — 2z = 1
Sx — 4y = 47 3x +4y +6z= 1
6x + 9y =15 x—2y+2z=—3

19. 7x +9y — 14z = 36
—12

Il

—-x =3y + 2z

2x +

Il
45

y— 4z
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CALCULATIONS WITH MATRICES AND 37-42] INVERSE

VECTORS Find the inverse or state why it does not exist. (Show details.)
Calculate the following expressions (showing the details of ~ 37. Of the coefficient matrix in Prob. 11
your work) or indicate why they do not exist, when 38. Of the coefficient matrix in Prob. 15
9 > ] 0 2 6 39. Of the coefficient matrix in Prob. 16

40. Of the coefficient matrix in Prob. 18

A=12 18 10|, B=1-2 0 =3|. 41, Of the augmented matrix in Prob. 14
3 10 15 -6 3 0 42. Of the diagonal matrix with entries 3, —1, 5
3 4 43-45| NETWORKS
a=17]. b=1lol. Find the currents in the following networks.

1 2 43. \1/0\/% 4. 3800V
20. AB, BA 21. A — AT Iy
22. A2 + B? 23. det A, det B, det AB T m
24. AAT, ATA 25. 0.2BB” L

I

26. Aa, a'A, a"Aa 27. a'b, bTa, ab" v
28. b"Bb 29. a™B, B'a 220V
30. 0.1(A + AT)(B — B") 45. 100 ©

31-36| RANK .

Determine the ranks of the coefficient matrix and the !

augmented matrix and state how many solutions the linear 5

system will have. L, .08 T540 v
31 InProb. 13 32. InProb. 12 33. In Prob. 17 —’\/\/\r—T

34. In Prob. 14 35. In Prob. 19 36. In Prob. 18

Linear Algebra: Matrices, Vectors, Determinants
Linear Systems of Equations

Anm X nmatrix A = [a;;] is a rectangular array of numbers or functions (*“entries”,
“elements”) arranged in m horizontal rows and n vertical columns. If m = n, the
matrix is called square. A 1 X n matrix is called a row vector and an m X 1 matrix
a column vector (Sec. 7.1).

The sum A + B of matrices of the same size (i.e., both m X n) is obtained by
adding corresponding entries. The product of A by a scalar ¢ is obtained by
multiplying each a;, by ¢ (Sec. 7.1).

The product C = AB of an m X n matrix A by an r X p matrix B = [Dj] is
defined only when r = n, and is the m X p matrix C = [c;;] with entries

(row j of A times

(1) G = djrbu  Gbope T ¥ Qb T 0k of B,
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This multiplication is motivated by the composition of linear transformations
(Secs. 7.2,7.9). It is associative, but is not commutative: if AB is defined, BA may
not be defined, but even if BA is defined, AB # BA in general. Also AB = 0 may
not imply A = 0 or B = 0 or BA = 0 (Secs. 7.2, 7.8). Illustrations:

AR
R HRR N
S R T

The transpose AT of a matrix A = [az] is AT = [ay;]; rows become columns and
conversely (Sec. 7.2). Here, A need not be square. If it is and A = AT, then A is called
symmetric; if A = —AT, it is called skew-symmetric. For a product, (AB)" = BTAT
(Sec. 7.2).

A main application of matrices concerns linear systems of equations
2) Ax=Db (Sec. 7.3)

(m equations in 72 unknowns xy, * * *, X} A and b given). The most important method
of solution is the Gauss elimination (Sec. 7.3), which reduces the system fto
“triangular” form by elementary row operations, which leave the set of solutions
unchanged. (Numeric aspects and variants, such as Doolirtle’s and Cholesky’s
methods, are discussed in Secs. 20.1 and 20.2)

Cramer’s rule (Secs. 7.6, 7.7) represents the unknowns in a system (2) of n
equations in n unknowns as quotients of determinants; for numeric work it is
impractical. Determinants (Sec. 7.7) have decreased in importance, but will retain
their place in eigenvalue problems, elementary geometry, etc.

The inverse A" of a square matrix satisfies AA™" = A7'A = L It exists if and
only if det A # 0. It can be computed by the Gauss—Jordan elimination (Sec. 7.8).

The rank r of a matrix A is the maximum number of linearly independent rows
or columns of A or, equivalently, the number of rows of the largest square submatrix
of A with nonzero determinant (Secs. 7.4, 7.7).

The system (2) has solutions if and only if rank A = rank [A  b], where [A  b]
is the augmented matrix (Fundamental Theorem, Sec. 7.5).

The homogeneous system
3) Ax =0

has solutions x # 0 (“nontrivial solutions”) if and only if rank A < n, in the case
m = n equivalently if and only if det A = 0 (Secs. 7.6, 7.7).

Vector spaces, inner product spaces, and linear transformations are discussed in
Sec. 7.9. See also Sec. 7.4.




CHAPTER O

Linear Algebra:
Matrix Eigenvalue Problems

i
J
i

Matrix eigenvalue problems concern the solutions of vector equations
(1) Ax = Ax

where A is a given square matrix and vector x and scalar A are unknown. Clearly, x = 0
is a solution of (1), giving 0 = 0. But this of no interest, and we want to find solution
vectors x # 0 of (1), called eigenvectors of A. We shall see that eigenvectors can be
found only for certain values of the scalar A; these values A for which an eigenvector
exists are called the eigenvalues of A. Geometrically, solving (1) in this way means that
we are looking for vectors x for which the multiplication of x by the matrix A has the
same effect as the multiplication of x by a scalar A, giving a vector Ax with components
proportional to those of x, and A as the factor of proportionality.

Eigenvalue problems are of greatest practical interest to the engineer, physicist, and
mathematician, and we shall see that their theory makes up a beautiful chapter in linear
algebra that has found numerous applications.

We shall explain how to solve that vector equation (1) in Sec. 8.1, show a few typical
applications in Sec. 8.2, and then discuss eigenvalue problems for symmetric,
skew-symmetric, and orthogonal matrices in Sec. 8.3. In Sec. 8.4 we show how to obtain
eigenvalues by diagonalization of a matrix. We also consider the complex counterparts of
those matrices (Hermitian, skew-Hermitian, and unitary matrices, Sec. 8.5), which play a
role in modern physics.

COMMENT. Numerics for eigenvalues (Secs. 20.6-20.9) can be studied immediately
after this chapter.

Prerequisite: Chap. 7.
Sections that may be omitted in a shorter course: 8.4, 8.5
References and Answers to Problems: App. 1 Part B, App. 2.
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8.1 Eigenvalues, Eigenvectors

From the viewpoint of engineering applications, eigenvalue problems are among the most

important problems in connection with matrices, and the student should follow the present

discussion with particular attention. We begin by defining the basic concepts and show how

to solve these problems, by examples as well as in general. Then we shall turn to applications.
Let A = [aj] be a given n X n matrix and consider the vector equation

1) AX = AX.

Here x is an unknown vector and A an unknown scalar. Our task is to determine x’s and
A’s that satisfy (1). Geometrically, we are looking for vectors x for which the multiplication
by A has the same effect as the multiplication by a scalar A; in other words, Ax should
be proportional to X.

Clearly, the zero vector X = 0 is a solution of (1) for any value of A, because A0 = 0.
This is of no interest. A value of A for which (1) has a solution x # 0 is called an eigenvalue
or characteristic value (or latent root) of the matrix A. (“Eigen” is German and means
“proper” or “characteristic.”) The corresponding solutions X # 0 of (1) are called the
eigenvectors or characteristic vectors of A corresponding to that eigenvalue A. The set
of all the eigenvalues of A is called the spectrum of A. We shall see that the spectrum
consists of at least one eigenvalue and at most of n numerically different eigenvalues. The
largest of the absolute values of the eigenvalues of A is called the spectral radius of A,
a name to be motivated later.

How to Find Eigenvalues and Eigenvectors

The problem of determining the eigenvalues and eigenvectors of a matrix is called an
eigenvalue problem. (More precisely: an algebraic eigenvalue problem, as opposed to
an eigenvalue problem involving an ODE, PDE (see Secs. 5.7 and 12.3) or integral
equation.) Such problems occur in physical, technical, geometric, and other applications,
as we shall see. We show how to solve them, first by an example and then in general.
Some typical applications will follow afterwards.

EXAMPLE 1 Determination of Eigenvalues and Eigenvectors

We illustrate all the steps in terms of the matrix

=[5 4

Solution. (a) Eigenvalues. These must be determined first. Equation (1) is

=5 2| |« X1 —5x1 + 2xg = Axy
Ax = = A ; in components,
2 -2 Xo, Xo 2x1 — 2Xxg = Axa.
Transferring the terms on the right to the left, we get
(=5 — Mxg + 2xo =0
(2%)
2x1 + (=2 — Mxp = 0.

This can be written in matrix notation
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(3% A-ADx =0

because (1) is Ax — Ax = Ax — AIx = (A — AI)x = 0, which gives (3*). We see that this is a homogeneous
linear system. By Cramer’s theorem in Sec. 7.7 it has a nontrivial solution x # 0 (an eigenvector of A we are
looking for) if and only if its coefficient determinant is zero, that is,

=5-A 2
(4%) D)) = det (A — Al) = ‘ ‘ =(-5-M0)-2-M)—-4=22+7A+6=0.
2 —2.— A
We call D()) the characteristic determinant or, if expanded, the characteristic polynomial, and D(A) = 0
the characteristic equation of A. The solutions of this quadratic equation are Ay = —1 and Ay = —6. These
are the eigenvalues of A.
(by) Eigenvector of A corresponding to A;. This vector is obtained from (2*) with A = Ay = —1, that is,
—4x; + 2x5 =0
2x1 — x9 =0.

A solution is x9 = 2x;, as we see from either of the two equations, so that we need only one of them. This
determines an eigenvector corresponding to A; = —1 up to a scalar multiple. If we choose x; = 1, we obtain
the eigenvector

1 -5 2771 —1
X = [ :| Check: Ax; = |i :I l: :l = |: ] = (—Dx; = Ayxq.
2 2 —2]1L2 ~2

(bs) Eigenvector of A corresponding to As. For A = Ay = —6, equation (2*) becomes
X1+ 2x9 =0
2xq + 4xy = 0.
A solution is xo = —x1/2 with arbitrary x;. If we choose x; = 2, we get x5 = —1. Thus an eigenvector of A
corresponding to Ay = —6 is

2 -5 2 2 -12
Xo = : Check: Ax, = |: i| |: :l = [ :| = (—6)xy = \ox,. W
-1 2 —2 -1 6

This example illustrates the general case as follows. Equation (1) written in components is

apxy + oot oagx, = Axg

Transferring the terms on the right side to the left side, we have

(a1 — Mxq + a19Xy + e+ A1 Xy, =0
@) as1Xq + (agy — A)xy  + + AopXn, 0
an1X1 + ApaXo + - + Gy — Mx, =0

In matrix notation,

3) (A —ADx = 0.




336

THEOREM 1

THEOREM 2

PROOF

CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

By Cramer’s theorem in Sec. 7.7, this homogeneous linear system of equations has a
nontrivial solution if and only if the corresponding determinant of the coefficients is zero:

ap;;p — A dya ain
dgy gy — A - Aan
4) D(\) = det(A — Al) = = 0.
apa %) Tt O T A

A — Al is called the characteristic matrix and D()) the characteristic determinant of

A. Equation (4) is called the characteristic equation of A. By developing D()) we obtain

a polynomial of nth degree in A. This is called the characteristic polynomial of A.
This proves the following important theorem.

Eigenvalues

The eigenvalues of a square matrix A are the roots of the characteristic equation
4) of A.

Hence an n X n matrix has at least one eigenvalue and at most n numerically
different eigenvalues.

For larger n, the actual computation of eigenvalues will in general require the use
of Newton’s method (Sec. 19.2) or another numeric approximation method in
Secs. 20.7-20.9.

The eigenvalues must be determined first. Once these are known, corresponding
eigenvectors are obtained from the system (2), for instance, by the Gauss elimination,
where A is the eigenvalue for which an eigenvector is wanted. This is what we did in
Example 1 and shall do again in the examples below. (To prevent misunderstandings:
numeric approximation methods (Sec. 20.8) may determine eigenvectors first.)

Eigenvectors have the following properties.

Eigenvectors, Eigenspace

If w and x are eigenvectors of a matrix A corresponding to the same eigenvalue A,
so are w + x (provided x # —w) and kx for any k # 0.

Hence the eigenvectors corresponding to one and the same eigenvalue A of A,
together with 0, form a vector space (cf. Sec. 7.4), called the eigenspace of A
corresponding to that A.

Aw = Aw and AXx = Ax imply A(W + X) = Aw + AX = Aw + Ax = A(w + X) and
Alkw) = k(Aw) = k(Aw) = A(kw); hence A(kw + €x) = A(kw + €x). =]

In particular, an eigenvector X is determined only up to a constant factor. Hence we can
normalize x, that is, multiply it by a scalar to get a unit vector (see Sec. 7.9). For

instance, x; = [1 2]7 in Example 1 has the length [|x; || = V1? +2% = \V/5; hence
T
[1/\/5 2/\V/5] is a normalized eigenvector (a unit eigenvector).
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EXAMPLE 2

Examples 2 and 3 will illustrate that an » X n matrix may have » linearly independent
eigenvectors, or it may have fewer than n. In Example 4 we shall see that a real matrix
may have complex eigenvalues and eigenvectors.

Multiple Eigenvalues

Find the eigenvalues and eigenvectors of

-2 2 -3
A= 2 1 -6
=1 =2 0

Solution. For our matrix, the characteristic determinant gives the characteristic equation
B =A%+ 210 +45=0.

The roots (eigenvalues of A) are Ay = 5, Ao = A3 = —3. To find eigenvectors, we apply the Gauss elimination
(Sec. 7.3) to the system (A — AI)x = 0, first with A = 5 and then with A = —3. For A = 5 the characteristic
matrix is

=7 2 -3 -7 2 -3
A-M=A-5I=| 2 -4 —6]. It row-reduces to 0o -z -2
-1 -2 -5 0 0 0
Hence it has rank 2. Choosing x3 = —1 we have x5 = 2 from —274x2 = 4_78.X3 = 0 and then x; = 1 from
—7x; + 2x9 — 3x3 = 0. Hence an eigenvector of A corespondingto A = 5isx; = [1 2 1"
For A = —3 the characteristic matrix
1 2 -3 1 2 =3
A—-AN=A+3I= 2 4 -6 row-reduces to 0 0 0
=1 =2 3 0 0 0
Hence it has rank 1. From x; + 2xy — 3x3 = 0 we have x; = —2xy + 3x3. Choosing xo = 1, x3 = 0 and
xg = 0, x3 = 1, we obtain two linearly independent eigenvectors of A corresponding to A = —3 [as they must

exist by (5), Sec. 7.5, with rank = 1 and n = 3],

-2
Xo = 1
0
and
3
x3= 1[0 [

The order M, of an eigenvalue A as a root of the characteristic polynomial is called the
algebraic multiplicity of A. The number m, of linearly independent eigenvectors
corresponding to A is called the geometric multiplicity of A. Thus m, is the dimension of
the eigenspace corresponding to this A. Since the characteristic polynomial has degree n,
the sum of all the algebraic multiplicities must equal z. In Example 2 for A = —3 we have
my, = M, = 2. In general, m, = M,, as can be shown. The difference A, = M, — m, is
called the defect of A. Thus A_3; = 0 in Example 2, but positive defects A, can easily occur:
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EXAMPLE 3 Algebraic Multiplicity, Geometric Multiplicity. Positive Defect
The characteristic equation of the matrix
0 1 —A 1
A= is det(A-)J)=‘ ‘:)P:o.
0 0 0 —A

Hence A = 0 is an eigenvalue of algebraic multiplicity Mo = 2. But its geometric multiplicity is only mg = 1,
since eigenvectors result from —0x; + xp = 0, hence xp = 0, in the form [x; O]T. Hence for A = 0 the defect
isAg = 1.

Similarly, the characteristic equation of the matrix

3 2 3—-A 2
A:|: i| is det(A—AI):‘ ':(3;,\)2=0,
0 3 0 3=

Hence A = 3 is an eigenvalue of algebraic multiplicity M3 = 2, but its geometric multiplicity is only mg = 1,
since eigenvectors result from Ox; + 2xg = 0 in the form [x; 0" B

EXAMPLE 4 Real Matrices with Complex Eigenvalues and Eigenvectors

Since real polynomials may have complex roots (which then occur in conjugate pairs), a real matrix may have
complex eigenvalues and eigenvectors. For instance, the characteristic equation of the skew-symmetric matrix

0 1 —A 1
A= is det (A — AI) = =A2+1=0.
=], 0 -1 —A
It gives the eigenvalues Ay = i (=V —1), Ay = —i. Eigenvectors are obtained from —ix; + x9 = 0 and

ix; + xo = 0, respectively, and we can choose x; = 1 to get

(o= L "

In the next section we shall need the following simple theorem.

THEOREM 3 Eigenvalues of the Transpose

The transpose A" of a square matrix A has the same eigenvalues as A.

PROOF Transposition does not change the value of the characteristic determinant, as follows from
Theorem 2d in Sec. 7.7. [ |

Having gained a first impression of matrix eigenvalue problems, in the next section we
illustrate their importance with some typical applications.

EIGENVALUES AND EIGENVECTORS 40 0 0
Find the eigenvalues and eigenvectors of the following 1o -4 4. 0 0

matrices. (Use the given A or factors.)

S B L el




SEC. 8.1

11.

12.

13.

14.

15.

16.

17.

18.

19.

[0.8
L0.6

85
—10
L—46

Eigenvalues, Eigenvectors

—0.6:|
0.8

]

—28

—11

0.2
1.0
0

of
o

—28
—11

0.1
1.5

1
0

cos 0

sin 6

0
1

|

—sin 6

cos 6

|

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

339
0 0 -5 7
0o 0 7 -5
0 0 19 —1
lo 0 -1 19
rTo -2 2 0
—4 2 -2 4
JA=4
0 2 2 —4
Lo 2 -6 4
-3 0 4 2
0 1 -2 4
, (A =3y
2 4 -1 -
Lo 2 -2 3
0 0 0
1 1 0 0
2 0 3 0
1 4 2 -6
-3 0 -2 87
0 1 4 —2| A=3
—4 10 -1 -2| A=-5
L 6 -4 —2 3]
-1 0 12 0]
0 -1 0 12
, (A + 12
0 0 -1 —4
Lo 0 -4 —1]

(Multiple eigenvalues) Find further 2 X 2 and 3 X 3
matrices with multiple eigenvalues. (See Example 2.)
(Nonzero defect) Find further 2 X 2 and 3 X 3
matrices with positive defect. (See Example 3.)
(Transpose) Illustrate Theorem 3 with examples of
your own.

(Complex eigenvalues) Show that the eigenvalues of
a real matrix are real or complex conjugate in pairs.
(Inverse) Show that the inverse A ™! exists if and only

if none of the eigenvalues A4, - - -, A,, of A is zero, and
then A~! has the eigenvalues 1/Aq, « - -, 1/A,,.
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8.2 Some Applications of Eigenvalue Problems

EXAMPLE 1

In this section we discuss a few typical examples from the range of applications of matrix
eigenvalue problems, which is incredibly large. Chapter 4 shows matrix eigenvalue
problems related to ODEs governing mechanical systems and electrical networks. To keep
our present discussion independent of Chap. 4, we include a typical application of that
kind as our last example.

Stretching of an Elastic Membrane

An elastic membrane in the x;xp-plane with boundary circle xlz + x22 = 1 (Fig. 158) is stretched so that a
point P: (x1, Xg) goes over into the point Q: (y1, yo) given by

n 5 3 [ y1 = 5x1 + 3xg
(D) y= =Ax = 3 in components,
Vo, 3 5 Xo yo = 3x1 + Sxo.

Find the principal directions, that is, the directions of the position vector x of P for which the direction of the
position vector y of Q is the same or exactly opposite. What shape does the boundary circle take under this
deformation?

Solution. We are looking for vectors X such that y = Ax. Since y = Ax, this gives Ax = Ax, the equation
of an eigenvalue problem. In components, Ax = AX is

S5x1 + 3xg = Axq BG—MNx;+ 3x =0
2 or
3x; + Sxp = At 35, + (- MNxg=0.

The characteristic equation is
5-A 3 5
®) =5 -»-9=0.
3 5—A

Its solutions are A; = 8 and Ay = 2. These are the eigenvalues of our problem. For A = A; = 8, our system
(2) becomes

—3x; + 3x9 =0, Solution xg = xy, xy arbitrary,

3x; — 3x9 = 0. for instance, x; = xg = 1.
For Ay = 2, our system (2) becomes

3x; + 3x5 =0, Solution x5 = —x7, X arbitrary,

3x; + 3x9 = 0. for instance, x; = 1, xg = —1.

We thus obtain as eigenvectors of A, for instance, [1 1]7 corresponding to A; and [1 -1" corresponding to
Ao (or a nonzero scalar multiple of these). These vectors make 45° and 135° angles with the positive x;-direction.
They give the principal directions, the answer to our problem. The eigenvalues show that in the principal
directions the membrane is stretched by factors 8 and 2, respectively; see Fig. 158.

Accordingly, if we choose the principal directions as directions of a new Cartesian u;ug-coordinate system,
say, with the positive u;-semi-axis in the first quadrant and the positive uy-semi-axis in the second quadrant of
the xqxo-system, and if we set uy = rcos @, ug = r sin ¢, then a boundary point of the unstretched circular
membrane has coordinates cos ¢, sin ¢. Hence, after the stretch we have

71 = 8cos ¢, 29 = 2sin ¢.
Since cos? ¢+ sin? ¢ = 1, this shows that the deformed boundary is an ellipse (Fig. 158)

Z12 Z22
+ = =1 i

“ Fa
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EXAMPLE 2

EXAMPLE 3

Fig. 158. Undeformed and deformed membrane in Example 1

Eigenvalue Problems Arising from Markov Processes

Markov processes as considered in Example 13 of Sec. 7.2 lead to eigenvalue problems it we ask for the limit
state of the process in which the state vector x is reproduced under the multiplication by the stochastic matrix
A governing the process, that is, Ax = x. Hence A should have the eigenvalue 1, and x should be a corresponding
eigenvector. This is of practical interest because it shows the long-term tendency of the development modeled
by the process.

In that example,

0.7 0.1 0 0.7 0.2 0.1 1 1
A=102 0.9 02]. For the transpose, 0.1 0.9 0 1l=11
0.1 0 0.8 0 0.2 0.8 1 1

Hence AT has the eigenvalue 1, and the same is true for A by Theorem 3 in Sec. 8.1. An eigenvector x of A
for A = 1 is obtained from

-0.3 0.1 0 =3/10 1/10 0
A-1I= 0.2 —0.1 0.2, row-reduced to 0 —1/30 1/5
0.1 0 -0.2 0 0 0

Taking x3 = 1, we get xo = 6 from —x5/30 + x3/5 = 0 and then x; = 2 from —3x;/10 + x5/10 = 0. This
givesx =[2 6 1]". It means that in the long run, the ratio Commercial : Industrial : Residential will approach
2:6:1, provided that the probabilities given by A remain (about) the same. (We switched to ordinary fractions
to avoid rounding errors.) &)

Eigenvalue Problems Arising from Population Models. Leslie Model

The Leslie model describes age-specified population growth, as follows. Let the oldest age attained by the
females in some animal population be 9 years. Divide the population into three age classes of 3 years each. Let
the “Leslie matrix” be

0 23 0.4
(5) L =[] =06 0 0
0 0.3 0

where [}, is the average number of daughters born to a single female during the time she is in age class &, and
lj j—1 (j = 2, 3) is the fraction of females in age class j — 1 that will survive and pass into class j. (a) What is
the number of females in each class after 3, 6, 9 years if each class initially consists of 400 females? (b) For
what initial distribution will the number of females in each class change by the same proportion? What is this
rate of change?




342

EXAMPLE 4
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Solution. (a) Tnitially, x(g, = [400 400 400]. After 3 years,

0 23 047 [400 1080
Xz =Lxg =06 0 0 | |400| =] 240
o 03 0. L400 120

Similarly, after 6 years the number of females in each class is given by XIG) = (Lx(g))T = [600 648 72], and
after 9 years we have X(g) = (Lx)' = [1519.2 360 194.4].

(b) Proportional change means that we are looking for a distribution vector x such that Lx = Ax, where A
is the rate of change (growth if A > 1, decrease if A < 1). The characteristic equation is (develop the characteristic
determinant by the first column)

det (L — AI) = —A% — 0.6(—231 — 03-04) = —A% + 13810 + 0.072 = 0.

A positive root is found to be (for instance, by Newton’s method, Sec. 19.2) A = 1.2. A corresponding eigenvector
x can be determined from the characteristic matrix

-12 23 04 1
A—-121= 06 —12 0|, say, X = 0.5
0 03 -12 0.125
where x3 = 0.125 is chosen, xp = 0.5 then follows from 03xy — 1.2x3 = 0, and x; = 1 from

—12x; + 23xy + 04x3 = 0. To get an initial population of 1200 as before, we multiply x by
1200/(1 + 0.5 + 0.125) = 738. Answer: Proportional growth of the numbers of females in the three classes
will oceur if the initial values are 738, 369, 92 in classes 1, 2, 3, respectively. The growth rate will be 1.2 per
3 years.

Vibrating System of Two Masses on Two Springs (Fig. 159)

Mass—spring systems involving several masses and springs can be treated as eigenvalue problems. For instance,
the mechanical system in Fig. 159 is governed by the system of ODEs

Y1 = =5y + 2y
(6) "
yo = 2y1 = 2y

where y; and yg are the displacements of the masses from rest, as shown in the figure, and primes denote
derivatives with respect to time . In vector form, this becomes

" y’1, =5 2 Y1
) Y=, |=4y= :
b 2 -2 Y2

(y,= 0)

System in .
static System in
equilibrium motion

Fig. 159. Masses on springs in Example 4




SEC. 8.2 Some Applications of Eigenvalue Problems 343

We try a vector solution of the form
wt

®) y = Xe

! This is suggested by a mechanical system of a single mass on a spring (Sec. 2.4), whose motion is given by
exponential functions (and sines and cosines). Substitution into (7) gives

o?xe®? = Axe®t.
Dividing by ¢”" and writing ®? = ), we see that our mechanical system leads to the eigenvalue problem
©) Ax = Ax where A = o?.

From Example 1 in Sec. 8.1 we see that A has the eigenvalues Ay = —1 and Ay = —6. Consequently,
0=V-1=*iand V-6 = iV, respectively. Corresponding eigenvectors are

1 2
(10) X1 = |: :| and Xo = |: i| .
2 -1

From (8) we thus obtain the four complex solutions [see (10), Sec. 2.2]
xleﬂt = Xq(cost * isint),
xzeti\/gt = Xy (cos V61 +isinVe 1.
By addition and subtraction (see Sec. 2.2) we get the four real solutions
X1 COS 1, Xq sint, X5 COS Ve, Xo Sin Vet
A general solution is obtained by taking a linear combination of these,

Yy = Xq(ay cost + by sint) + X5 (ag cos Ver+ by sin V6 1)

with arbitrary constants ay, by, ag, by (to which values can be assigned by prescribing initial displacement and
initial velocity of each of the two masses). By (10), the components of y are

yp =aycost+ bysint + 2azcos\/6t + 2by sin V6 ¢

Yo = 2ay cost + 2by sint — ag cos V61 — by sin V6 1.

These functions describe harmonic oscillations of the two masses. Physically, this had to be expected because
we have neglected damping. |

LINEAR TRANSFORMATIONS ELASTIC DEFORMATIONS
Find the matrix A in the indicated linear transformation Given A in a deformation y = Ax, find the principal
y = Ax. Explain the geometric significance of the directions and corresponding factors of extension or
eigenvalues and eigenvectors of A. Show the details. contraction. Show the details.
1. Reflection about the y-axis in R2 3 5 04 08
7. 8.
2. Reflection about the xy-plane in R® 5 3 08 04
3. Orthogonal projection (perpendicular projection) of R?
onto the x-axis 9 2.5 1.5 10 5 4
. Orthogonal projection of R® onto the plane y = x ) 1.5 6.5 ) 4 11
. Dilatation (uniform stretching) in R2 by a factor 5
, Sone 7 Ve 5 2
. Counterclockwise rotation through the angle /2 about 11. 12.
the origin in R? Ve 2 213
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-2 3 105 V2
13. 14.
3 =2 V2 100
15. (Leontief' input-output model) Suppose that three
industries are interrelated so that their outputs are used

as inputs by themselves, according to the 3 X 3
consumption matrix

02 05 0
A =[ag] = | 06 0 03
02 05 07

where aj, is the fraction of the output of industry k
consumed (purchased) by industry j. Let p; be the price
charged by industry j for its total output. A problem is
to find prices so that for each industry, total
expenditures equal total income. Show that this leads
to Ap = p, where p = [p1 p2 psl', and find a
solution p with nonnegative py, pa, Ps-

16. Show that a consumption matrix as considered in Prob. 0 7.280 2.975
15 must have column sums 1 and always has the 23. | 0.560 0 0 ‘
eigenvalue 1.
L O 0.420 0

17. (Open Leontief input—output model) If not the whole
output but only a portion of it is consumed by the
industries themselves, then instead of Ax = x (as in
Prob. 15), we have X — Ax =y, where X = [x; X3 x3]"
is produced, Ax is consumed by the industries, and, thus,
y is the net production available for other consumers.
Find for what production X a given demand vector
y = [0.136 0.272 0.136]" can be achieved if the
consumption matrix is

02 0.4 0.2
A=103 0 0.1
0.2 0.4 0.5

MARKOV PROCESSES

Find limit states of the Markov processes modeled by the
following matrices. (Show the details.)

0.1 0.4
18.
0.9 0.6
0.5 0.3 0.2

19. | 0.3 0.5 0.2
0.2 0.2 0.6

0.6 0.1 0.2
20. | 0.4 0.1 04
0 0.8 0.4

21-23| POPULATION MODEL WITH AGE
SPECIFICATION

Find the growth rate in the Leslie model (see Example 3)
with the matrix as given. (Show details.)
0 3.45 0.60

21. | 0.90 0 0
0 0.45 0

0 12.0 0
22. | 0.75 0 0
L 0 0.30 0

24. TEAM PROJECT. General Properties of
Eigenvalues and Eigenvectors. Prove the following
statements and illustrate them with examples of your
own choice. Here, Ay, - - -, A, are the (not necessarily
distinct) eigenvalues of a givenn X n matrix A = [dy]-
(a) Trace. The sum of the main diagonal entries is called
the trace of A. It equals the sum of the eigenvalues.
(b) “Spectral shift.” A — &I has the eigenvalues
A — kv 0+, A, — k and the same eigenvectors as A.
(¢) Scalar multiples, powers. kA has the eigenvalues
KAy, -+ kA, A™(m=1,2,- - ) has the eigenvalues
AM™, -+, A" The eigenvectors are those of A.

(d) Spectral mapping theorem. The “polynomial
matrix”’

PA) = kA" + ky ATTH s kA kol
has the eigenvalues
PO = kg A™ + kg AT A KA+ ko

where j = 1, -+ -, n, and the same eigenvectors as A.

(¢) Perron’s theorem. Show that a Leslie matrix L with
positive s, l13, lo1, I3z has a positive eigenvalue. (This
is a special case of the famous Perron-Frobenius theorem
in Sec. 20.7, which is difficult to prove in its general form.)

LWASSILY LEONTIEF (1906-1999). American economist at New York University. For his input—output
analysis he was awarded the Nobel Prize in 1973.
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8.3 Symmetric, Skew-Symmetric,
and Orthogonal Matrices

We consider three classes of real square matrices that occur quite frequently in applications
because they have several remarkable properties which we shall now discuss. The first
two of these classes have already been mentioned in Sec. 7.2.

DEFINITIONS Symmetric, Skew-Symmetric, and Orthogonal Matrices

A real square matrix A = [a;] is called
symmetric if transposition leaves it unchanged,

a A=A, thus ;i

d = Gk

skew-symmetric if transposition gives the negative of A,

) AT = —A, thus ay; =

3 = T ks

orthogonal if transposition gives the inverse of A,

A3 AT = A1

EXAMPLE 1 Symmetric, Skew-Symmetric, and Orthogonal Matrices

The matrices

-3 1 5 0 9 -12 z 1z
10 -2, -9 0 20/, -2z 1
5 -2 4 12 =20 0 ;3 2 -2

are symmetric, skew-symmetric, and orthogonal, respectively, as you should verify. Every skew-symmetric
matrix has all main diagonal entries zero. (Can you prove this?) [

Any real square matrix A may be written as the sum of a symmetric matrix R and a
skew-symmetric matrix S, where

4) R =1(A+ A7) and S=1A—A").
E EXAMPLE 2 [llustration of Formula (4)
9 5 2 90 35 35 0 15 —15
“ A=[2 3 —8/=R+S=[35 30 -20|+|-15 0 —60 [ |
I 5 4 3 35 —20 3.0 15 60 0
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THEOREM 1

EXAMPLE 3

THEOREM 2

CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

Eigenvalues of Symmetric and Skew-Symmetric Matrices

(a) The eigenvalues of a symmetric matrix are real.

(b) The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.

This basic theorem (and an extension of it) will be proved in Sec. 8.5.

Eigenvalues of Symmetric and Skew-Symmetric Matrices

The matrices in (1) and (7) of Sec. 8.2 are symmetric and have real eigenvalues. The skew-symmetric matrix
in Example 1 has the eigenvalues 0, —251, and 25i. (Verify this.) The following matrix has the real eigenvalues
1 and 5 but is not symmetric. Does this contradict Theorem 1?

L) -

Orthogonal Transformations and Orthogonal Matrices

Orthogonal transformations are transformations

5 y = Ax where A is an orthogonal matrix.

With each vector x in R™ such a transformation assigns a vector y in R™. For instance,
the plane rotation through an angle 6

Vi cos 0 —sin 67 [ x;
(6) y = =1 .

Vo sin 0 cos 0| [ xs
is an orthogonal transformation. It can be shown that any orthogonal transformation in
the plane or in three-dimensional space is a rotation (possibly combined with a reflection

in a straight line or a plane, respectively).
The main reason for the importance of orthogonal matrices is as follows.

Invariance of Inner Product

An orthogonal transformation preserves the value of the inner product of vectors
a and b in R", defined by

by
(7) asb=ab=1[a;, - a,
by,

That is, for any a and b in R™, orthogonal n X n matrix A, andu = Aa,v = Ab
we have usv = a*b.

Hence the transformation also preserves the length or norm of any vector a in
R™ given by

8) la| =Vara=Vaa
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PROOF Let A be orthogonal. Let u = Aa and v = Ab. We must show that usv = a*b. Now
(Aa)" = a"A" by (10d) in Sec. 7.2 and ATA = A~'A = I by (3). Hence

9) u'v =u'v=(Aa)’"Ab = a'"ATAb = a"Ib = a"b = a-bh.
From this the invariance of || a | follows if we set b = a. [ |

Orthogonal matrices have further interesting properties as follows.

THEOREM 3 Orthonormality of Column and Row Vectors

A real square matrix is orthogonal if and only if its column vectors ay, - - -, a,, (and
also its row vectors) form an orthonormal system, that is,

0 if j#k
(10) aj'ak = ajTak =
L 1 if j=k
PROOF (a) Let A be orthogonal. Then A™'A = ATA = I, in terms of column vectors a;, -, a,
a,’ a;’a; a;’ay - a;'a,
A1) I=ATA=ATA=| : |[a--a,]=
anT anTal anTa2 e anTan

The last equality implies (10), by the definition of the n X n unit matrix I. From (3) it
follows that the inverse of an orthogonal matrix is orthogonal (see CAS Experiment 20).
Now the column vectors of A™! (= AT) are the row vectors of A. Hence the row vectors
of A also form an orthonormal system.

(b) Conversely, if the column vectors of A satisfy (10), the off-diagonal entries in (11)
must be 0 and the diagonal entries 1. Hence ATA = 1, as (11) shows. Similarly, AAT = 1.
This implies AT = A™" because also A™'A = AA~! = I and the inverse is unique. Hence
A is orthogonal. Similarly when the row vectors of A form an orthonormal system, by
what has been said at the end of part (a). E

F THEOREM 4 Determinant of an Orthogonal Matrix

The determinant of an orthogonal matrix has the value +1 or —1.

PROOF Fromdet AB = det A det B (Sec. 7.8, Theorem 4) and det AT = det A (Sec. 7.7, Theorem
2d), we get for an orthogonal matrix

1 = detl = det (AA™Y) = det (AAT) = det A det AT = (det A)%. H

i EXAMPLE 4 Ilustration of Theorems 3 and 4

The last matrix in Example 1 and the matrix in (6) illustrate Theorems 3 and 4 because their determinants are
—1 and +1, as you should verify. |
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THEOREM 5 Eigenvalues of an Orthogonal Matrix
The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs
and have absolute value 1.

PROOF The first part of the statement holds for any real matrix A because its characteristic
polynomial has real coefficients, so that its zeros (the eigenvalues of A) must be as
indicated. The claim that |A| = 1 will be proved in Sec. 8.5. ®

EXAMPLE 5 Eigenvalues of an Orthogonal Matrix

The orthogonal matrix in Example 1 has the characteristic equation
B2+ -1 =0

Now one of the eigenvalues must be real (why?), hence +1 or —1. Trying, we find —1. Division by A + 1
gives *(/\2 — 5M/3 + 1) = 0 and the two eigenvalues (5 + iV 11)/6 and (5 — i\/ﬁ)/6, which have absolute
a5

value 1. Verify all of this.

Looking back at this section, you will find that the numerous basic results it contains have
relatively short, straightforward proofs. This is typical of large portions of matrix

eigenvalue theory.

1. (Verification) Verify the statements in Example 1. cos @ —sin @ 0

2. Verify the statements in Examples 3 and 4. 3 1 .

. 11. 12. | sinf cos 0 0

3. Are the cigenvalues of A + B of the form A; + pys -1 1
where A; and p; are the eigenvalues of A and B, 0 0 1
respectively?

4. (Orthogonality) Prove that eigenvectors of a 14 4 -2 0 -6 —12
symmetric  matrix corresponding  to  different 13 4 14 2 14 6 0 —12
eigenvalues are orthogonal. Give an example. ) )

5. (Skew-symmetric matrix) Show that the inverse of a -2 2 17 L1212 0
skew-symmetric matrix is skew-symmetric. _ - . L

6. Do there exist nonsingular skew-symmetric n X n 0 0 1 [
matrices with odd n? 15. 0 1 0 16. | -1 s 4

7. (Orthogonal matrix) Do there exist skew-symmetric L . ) s
orthogonal 3 X 3 matrices? L-1 0 0 B 5 9

8. (Symmetric matrix) Do there exist nondiagonal [a b b
symmetric 3 X 3 matrices that are orthogonal?

17. | b a b
EIGENVALUES OF SYMMETRIC, SKEW- |
SYMMETRIC, AND ORTHOGONAL P& '
MATRICES . ) o )
Are the following matrices symmetric, skew-symmetric, or 18. (Rotation in SPace) G_lve a gelometrlc 1pterpretat10n of
orthogonal? Find their spectrum (thereby illustrating the transformation y = AX ,Wlth A a§ in Prob. 12 and
x and y referred to a Cartesian coordinate system.

Theorems 1 and 5). (Show the details of your work.)
19. WRITING PROJECT. Section Summary.

0.96 —0.28 a b . ) e .
9. 10. Summarize the main concepts and facts in this section,
0.28 0.96 —b a with illustrative examples of your own.
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20. CAS EXPERIMENT. Orthogonal Matrices.

(a) Products. Inverse. Prove that the product of two
orthogonal matrices is orthogonal, and so is the inverse
of an orthogonal matrix. What does this mean in terms
of rotations?

(b) Rotation. Show that (6) is an orthogonal
transformation. Verify that it satisfies Theorem 3. Find

349

spectra. Apply it to the matrix in Prob. 9 (call it A). To
what rotation does A correspond? Do the eigenvalues
of A™ have a limit as m — %?

(d) Compute the eigenvalues of (0.9A)™, where A is
the matrix in Prob. 9. Plot them as points. What is their
limit? Along what kind of curve do these points
approach the limit?

the inverse transformation. (e) Find A such that y = Ax is a counterclockwise

(c) Powers. Write a program for computing powers rotation through 30° in the plane.

A™ (m =1, 2,---) of a2 X 2 matrix A and their

8.4 Eigenbases. Diagonalization.
Quadratic Forms

So far we have emphasized properties of eigenvalues. We now turn to general properties
of eigenvectors. Eigenvectors of an n X n matrix A may (or may not!) form a basis for
R™. If we are interested in a transformation y = Ax, such an “eigenbasis” (basis of
eigenvectors)—if it exists—is of great advantage because then we can represent any X in
R™ uniquely as a linear combination of the eigenvectors x5, * * *, X,,, say,

X = ¢1X1 + c9Xp + -+ - + ¢, X,

And, denoting the corresponding (not necessarily distinct) eigenvalues of the matrix A by
Ay o0, Ay, we have AX; = A;x;, so that we simply obtain
Yy =Ax = A(e1Xy + -+ ¢,.%,)

(1) = c;AXxy + -+ - + c,AX,

I

Cl)\lxl 4 e me = Cn)\,nxn.

This shows that we have decomposed the complicated action of A on an arbitrary vector
X into a sum of simple actions (multiplication by scalars) on the eigenvectors of A. This
is the point of an eigenbasis.

Now if the n eigenvalues are all different, we do obtain a basis:

THEOREM 1 Basis of Eigenvectors
If an n X n matrix A has n distinct eigenvalues, then A has a basis of eigenvectors
Xy, ', X, for R™
PROOF All we have to show is that x;, - - -, x,, are linearly independent. Suppose they are not.
Let r be the largest integer such that {xy, - - -, X,.} is a linearly independent set. Then
r < n and the set {Xy,* - ,X,, X,,1} is linearly dependent. Thus there are scalars
C1,* **, Cpy1, Ot all zero, such that
2 CiXpt s X =0

(see Sec. 7.4). Multiplying both sides by A and using Ax; = A;x;, we obtain

¥/

(3) ciAXy ot X = 0.
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EXAMPLE 1

THEOREM 2

EXAMPLE 2

DEFINITION
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To get rid of the last term, we subtract A, times (2) from this, obtaining

cl()‘l - A'H—l)xl +oeeet CT()\T - /\1‘+1)X7' =0.

Here c;(A; = i) = 0,7 , (A, — Apyq) = Osince (x5, "+ * X} is linearly independent.
Hencec; == ¢ = 0, since all the eigenvalues are distinct. But with this, (2) reduces
{0 ¢4 1Xpp1 = 0, hence ¢q = 0, since x,.1 # 0 (an eigenvector!). This contradicts the fact
that not all scalars in (2) are zero. Hence the conclusion of the theorem must hold. B

Eigenbasis. Nondistinct Eigenvalues. Nonexistence

5 3 1 1
The matrix A = \:3 i\ has a basis of eigenvectors {1:\ R [ li\ corresponding to the eigenvalues
5 )

Ay =8, Ay = 2. (See Example 1 in Sec. 8.2.)

Even if not all n eigenvalues are different, a matrix A may still provide an eigenbasis for R™. See Example
2 in Sec. 8.1, where n = 3.

On the other hand, A may not have enough linearly independent eigenvectors to make up a basis. For
instance, A in Example 3 of Sec. 8.1 is

0 1 k
A= { } and has only one eigenvector \: ] (k # 0, arbitrary). |
0 0 0

Actually, eigenbases exist under much more general conditions than those in Theorem 1.
An important case is the following.

Symmetric Matrices

A symmetric matrix has an orthonormal basis of eigenvectors for R"™.

For a proof (which is involved) see Ref. [B3], vol. 1, pp. 270-272.

Orthonormal Basis of Eigenvectors

The first matrix in Example 1 is symmetric, and an orthonormal basis of eigenvectors is [1/\/5 1/\/§]T,

vz —uval' ®

Diagonalization of Matrices

Eigenbases also play a role in reducing a matrix A to a diagonal matrix whose entries are
the eigenvalues of A. This is done by a “similarity transformation,” which is defined as
follows (and will have various applications in numerics in Chap. 20).

similar Matrices. Similarity Transformation

An n X n matrix A is called similar to ann X n matrix A if

~

) A =P'AP

for some (nonsingular!) n X n matrix P. This transformation, which gives A from
A, is called a similarity transformation.
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THEOREM 3

PROOF

EXAMPLE 3

THEOREM 4

The key property of this transformation is that it preserves the eigenvalues of A:

Eigenvalues and Eigenvectors of Similar Matrices

If A is similar to A, then A has the same eigenvalues as A.
Furthermore, if X is an eigenvector of A, then'y = P™Ix is an eigenvector of A
corresponding to the same eigenvalue.

From Ax = Ax (A an eigenvalue, x # 0) we get P"'Ax = AP~ 'x. Now I = PP~%. By
this “identity trick” the previous equation gives

P lAx = P7'AIx = P'APP 'x = A(P"'x) = AP Ix.

Hence A is an eigenvalue of A and P~'x a corresponding eigenvector. Indeed, P™'x = 0
would give x = Ix = PP™’x = P0 = 0, contradicting x # 0. |

Eigenvalues and Vectors of Similar Matrices

6 -3 1 3
Let A= and P= .
4 -1 1 4
S | R | B P
Then A= = .
-1 1 4 -1 1 4 0 2

Here P~! was obtained from (4*) in Sec. 7.8 with detP = 1. We see that A has the eigenvalues A; = 3,
Ay = 2. The characteristic equation of A is (6 — A) (=1 — A) + 12 = A2 — 510 + 6 = 0.1t has the roots (the
eigenvalues of A) Ay = 3, Ay = 2, confirming the first part of Theorem 3.

We confirm the second part. From the first component of (A — AI)x = 0 we have (6 — AM)x; — 3xg = 0.
For A = 3 this gives 3x; — 3xy = 0, say, x; = [l 11", For A = 2 it gives 4xq — 3x9 = 0, say, X = [3 4",
In Theorem 3 we thus have

O K BN A 1 v

Indeed, these are eigenvectors of the diagonal matrix A.
Perhaps we see that x; and Xy are the columns of P. This suggests the general method of transforming a
matrix A to diagonal form D by using P = X, the matrix with eigenvectors as columns: [

Diagonalization of a Matrix

If an n X n matrix A has a basis of eigenvectors, then
5) D-X AX

is diagonal, with the eigenvalues of A as the entries on the main diagonal. Here X
is the matrix with these eigenvectors as column vectors. Also,

(5*) D = X—lAmX (m = 27 3, .. )
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PROOF

EXAMPLE 4
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Let X, - - -, X,, constitute a basis of eigenvectors of A for R™. Let the corresponding
eigenvalues of A be Ay, = -+, Ay, respectively, so that Ax; = AXy, ©* +, AX, = AX,.
Then X = [X; --- X,] has rank n, by Theorem 3 in Sec. 7.4. Hence X! exists by

Theorem 1 in Sec. 7.8. We claim that
6) AX =A[x; - - X,] =[Axy - AX ] =[x oo AXx,] = XD

where D is the diagonal matrix as in (5). The fourth equality in (6) follows by direct
calculation. (Try it for n = 2 and then for general n.) The third equality uses Axy = ApXp.
The second equality results if we note that the first column of AX is A times the first
column of X, and so on. For instance, when n = 2 and we write X; = [x1; Hor]'s
Xy = [X12 Xo2]', we have

ay ayg X11 X12
AX = A[x; Xg] =
day Aoy Xa1 Xog
aq1Xi1 T araXen a11X12 T a12X9g
= = [AXl AXZ].
ag1X11 T doaXay dg1X1p T dooXos
Column 1 Column 2

If we multiply (6) by X-! from the left, we obtain (5). Since (5) is a similarity
transformation, Theorem 3 implies that D has the same eigenvalues as A. Equation (5%)
follows if we note that

D2 = DD = X 'AXX'AX = X'AAX = X"'A%X,  etc B

Diagonalization
Diagonalize
e 02 =37
A=|-115 1.0 5.5
17.7 1.8 -93

Solution. The characteristic determinant gives the characteristic equation —3 — A% + 12A = 0. The roots
(eigenvalues of A) are Ay = 3, Ay = —4, A3 = 0. By the Gauss elimination applied to (A — AI)x = 0 with
A = Ay, Ag, A3 we find eigenvectors and then X! by the Gauss—Jordan elimination (Sec. 7.8, Example 1). The
results are

—1 1 2 -1 1 2 -07 02 03
30, | -1, 1], X=| 3 -1 1], x'=|-13 -02 07
—1 3 4 -1 3 4 08 02 -02

Calculating AX and multiplying by X! from the left, we thus obtain

~07 02 031[-3 -4 0 3 0 0
D=X!AX=|-13 -02 07 9 4 o|l=|0 -4 o0f. ]
08 02 —-02]L-3 -12 0 0 0 0
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EXAMPLE 5

Quadratic Forms. Transformation to Principal Axes

By definition, a quadratic form Q in the components x;, - - -, x,, of a vector X is a sum
of n? terms, namely,

n n
—xAx = 3 > g 0

j=1k=1
= auki bankts kot an oy,
(7) .
+ Ao XoX1 t Asoxs” + -t + ag,xox,
+ .........................
T % 01 T GoXXs i e annxnz.

A = [aj;] is called the coefficient matrix of the form. We may assume that A is symmetric,
because we can take off-diagonal terms together in pairs and write the result as a sum of
two equal terms; see the following example.

Quadratic Form. Symmetric Coefficient Matrix
Let

T ¢ 4l A 2 2 2 2
X AX = [x1 Xg) 6 s = 3x1" + 4xy1x9 + 6x9x7 + 2x9° = 3x1° + 10x1x9 + 2x5°.
X2

Here 4 + 6 = 10 = 5 + 5. From the corresponding symmetric matrix C = [cj], where ¢ = %(ajk + ay;),
thus c17 = 3, 19 = €91 = 5, co9 = 2, we get the same result; indeed,

3 5 X1
X'Cx = [x1 xo] |i5 2:| Ii jl = 3x12 + S5x1x9 + Sxoxq + 2x22 = 3x12 + 10xx9 + 2x22. @
A2

Quadratic forms occur in physics and geometry, for instance, in connection with conic
sections (ellipses x;*/a? + x,2/b*> = 1, etc.) and quadratic surfaces (cones, etc.). Their
transformation to principal axes is an important practical task related to the diagonalization
of matrices, as follows.

By Theorem 2 the symmetric coefficient matrix A of (7) has an orthonormal basis of
eigenvectors. Hence if we take these as column vectors, we obtain a matrix X that is
orthogonal, so that X! = X7, From (5) we thus have A = XDX ™' = XDX". Substitution
into (7) gives

®) 0 = x"XDX'x.

If we set X'x =y, then, since X" = X!, we get

) x = Xy.

Furthermore, in (8) we have x'X = (X"x)" = y" and X"x =y, so that Q becomes simply

(10) 0 =y Dy = Myi® + Agys® + - - 4+ Ayt




354

THEOREM 5

EXAMPLE 6
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This proves the following basic theorem.

Principal Axes Theorem

The substitution (9) transforms a quadratic form

n n
I _
0 = x"Ax = X, > apxx (@i = %K)
j=1k=1

to the principal axes form or canonical form (10), where Ay, * + . A, are the (not
necessarily distinct) eigenvalues of the (symmetric!) matrix A, and X is an
orthogonal matrix with corresponding eigenvectors Xy, ** *, Xp, respectively, as
column vectors.

Transformation to Principal Axes. Conic Sections

Find out what type of conic section the following quadratic form represents and transform it to principal
axes:

0 = 17x,% = 30x1xp + 17x5% = 128.

Solution. We have Q = x'Ax, where

17 —15 X1
A= s X = .
—15 17 Xo
This gives the characteristic equation a7 — /\)2 — 152 = 0. It has the roots A; = 2, Ay = 32. Hence (10)
becomes

0 = 25,2 + 32y5%
We see that Q = 128 represents the ellipse 2y12 + 32y22 = 128, that is,

2 2
Y1 Y2

= 4 = =1
g2 22

If we want to know the direction of the principal axes in the x;xo-coordinates, we have to determine normalized
eigenvectors from (A — Al)x = 0 with A = Ay = 2 and A = Ay = 32 and then use (9). We get

[1/\/5] ; [— 1/\6}
12 o V2]’

B [1/\/5 1/\/5} l:yl} X = y/V2 = ya/V2
- 1/V2 V2 Xg = yll\/z + yz/\/i.

hence

Yo

This is a 45° rotation. Our results agree with those in Sec. 8.2, Example 1, except for the notations. See also
Fig. 158 in that example. B
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1-9| DIAGONALIZATION OF MATRICES (d) Diagonalization. What can you do in (5) if you
want to change the order of the eigenvalues in D, for

Find an eigenbasis (a basis of eigenvectors) and
instance, interchange dy; = A; and dos = Ap?

diagonalize. (Show the details.)

3 2 o 16 13-18| SIMILAR MATRICES HAVE EQUAL
1. 2. SPECTRA
L2 6 L4 0 Verify this for A and A = P™'AP. Find eigenvectors y of
~ ~ A. Show that x = Py are eigenvectors of A. (Show the
3 5 1 s 302 details of your work.)
Los L5 -4 (=50 4 -2
13. A = P =
(10 60 27 L0 2 -3
5. 6.
L1.5 1.0 L6 —9 3 4 5 2
14. A = P =
R [~6 —6 10 L4 -3 2 1
7. 10 3 2 8 |-5 -5 5 4 2 1 3
15. A = ,P=
L0 0 2 L—9 -9 13 L—4 -2 3 6
r 3 10 —15 3 0 8 2
16. A = ,P =
9. | —18 39 9 L7 -2 1 4
L —24 40 -—15 _
4 0 0 4 0 6
10. (Orthonormal basis) llustrate Theorem 2 with further 17. A= |12 =2 O, P=10 2 0
examples. 2 —6 1 6 0 10
11. (No basis) Find further 2 X 2 and 3 X 3 matrices
ithout eigenbases. -
e ceen a'\se.s : : s =5 0 15 0 1 0
12. PROJECT. Similarity of Matrices. Similarity is
basic, for instance in designing numeric methods. 18. A = 3 4 -9, P=11 0 0
(a) Trace. By definition, the trace of an n X n matrix
=5 0 15 0 0 1

A = [aj;] is the sum of the diagonal entries,

19-28| TRANSFORMATION TO PRINCIPAL AXES.

trace A = ay; + dgs + 00t ayy.
CONIC SECTIONS
Show that the trace equals the sum of the eigenvalues, ‘What kind of conic section (or pair of straight lines) is given
each counted as often as its algebraic multiplicity by the quadratic form? Transform it to principal axes.
indicates. Illustrate this with the matrices in Probs. 1, Express X' = [x; X,]in terms of the new coordinate vector
3,5,7,09. y' =1 Y], as in Example 6.

(b) Trace of product. Let B = [bj] be n X n. Show 19. x;2 + 24x3x5 — 6x,2 =5
that similar matrices have equal traces, by first 20. 3x,2 + 4\/§x1x2 + 7x,2 =9

proving 21. 3x,2 — 8x3xp — 31,2 = 0
won 22. 6x;2 + 16x1x5 — 6152 = 20
trace AB = E E a;by; = trace BA. 23. 4x,2 + 2\/§x1x2 + 21,2 = 10
e 24, Tx,2 — 24xyx, = 144
(¢) Findarelationship between A in (4)and A = PAP™. 25, x,2 — 12x,xy + x52 = 35
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26. 3x,% + 22x1x5 + 3x,2 = 0
27. 12x,2 + 32xxp + 1222 = 112
28. 6.5x,2 + 5.0x1x5 + 6.5x5> = 36

29. (Definiteness) A quadratic form Q(x) = x'Ax and its
(symmetric!) matrix A are called (a) positive definite
if O(x) > 0 for all x # 0, (b) negative definite if
Q(x) < 0 for all x # 0, (¢) indefinite if Q(x) takes
both positive and negative values. (See Fig. 160.) [0Q(x)
and A are called positive semidefinite (negative
semidefinite) if Q(x) = 0 (Q(x) = 0) for all x.] A
necessary and sufficient condition for positive
definiteness is that all the “principal minors” are
positive (see Ref. [B3], vol. 1, p. 306), that is,

day; diz
a;; > 0, >0,
Q1g  d2g
ay; dig d13
Q15 Ao dog| > 0, sE det A > 0.

aiz dgz dsz

Show that the form in Prob. 23 is positive definite,
whereas that in Prob. 19 is indefinite.

30. (Definiteness) Show that necessary and sufficient for
(), (b), (c) in Prob. 29 is that the eigenvalues of A are
(a) all positive, (b) all negative, (c) both positive and
negative. Hint. Use Theorem 5. Fig. 160. Quadratic forms in two variables

(c) Indefinite form

8.5 Complex Matrices and Forms. Optional

The three classes of real matrices in Sec. 8.3 have complex counterparts that are of practical
interest in certain applications, mainly because of their spectra (see Theorem 1 in this
section), for instance, in quantum mechanics. To define these classes, we need the
following standard

Notations

A= [a] is obtained from A = [a;] by replacing each entry ap = a + iB
(a, Breal) with its complex conjugate dy, = o — iB. Also, A= [@r;] is the transpose
of A, hence the conjugate transpose of A.

EXAMPLE 1 Notations

3+ 4i 1—1i _ 3 -4 1+ T 3 —4i 6
If A= , then A= and A = .
6 2 — 5i 6 2+ 5i 1+ 2+ 5
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DEFINITION

EXAMPLE 2

Hermitian, Skew-Hermitian, and Unitary Matrices

A square matrix A = [ay;] is called

” =T . _
Hermitian if A =A, that is, Qi = Qi
. oo T . _
skew-Hermitian if A = —A, that is, Gy = —aj;
. o T -
unitary if A =A"L

The first two classes are named after Hermite (see footnote 13 in Problem Set 5.8).

From the definitions we see the following. If A is Hermitian, the entries on the main
diagonal must satisfy @;; = a;;; that is, they are real. Similarly, if A is skew-Hermitian,
then @;; = —aj;. If we set a;; = a + i, this becomes a — i = —(a + if3). Hence
a = 0, so that a;; must be pure imaginary or 0.

Hermitian, Skew-Hermitian, and Unitary Matrices

4 1-3i 3i 2+ 1 W3
A= s B = 5 C=
1+ 3i 7 —2 4 —i W3 L
are Hermitian, skew-Hermitian, and unitary matrices, respectively, as you may verify by using the definitions. Il

If a Hermitian matrix is real, then A" = AT = A. Hence a real Hermitian matrix is a
symmetric matrix (Sec. 8.3.).

Similarly, if a skew-Hermitian matrix is real, then KT = AT = —A. Hence a real
skew-Hermitian matrix is a skew-symmetric matrix.

Finally, if a unitary matrix is real, then A" = AT = A~ Hence a real unitary matrix
is an orthogonal matrix.

This shows that Hermitian, skew-Hermitian, and unitary matrices generalize symmetric,
skew-symmetric, and orthogonal matrices, respectively.

Eigenvalues

It is quite remarkable that the matrices under consideration have spectra (sets of eigenvalues;
see Sec. 8.1) that can be characterized in a general way as follows (see Fig. 161).

ImA | — Skew-Hermitian (skew-symmetric)
/Unitary (orthogonal)

/ Hermitian (symmetric)

ARV
N

Fig. 161. Location of the eigenvalues of Hermitian,
skew-Hermitian, and unitary matrices in the complex A-plane
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THEOREM 1

EXAMPLE 3

PROOF
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Eigenvalues
(@) The eigenvalues of a Hermitian matrix (and thus of a symmetric matrix) are
real.

(b) The eigenvalues of a skew-Hermitian matrix (and thus of a skew-symmetric
matrix) are pure imaginary or zero.

(¢) The eigenvalues of a unitary matrix (and thus of an orthogonal matrix) have

absolute value 1. J

Ilustration of Theorem 1

For the matrices in Example 2 we find by direct calculation

Matrix Characteristic Equation Eigenvalues
A Hermitian A2—11A+18=0 9, 2
B Skew-Hermitian A2 —200+8=0 4i, —2i
C  Unitary A —ir—1=0 W3+ 3, —3V3+ii
and|i%\/§+%i|2=%+%:1. &

We prove Theorem 1. Let A be an eigenvalue and x an eigenvector of A. Multiply Ax =

Ax from the left by X', thus X'Ax = AX'X, and divide by X'x = Xpr; + -+ + XXy =
Ly + -+ - + |x,[% which is real and not 0 because x # 0. This gives

X'AX
) A=

X'x

(a) If A is Hermitian, A" = A or AT = A and we show that then the numerator in (1) is
real, which makes A real. X' AxX is a scalar; hence taking the transpose has no effect. Thus

) TTAx = (KAX)’ = x'ATX = x'AX = (XTAX),
Hence, X'Ax equals its complex conjugate, so that it must be real. (a + ib = a — ib
implies b = 0.) B

(b) If A is skew-Hermitian, AT = —A and instead of (2) we obtain
(3) TAx = —(XTAX)
so that X'Ax equals minus its complex conjugate and is pure imaginary or 0.
(a + ib = —(a — ib) implies a = 0.)

(¢) Let A be unitary. We take Ax = Ax and its conjugate transpose

A% = (WX = XX

and multiply the two left sides and the two right sides,

(AX)'Ax = AMX'x = [APX"x.
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THEOREM 2

PROOF

DEFINITION

THEOREM 3

But A is unitary, KT = A~!, so that on the left we obtain
(A%)'Ax = X A'Ax = XA 'Ax = X'Ix = X'x.

Together, X'x = |A|?X'x. We now divide by X'x (# 0) to get |A|* = 1. Hence |A| = 1.
This proves Theorem 1 as well as Theorems 1 and 5 in Sec. 8.3. |

Key properties of orthogonal matrices (invariance of the inner product, orthonormality of
rows and columns; see Sec. 8.3) generalize to unitary matrices in a remarkable way.

To see this, instead of R™ we now use the complex vector space C™ of all complex
vectors with n complex numbers as components, and complex numbers as scalars. For
such complex vectors the inner product is defined by (note the overbar for the complex
conjugate)

“) ash = a'b.

The length or norm of such a complex vector is a real number defined by

(5) Jla|| = Vaca=VaTa= Vaa + -+ aua, = \/|a1|2 + e a2

Invariance of Inner Product

A unitary transformation, that is, y = AX with a unitary matrix A, preserves the
value of the inner product (4), hence also the norm (5).

The proof is the same as that of Theorem 2 in Sec. 8.3, which the theorem generalizes.
In the analog of (9), Sec. 8.3, we now have bars,

usv=1'v=(Aa)Ab=a A'Ab =a'Ib = a'b = ab. =

The complex analog of an orthonormal systems of real vectors (see Sec. 8.3) is defined
as follows.

Unitary System
A unitary system is a set of complex vectors satisfying the relationships
{O if j#k

(6) aj°ak = i_leak =
1 if j=k

Theorem 3 in Sec. 8.3 extends to complex as follows.

Unitary Systems of Column and Row Vectors

A complex square matrix is unitary if and only if its column vectors (and also its
row vectors) form a unitary system.
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EXAMPLE 5
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The proof is the same as that of Theorem 3 in Sec. 8.3, except for the bars required in
A" =A'landin (4) and (6) of the present section. |

Determinant of a Unitary Matrix

Let A be a unitary matrix. Then its determinant has absolute value one, that is,
|det A| =

Similarly as in Sec. 8.3 we obtain

1 = det (AA™Y) = det (AA") = det A det A' = det A det A
= det A det A = |det A%

Hence |det A| = 1 (where det A may now be complex). [ |

Unitary Matrix Illustrating Theorems 1c and 2-4

For the vectors a' = [2 —i] and b’ = [1+i 4i]weget al = [2 i]-r anda'b=2(1+i)—4=-2+2i
and with

0.8i 0.6 i —0.8 + 3.2i
A= also Aa = and Ab = R

0.6 0.8 2 —2.6 + 0.6i
as one can readily verify. This gives (XE)TAb = —2 + 2i, illustrating Theorem 2. The matrix is unitary. Its
columns form a unitary system,

aa; = —0.8i-0.8i + 0.6° = 1, a,'ay = —0.8i-0.6 + 0.6-0.8i = 0,

' ay = 0.6 + (—0.81)0.8i = 1

and so do its rows. Also, det A = —1. The eigenvalues are 0.6 + 0.8i and —0.6 + 0.8i, with eigenvectors

[1 1]T and [1 — l]T, respectively.

Theorem 2 in Sec. 8.4 on the existence of an eigenbasis extends to complex matrices as
follows.

Basis of Eigenvectors

A Hermitian, skew-Hermitian, or unitary matrix has a basis of eigenvectors for C"
that is a unitary system.

For a proof see Ref. [B3], vol. 1, pp. 270-272 and p. 244 (Definition 2).

Unitary Eigenbases

The matrices A, B, C in Example 2 have the following unitary systems of eigenvectors, as you should verify.

1 1
A: 1 - 5" (A= —— -3 -2 =2
Tl T a=9 VT 2" =2
B ! [1—2i 5]T (A 2i) : [5 1+ 2‘]T (A = 4i)
H 1 = = = 5 — =
V30 /30 l '
1 1
o o—=0 1T A=3G+ V3. — -11" A=136- ; B
L T (A =3G+V3) ol 1" =136 -V3)
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Hermitian and Skew-Hermitian Forms

The concept of a quadratic form (Sec. 8.4) can be extended to complex. We call the
numerator X' Ax in (1) a form in the components x, - - -, x,, of X, which may now be
complex. This form is again a sum of n? terms

n n
iTAX = E E ajkfjxk

j=1k=1
= auflxl + -+ alnilxn
7 + X + -+ X
da1X2X AonXoXy,
b e e e e e s e
1 A Xp Xy 0 Ay XXy,

A is called its coefficient matrix. The form is called a Hermitian or skew-Hermitian
form if A is Hermitian or skew-Hermitian, respectively. The value of a Hermitian form
is real, and that of a skew-Hermitian form is pure imaginary or zero. This can be seen
directly from (2) and (3) and accounts for the importance of these forms in physics. Note
that (2) and (3) are valid for any vectors because in the proof of (2) and (3) we did not
use that x is an eigenvector but only that X'x is real and not 0.

EXAMPLE 6 Hermitian Form

For A in Example 2 and, say, x = [1 + i 5i]" we get

4 131+ 41+ + (1 —30)-50
XAx =[1 — i —51’][ }[ :|=[l—i —51‘][ ]=223. H
1+3i 7 5i (L+30)(1 + i)+ 750

Clearly, if A and x in (4) are real, then (7) reduces to a quadratic form, as discussed in
the last section.

1. (Verification) Verify the statements in Examples 2 B 1 i
and 3. - 2 2 0 i
2. (Product) Show (BA) = —AB for A and B in 7. 8.
Example 2. For any n X »n Hermitian A and LA i 0
skew-Hermitian B. L V2 V2
3. Show that (ABC)' = —C 'BA for any n X n
Hermitian A, skew-Hermitian B, and unitary C. si 0 0
4. (Eigenvectors) Find eigenvectors of A, B, C in F !
Examples 2 and 3. 9. 10 0 5i
5-11| EIGENVALUES AND EIGENVECTORS L0 5 0
Are the matrices in Probs. 5-11 Hermitian? Skew-
Hermitian? Unitary? Find their eigenvalues (thereby _ )
verifying Theorem 1) and eigenvectors. 0 1+1i 0
4 i 0 2i 10. |1 - 0 1+
5. 6.
—i 2 2i 0 L O 1 =i 0




12. PROJECT. Complex Matrices
(a) Decomposition. Show that any square matrix may
be written as the sum of a Hermitian and a
skew-Hermitian matrix. Give examples.
(b) Normal matrix. This important concept denotes
a matrix that commutes with its conjugate transpose,
AA' = A'A. Prove that Hermitian, skew-Hermitian,
and unitary matrices are normal. Give corresponding
examples of your own.
(¢) Normality criterion. Prove that A is normal if and
only if the Hermitian and skew-Hermitian matrices in
(a) commute.
(d) Find a simple matrix that is not normal. Find a
normal matrix that is not Hermitian, skew-Hermitian,
or unitary.
(e) Unitary matrices. Prove that the product of two
unitary n X n matrices and the inverse of a unitary
matrix are unitary. Give examples.
(f) Powers of unitary matrices in applications may
sometimes be very simple. Show that C'* = T in
Example 2. Find further examples.

1. In solving an eigenvalue problem, what is given and
what is sought?

2. Do there exist square matrices without eigenvalues?
Eigenvectors corresponding to more than one
eigenvalue of a given matrix?

3. What is the defect? Why is it important? Give examples.

4. Can a complex matrix have real eigenvalues? Real
eigenvectors? Give reasons.

5. What is diagonalization of a matrix? Transformation of
a form to principal axes?

6. What is an eigenbasis? When does it exist? Why is it
important?

7. Does a 3 X 3 matrix always have a real eigenvalue?

8. Give a few typical applications in which eigenvalue
problems occur.

DIAGONALIZATION

Find an eigenbasis and diagonalize. (Show the details.)

101 72
9.
—144 —103

CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

13-15| COMPLEX FORMS
Is the given matrix (callit A) Hermitian or skew-Hermitian?
Find X" Ax. (Show all the details.) a, b, c, k are real.

0 -3 4+
13. ,X =
-3i 0 33—
a b+ ic X1
14. ,X =
b —ic k Xo,
2 1+ i
15. X =
1 - 1 2i

16. (Pauli spin matrices) Find the eigenvalues and
eigenvectors of the so-called Pauli spin matrices and show
that 8,8, = iS.. S,S, = —iS.. 8,” = S2=82=1,
where

144 —-11.2
10.
—-11.2  102.6

—14 10
11.
—10 11

r1s 4 —4
12. 6 10 8|,A=18
L-12 -2 -7
[ 5 & -&
13.| 2 %2 3§
-4 —§ -
-6 11 3
14. | 4 1 3|,A=2
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15-17| SIMILARITY 2 2 =2 1 2 3

Verify that A and A = P7'AP have the same spectrum.
Here, A, P are:

[3.8 24 1 2 I =1 =1 3 2 4
15. ,
L2.4 0.2 2 1

Transformation to Canonical Form. Reduce the quadratic
form to principal axes.

18. 11.56x,% 4+ 20.16x.x, + 17.44x,2 = 100
16. | -4 20 -8|,|0 2 4 19. 1.09x,%2 = 0.06x1x5 + 1.01x,2 = 1
20. 14x,% + 24xx5 — 4x,2 = 20

UMMARY OF CHAPTER 8-
Linear Algebra: Matrix Eigenvalue Problems

The practical importance of matrix eigenvalue problems can hardly be overrated.
The problems are defined by the vector equation

(1) AXx = Ax.

A is a given square matrix. All matrices in this chapter are square. A is a scalar. To
solve the problem (1) means to determine values of A, called eigenvalues (or
characteristic values) of A, such that (1) has a nontrivial solution x (that is,
x # 0), called an eigenvector of A corresponding to that A. An n X n matrix has
at least one and at most n numerically different eigenvalues. These are the solutions
of the characteristic equation (Sec. 8.1)

app — A (GF) o A1n
Aoy agg — A - Aan
(2) D(\) = det(A — AI) = = 0.
An1 (%) Ty A

D(A) is called the characteristic determinant of A. By expanding it we get the
characteristic polynomial of A, which is of degree n in A. Some typical applications
are shown in Sec. 8.2.

Section 8.3 is devoted to eigenvalue problems for symmetric (AT = A),
skew-symmetric (AT = —A), and orthogonal matrices (AT = A~1). Section 8.4
concerns the diagonalization of matrices and the transformation of quadratic forms
to principal axes and its relation to eigenvalues.

Section 8.5 extends Sec. 8.3 to the complex analogs of those real matrices,
called Hermitian (A" = A), skew-Hermitian (A' = —A), and unitary matrices
(KT = A™Y. All the eigenvalues of a Hermitian matrix (and a symmetric one) are
real. For a skew-Hermitian (and a skew-symmetric) matrix they are pure imaginary
or zero. For a unitary (and an orthogonal) matrix they have absolute value 1.




